Skip to main content

Graphene-Based Polymer Composites: Physical and Chemical Properties

  • Chapter
  • First Online:
Defect Engineering of Carbon Nanostructures

Part of the book series: Advances in Material Research and Technology ((AMRT))

  • 348 Accesses

Abstract

The graphene-based polymer composites are of immense interest for their end-use applicability in the field of electromagnetic interference shielding devices, tissue engineering, sensor, power storage, supercapacitors, and energy storage devices. Graphene oxide is one of the finest nanomaterials with outstanding physical and chemical properties for the choice of scientific and engineering applications. The present chapter is focused mainly on two categories. In the first category synthesis technique is based on electrospinning for the fabrication of graphene-reinforced polymeric composites. In the second one, we have primarily emphasized graphene-based composites with many organic and polymeric materials including polyvinyl alcohol (PVA), poly(vinylidene fluoride) (PVDF), epoxy, polystyrene (PS), polypropylene (PP), polyimide (PI), polyurethane (PU), polyaniline (PANI), polypyrrole, and polythiophene in more detail. In addition, the thermal, mechanical, and electrical properties of these graphene-based polymeric composites have been discussed in a lucid manner. The concluding section of this current chapter throws light on the current challenges and opens the path for these new promising composite materials for their technological applications as per the contemporary demands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costa, P. et al. High-performance graphene-based carbon nanofiller/polymer composites for piezoresistive sensor applications. Compos. Sci. Technol. 153, 241-252 (2017).

    Article  CAS  Google Scholar 

  2. Sankaran, S., Deshmukh, K., Ahamed, M. B. & Pasha, S. K. K.Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review.Compos. Part A: Appl. Sci. Manuf. 14, 49-71 (2018).

    Article  Google Scholar 

  3. Lightcap, I.V. & Kamat, P. V.Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing. Acc. Chem. Res. 46, 2235-2243 (2013).

    Article  CAS  Google Scholar 

  4. Lei, Z., Christov, N. & Zhao, X. S. Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy Environ. Sci.4, 1866-1873 (2011).

    Article  CAS  Google Scholar 

  5. Evanoff Jr, D. D. & Chumanov, G.Synthesis and optical properties of silver nanoparticles and arrays. Chem. Phys. Chem., 6, 1221-1231 (2005).

    Article  CAS  Google Scholar 

  6. Winey, K.I. & Vaia, V.Polymer nanocomposites. MRS Bull.32, 314-322 (2007).

    Article  CAS  Google Scholar 

  7. Yin, Z. et al. Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications.Nano-Micro Small 7, 1876-1902 (2011).

    Google Scholar 

  8. Tong, X., Li, N., Zeng, M. & Wang, Q. Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges. Renew. Sust. Energ. Rev.108, 398-422 (2019).

    Article  CAS  Google Scholar 

  9. Huang, Y., Liang, J. & Chen, Y. An overview of the applications of graphene‐based materials in supercapacitors. Small, 8, 1805-1834 (2012).

    Article  CAS  Google Scholar 

  10. Khan, M. et al. Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications.J. Mater. Chem. A 3, 18753–18808 (2015).

    Google Scholar 

  11. Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282-286 (2006).

    Article  CAS  Google Scholar 

  12. Xiao, X. C., Xie, T. & Cheng, Y.T. Self-healable graphene polymer composites. J. Mater. Chem. 20, 3508-3514 (2010).

    Article  CAS  Google Scholar 

  13. Chen, S., Skordos, A. & Thakur, V. K. Functional nanocomposites for energy storage: Chemistry and new horizons. Mater. Today Chem. 17, 100304(2020).

    Google Scholar 

  14. Sengupta, R., Bhattacharya, M., Bandyopadhyay, S. & Bhowmick, A. K.A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 36, 638–670 (2011).

    Google Scholar 

  15. Liang, C. et al. Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 11, 22590-22598 (2019).

    Article  CAS  Google Scholar 

  16. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385-388 (2008).

    Article  CAS  Google Scholar 

  17. Kuilla,T. et al. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35, 1350–1375(2010).

    Article  CAS  Google Scholar 

  18. Cui, Y., Kundalwal, S. I. & Kumar, S. Gas barrier performance of graphene/polymer nanocomposites. Carbon 98, 313-333 (2016).

    Article  CAS  Google Scholar 

  19. Novoselov, K.S. et al. Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004).

    Article  CAS  Google Scholar 

  20. Pang, S., Hernandez, Y., Feng, X. & Mullen, K. Graphene as transparent electrode material for organic electronics. Adv. Mater. 23, 2779-2795 (2011).

    Article  CAS  Google Scholar 

  21. Iwan,A. & Chuchmała, A. Perspectives of applied graphene: Polymer solar cells. Prog. Polym. Sci. 37, 1805-1828 (2012).

    Article  CAS  Google Scholar 

  22. Usuki, A. et al. Composite material containing a layered silicate. US Pat. 889885 (1989).

    Google Scholar 

  23. Garcia, N. J. & Bazan, J. C. Electrical conductivity of montmorillonite as a function of relative humidity: La-montmorillonite. Clay Miner. 44, 81-88 (2009).

    Article  CAS  Google Scholar 

  24. Bao, Y.Z.,Cong, L.F.,Huang, Z.M. & Weng, Z.X. Preparation and proton conductivity of poly (vinylidene fluoride)/layered double hydroxide nanocomposite gel electrolytes. J. Mater. Sci. 43, 390-394 (2008).

    Article  CAS  Google Scholar 

  25. Ivanov, R. et al. PLA/Graphene/MWCNT composites with improved electrical and thermal properties suitable for FDM 3D printing applications. Appl. Sci. 9, 1209 (2019).

    Article  CAS  Google Scholar 

  26. Paszkiewicz, S. et al. A. Enhanced Functional Properties of Low-Density Polyethylene Nanocomposites Containing Hybrid Fillers of Multi-Walled Carbon Nanotubes and Nano Carbon Black. Polym. 12, 1356 (2020).

    Google Scholar 

  27. Achaby, M. El. & Qaiss, A. Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes. Mater. Design. 44, 81–89 (2013).

    Google Scholar 

  28. Neubauer, E., Kitzmantel, M., Hulman, M. & Angerer, P. Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Compos. Sci. Technol. 70, 2228-2236 (2010).

    Article  CAS  Google Scholar 

  29. Kim, J. H. et al.Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics. Sci. Rep. 8, 1375 (2018).

    Article  Google Scholar 

  30. Wang, Y. et al. Effect of nano-scale Cu particles on the electrical property of CNT/polymer nanocomposites. Compos. Part A: Appl. Sci. Manuf.143, 106325 (2021).

    Google Scholar 

  31. Balkanloo, P. G., Mahmoudian, M.&Hosseinzadeh, M. T. A comparative study between MMT-Fe3O4/PES, MMT-HBE/PES, and MMT-acid activated/PES mixed matrix membranes. Chem. Eng. J.396, 125188 (2020).

    Google Scholar 

  32. Araby, S. et al. Recent advances in carbon-based nanomaterials for flame retardant polymers and composites. Compos. Part B: Eng.212, 108675(2021).

    Google Scholar 

  33. Thakur, K. &Kandasubramanian, B. Graphene and graphene oxide-based composites for removal of organic pollutants: A review. J. Chem. Eng. Dat. 64, 833-867 (2019).

    Article  CAS  Google Scholar 

  34. Guo, Y., Bao, C., Song, L., Yuan, B. & Hu,Y. In Situ Polymerization of Graphene, Graphite Oxide, and Functionalized Graphite Oxide into Epoxy Resin and Comparison Study of On-the-Flame BehaviorInd. Eng. Chem. Res. 50, 7772-7783 (2011).

    Article  CAS  Google Scholar 

  35. Dai, J., Wang, G., Ma, L. & Wu, C. Study on the surface energies and dispersibility of graphene oxide and its derivatives. J. Mater Sci. 50, 38953907 (2015).

    Article  Google Scholar 

  36. Cui, J., Xiong, Z., Qiu, H., LI, J. & Yang, J. Functionalized graphene oxide: Carrier for corrosion inhibitor and barrier in waterborne epoxy coatings. Compos. Part A: Appl. Sci. Manuf. 144, 106354 (2021).

    Google Scholar 

  37. Zong, P. et al. Effect of aminopropylisobutyl polyhedral oligomeric silsesquioxane functionalized graphene on the thermal conductivity and electrical insulation properties of epoxy composites. RSC Adv. 6, 10498-10506 (2016).

    Article  CAS  Google Scholar 

  38. Persano, L., Camposeo, A.,Tekmen, C. & Pisignano, D. Industrial upscaling of electrospinning and applications of polymer nanofibers: A review. Macromol. Mater. Eng. 298, 504-520 (2013).

    Article  CAS  Google Scholar 

  39. He, X. X. et al. Near-field electrospinning: progress and applications. Phys. Chem. C 121, 8663-8678 (2017).

    Article  CAS  Google Scholar 

  40. Zhang, L. F., Aboagye, A. & Kelkar, A. A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J. Mater. Sci. 49, 463-480 (2014).

    Article  Google Scholar 

  41. Wang, X., Yu, J., Sun, G. & Ding, B. Electrospun nanofibrous materials: a versatile medium for effective oil/water separation. Mater. Today 19, 403-414 (2015).

    Article  Google Scholar 

  42. Kim, J. F.,Kim, J. H.,Lee, Y. M. & Drioli, E. Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review. Alche J. 62, 461-490 (2016).

    Article  CAS  Google Scholar 

  43. Mirjalili M. & Zohoori, S. Review for application of electrospinning and electrospun nanofibers technology in textile industry. J. Nanostructures Chem. 6, 207-213 (2016).

    Article  CAS  Google Scholar 

  44. Zhang, C. L. & Yu, S. H. Nanoparticles meet electrospinning: recent advances and future prospects. Chem. Soc. Rev. 43, 4423-4448 (2014).

    Article  CAS  Google Scholar 

  45. Bhardwaj, N. S. C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28, 325 (2010).

    Article  CAS  Google Scholar 

  46. Chen, Z., Xin, B.,Wu, X.,Wang, X. &Du, W. Preparation and characterisation of PSA/CNT composites and fibres. Fibres Text. East. Eur. 94, 21-25 (2012).

    Google Scholar 

  47. Yu, J., Xin, B. & Shen, C. Preparation and characterization of PSA/PEDOT conductive composite yarns. Text. Res. J., 87 (5), 528-541 (2017).

    Article  CAS  Google Scholar 

  48. Chen, W. J., Xin, B. J. & Wu, X. J. Fabrication and characterization of PSA nanofibers via electrospinning. J. Ind. Text. 44, 159-179 (2014).

    Article  Google Scholar 

  49. Garg, K. & Bowlin, G. L. Electrospinning jets and nanofibrous structures.Biomicrofluidics5, 013403 (2011).

    Google Scholar 

  50. I. F. Wahab et al. Electrospun graphene oxide-based nanofibers. Adv. Carbon Nanostructures, 101–120 (2016).

    Google Scholar 

  51. Bao, Q. et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077-3083 (2009).

    Article  CAS  Google Scholar 

  52. Das, S. et al .Electrospinning of polymer nanofibers loaded with noncovalently functionalized graphene. J. Appl. Polym. Sci. 128, 4040-4046 (2013).

    Article  CAS  Google Scholar 

  53. Kim, S. Y., Kim, B. H.,Yang, K. S.& Kim, K. Y. The formation of silica nanoparticles on the polyacrylonitrile-based carbon nanofibers by graphene via electrospinning. Mater. Lett. 71, 74-77 (2012).

    Article  CAS  Google Scholar 

  54. Correa, E., Moncada, M .E.,Gutiérrez,O. D.,Vargas, C. A. & Zapata, V. H. Characterization of polycaprolactone/rGO nanocomposite scaffolds obtained by electrospinning. Mater. Sci. Eng. C Mater. Biol. Appl. 103, 109773(2019).

    Google Scholar 

  55. Guo, Y. et al. Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J. Mater. Chem. C 6, 3004-3015 (2018).

    Article  CAS  Google Scholar 

  56. Hou, W. et al. Preparation and physico-mechanical properties of amine-functionalized graphene/polyamide 6 nanocomposite fiber as a high performance material. RSC Adv. 4, 4848-4855 (2014).

    Article  CAS  Google Scholar 

  57. Ehteshami, S., Feizbakhsh, A., Sarrafi, A. H. M., Panahi, H. A. & Roostaie, A. An electrospun polyamide/graphene oxide nanocomposite as a novel fiber coating. Anal. Methods 10, 2123-2128 (2018).

    Article  CAS  Google Scholar 

  58. Karumuthil, S. C., Rajeev, S. P., Valiyaneerilakkal, U., Athiyanathil, S. & Varghese, S. Electrospun Poly(vinylidene fluoride-trifluoroethylene)-Based Polymer Nanocomposite Fibers for Piezoelectric Nanogenerators. ACS Appl. Mater. Interfaces 11, 40180-40188 (2019).

    Article  Google Scholar 

  59. Nieto, A., Dua, R., Zhang, C., Boesl, B.& Ramaswamy, S.Three dimensional graphene foam/polymer hybrid as a high strength biocompatible scaffold. Adv. Functional Mater. 25, 3916-3924 (2015).

    Article  CAS  Google Scholar 

  60. Samad, Y. A. Li, Y. Alhassan, S. M. & Liao, K. Novel graphene foam composite with adjustable sensitivity for sensor applications.ACS Appl. Mater. Interf. 7, 9196–9202 (2015).

    Google Scholar 

  61. Sun, H. B., Yang, J., Zhou, Y. Z., Zhao, N. & Li, D. Preparation of reduced graphene oxide films by dip coating technique and their electrical conductivity. Mater. Technol. 29, 14-20 (2014).

    Article  CAS  Google Scholar 

  62. Fang, M. et al. Preparation of highly conductive graphene-coated glass fibers by sol-gel and dip-coating method. J. Mater. Sci. Technol., 3, 1989-1995 (2019).

    Article  Google Scholar 

  63. Chatterjee, A., Kumar, M. N. & Maity, S. Influence of graphene oxide concentration and dipping cycles on electrical conductivity of coated cotton textiles. J. Text. Inst. 108, 1910-1916 (2017).

    Article  CAS  Google Scholar 

  64. Berendjchi, A., Khajavi, R., Yousefi, A. A. & Yazdanshenas, M. E. Surface characteristics of coated polyester fabric with reduced graphene oxide and polypyrrole. Appl. Surf. Sci. 367, 36-42 (2016).

    Article  CAS  Google Scholar 

  65. Liu, X. et al. Fabricating conductive poly(ethylene terephthalate) nonwoven fabrics using an aqueous dispersion of reduced graphene oxide as a sheet dyestuff. RSC Adv. 4, 23869-23875 (2014).

    Article  CAS  Google Scholar 

  66. Kongahge, D., Foroughi, J., Gambhir, S., Spinks, G. M. & Wallace, G. G. Fabrication of a graphene coated nonwoven textile for industrial applications. RSC Adv. 6, 73203-73209 (2016).

    Article  CAS  Google Scholar 

  67. B. Thomas, H. J. Maria, G. George, S. Thomas, N.V. Unnikrishnan, K. Joseph, A novel green approach for the preparation of high performance nitrile butadiene rubber-pristine graphene nanocomposites. Compos. Part B Eng. 175, 107174 (2019).

    Google Scholar 

  68. Bahrami, S., Solouk, A., Mirzadeh, H. & Seifalian, A. M. Electroconductive polyurethane/graphene nanocomposite forbiomedicalapplication. Compos. Part B Eng. 168, 421-431 (2019).

    Article  CAS  Google Scholar 

  69. Fan, J. et al. Gum arabic assisted exfoliation and fabrication of Ag–graphene-based hybrids. J. Mater. Chem. 22, 13764-13772 (2012).

    Article  CAS  Google Scholar 

  70. Johnson, D. W., Dobson, B. P.& Coleman, K. S. A manufacturing perspective on graphene dispersions. Curr. Opin. Colloid Interface Sci. 20, 367-382 (2015).

    Article  CAS  Google Scholar 

  71. Konios, D., Stylianakis, M. M., Stratakis, E. & Kymakis, E. Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108-112 (2014).

    Article  CAS  Google Scholar 

  72. Yang, X. et al. A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications. Adv. Func. Mater. 23, 3353 (2013)

    Article  CAS  Google Scholar 

  73. Fattah, N. et al. An approach to solid-state electrical double layer capacitors fabricated with graphene oxide-doped, ionic liquid-based solid copolymer electrolytes. Mater. 9, 450 (2016).

    Article  Google Scholar 

  74. Mohammed, H. A. et al. Fabrication and characterizations of a novel etched-tapered single mode optical fiber ammonia sensors integrating PANI/GNF nanocomposite.Sens. Actuators B: Chem. 287, 71-77 (2019).

    Article  CAS  Google Scholar 

  75. Soltani-kordshuli, F., Zabihi, F. & Eslamian, M. Graphene-doped PEDOT: PSS nanocomposite thin films fabricated by conventional and substrate vibration-assisted spray coating (SVASC). Eng. Sci. Technol. Int. J. 19, 1216-1223 (2016).

    Google Scholar 

  76. Jaworek, A. Electrospray droplet sources for thin film deposition. J. Mater. Sci. 42, 266-297 (2007).

    Article  CAS  Google Scholar 

  77. Eslamian, M. Spray-on thin film PV solar cells: advances, potentials and challenges. Coatings 4, 60-84 (2014).

    Article  Google Scholar 

  78. Adelowo, E., Baboukani, A. R., Chen, C. & Wang, C. Electrostatically sprayed reduced graphene oxide-carbon nanotubes electrodes for lithium-ion capacitors. J. Carbon Res. 4, 31 (2018).

    Article  Google Scholar 

  79. Adak, B., Joshi, M. & Butola, B. S. Polyurethane/functionalized-graphene nanocomposite films with enhanced weather resistance and gas barrier properties. Compos. Part B: Eng. 176, 107303 (2019).

    Google Scholar 

  80. Nordin, N. M., Buys, Y. F., Anuar, H., Ani, M. H. & Pang, M. M. Development of conductive polymer composites from pla/tpu blends filled with graphene nanoplatelets. Today Proceeding 17, 500 (2019).

    CAS  Google Scholar 

  81. Khanam, P. N. et al. Melt processing and properties of linear low density polyethylene-graphene nanoplatelet composites. Vacuum 130, 63-71 (2016).

    Article  Google Scholar 

  82. Panchakarla, L. S.,Govindaraj, A. & Rao, C. N. R. Nitrogen- and boron-doped double-walled carbon nanotubes. ACS Nano 1, 494 (2007).

    Article  CAS  Google Scholar 

  83. Subrahmanyam, K. S., Govindaraj, P. L. & Rao, C. N. R. Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem C 113, 4257-4259 (2009).

    Article  CAS  Google Scholar 

  84. Goldberg, D. & Goldberget, D. The tribological properties of solid lubrication graphite coatings prepared by a sol–gel method. Carbon 38, 2017-2020 (2005).

    Google Scholar 

  85. Meyer, J. C., Simon, S.K., Park, J.H., Skakalova, V. & Künze, D. Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. Nat. Mater. 10, 209-215 (2011).

    Article  CAS  Google Scholar 

  86. Banhart, F., Kotakoski, J. &Krasheninnikov,A. V. Structural defects in graphene. ACS Nano 5, 26-41 (2011).

    Article  CAS  Google Scholar 

  87. Ruiz-Vargas, C.S. et al. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett., 11, 2259-2263 (2011).

    Article  CAS  Google Scholar 

  88. Stone, A. J. & Wales, D. J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 128,501-503 (1986).

    Article  CAS  Google Scholar 

  89. Meyer, J. C. et al. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8, 3582-3586 (2008).

    Article  CAS  Google Scholar 

  90. Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene. ACS nano 5, 26-41 (2011).

    CAS  Google Scholar 

  91. Girit, C.O. et al. Graphene at the edge: stability and dynamics, Science 323, 1705-1708 (2009).

    Article  CAS  Google Scholar 

  92. Banhart, F. Interactions between metals and carbon nanotubes: at the interface between old and new materials. Nanoscale 1, 201-213 (2009).

    Article  CAS  Google Scholar 

  93. Krasheninnikov, A. & Banhart, F. Engineering of nanostructured carbon materials with electron or ion beams. Nat. Mater. 6, 723-733 (2007).

    Article  CAS  Google Scholar 

  94. Tapaszto, L. et al. Tuning the electronic structure of graphene by ion irradiation. Phys. Rev. B 78, 233407 (2008).

    Google Scholar 

  95. Bagri, A. et al. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem., 2, 581-587 (2010).

    Article  CAS  Google Scholar 

  96. Cortijo, A. & Vozmediano, M.A.H. Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl. Phys. B 763, 293-308 (2007).

    Article  Google Scholar 

  97. Li, J., Tang, T., Luo, L. & Yao, J. Enhancement and modulation of photonic spin Hall effect by defect modes in photonic crystals with graphene. Carbon 134, 293-300 (2018).

    Article  CAS  Google Scholar 

  98. Gouda, M.H. et al. Poly(vinyl alcohol)-based crosslinked ternary polymer blend doped with sulfonated graphene oxide as a sustainable composite membrane for direct borohydride fuel cells. J. Power Sources 432, 92-101 (2019).

    Article  CAS  Google Scholar 

  99. Cobos, M., Pinta, I. D. L.,Quindos, G., Fernandeza, M. J. & Fernandeza, M.D. One-step eco-friendly synthesized silver-graphene oxide/poly (vinyl alcohol) antibacterial nanocomposites. Carbon 150, 101-116 (2019).

    Article  CAS  Google Scholar 

  100. Feng, L. & Liu, Z. Graphene in biomedicine: opportunities and challenges. Nanomedicine 6,317-324 (2011).

    Article  CAS  Google Scholar 

  101. Liu, Z., Robinson, J. T., Tabakman, S. M., Yang, K. &Dai, H. Carbon materials for drug delivery & cancer therapy. Mater. Today 14, 316-323 (2011).

    Article  CAS  Google Scholar 

  102. Sharma, B., Shekhar, S., Gautam, S., Sarkar, A. & Jain, P. Nanomechanical analysis of chemically reduced graphene oxide reinforced poly (vinyl alcohol) nanocomposite thin films. Polym. Testing 70, 458-466 (2018)

    Article  CAS  Google Scholar 

  103. Malik, P., Bhasha, B. & Jain, P. Influence of surface modified graphene oxide on mechanical and thermal properties of epoxy resin. Orient J. Chem. 34, 1597-1603 (2018).

    Article  CAS  Google Scholar 

  104. Wang, Z. et al. Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly (vinyl alcohol) composites with insulating barriers. Carbon 123, 385-394 (2017).

    Article  CAS  Google Scholar 

  105. Khan, A., Jain, R. K., Luqman, M. & Asiri,A. M. Development of sulfonated poly (vinyl alcohol)/aluminium oxide/graphene based ionic polymer-metal composite (IPMC) actuator. Sens. Actuator A Phys. 280, 114-124 (2018).

    Article  CAS  Google Scholar 

  106. Huang, Y., Liang, J. &Chen, Y. The application of graphene based materials for actuators. J. Mater. Chem. 22, 3671-3679 (2012).

    Article  CAS  Google Scholar 

  107. Chattaraj, R., Bhaumik, S., Khan, S. &Chatterjee, D. Soft wearable ionic polymer sensors for palpatory pulse-rate extraction. Sens. Actuators A: Phys. 270, 65-71 (2018).

    Article  CAS  Google Scholar 

  108. Dong, J., Wang, Z. & X. Kang. The synthesis of graphene/PVDF composite binder and its application in high performance MnO2 supercapacitors. Colloids and Surfaces A: Physicochem. Eng. Aspects 489, 282–288 (2016).

    Google Scholar 

  109. Ahmad, A. L., Farooqui, U. R. & Hamid, N. A. Synthesis and characterization of porous poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-co-HFP)/poly(aniline) (PANI)/graphene oxide (GO) ternary hybrid polymer electrolyte membrane. Electrochim. Acta 283, 842-849(2018).

    Article  CAS  Google Scholar 

  110. Wan, Y. J., Yang, W. H., Yu, S. H., Sun, R., Wong, C. P. & Liao, W. H. Covalent polymer functionalization of graphene for improved dielectric properties and thermal stability of epoxy composites. Compos. Sci. Technol. 122, 27-35 (2016).

    Article  CAS  Google Scholar 

  111. Moharana, S. & Mahaling, R.N. Silver (Ag)-Graphene oxide (GO) - Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanostructured composites with high dielectric constant and low dielectric loss. Chem. Phys. Lett. 680, 31-36 (2017).

    Article  CAS  Google Scholar 

  112. Chen, Z., Liu, Y., Fang, L., Jiang, P. & Huang, X. Role of reduced graphene oxide in dielectric enhancement of ferroelectric polymers composites. Appl. Surf. Sci. 470, 348-359 (2019).

    Article  CAS  Google Scholar 

  113. He, Z. Z. et al. Compos. Part ALargely enhanced dielectric properties of poly (vinylidene fluoride) composites achieved by adding polypyrrole-decorated graphene oxide. Appl. Sci. Manuf. 104, 89–100 (2018).

    Google Scholar 

  114. Li, Y. et al. Fe3O4 decorated graphene/poly (vinylidene fluoride) nanocomposites with high dielectric constant and low dielectric loss. Compos. Sci. Technol. 171, 152-161 (2019).

    Article  CAS  Google Scholar 

  115. Li, Y. et al. Polydopamine coating layer on graphene for suppressing loss tangent and enhancing dielectric constant of poly (vinylidene fluoride)/graphene composites. Compos. Part A Appl. Sci. Manuf. 73, 85-92 (2015).

    Article  CAS  Google Scholar 

  116. Zhang, Y., Wang, Y., Deng, Y., Li, M. & Bai, J. Enhanced dielectric properties of ferroelectric polymer composites induced by metal-semiconductor Zn-ZnO core–shell structure. ACS Appl. Mater. Interfaces 4, 65-68 (2012).

    Article  CAS  Google Scholar 

  117. Tong, W. et al. Amorphous TiO2-coated reduced graphene oxide hybrid nanostructures for polymer composites with low dielectric loss. Chem. Phys. Lett. 638, 43-46 (2015).

    Article  CAS  Google Scholar 

  118. Tong, W. et al. Achieving significantly enhanced dielectric performance of reduced graphene oxide/polymer composite by covalent modification of graphene oxide surface. Carbon 94, 590-598 (2015).

    Article  CAS  Google Scholar 

  119. Li, H. et al. Poly (vinyl pyrrolidone)-coated graphene/poly (vinylidene fluoride) composite films with high dielectric permittivity and low loss. Compos. Sci. Technol.121, 49-55 (2015).

    Article  CAS  Google Scholar 

  120. Wu, Y. et al. Exceptional dielectric properties of chlorine-doped graphene oxide/poly (vinylidene fluoride) nanocomposites. Carbon 89, 102-112 (2015).

    Article  CAS  Google Scholar 

  121. Gangineni,P. K. Mechanical behavior of Graphene decorated carbon fiber reinforced polymer composites: An assessment of the influence of functional groups. Compos. Part A: Appl. Sci. Manuf. 122, 36-44 (2019).

    Article  CAS  Google Scholar 

  122. Wan, Y. J. et al. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69, 467-480 (2014).

    Article  CAS  Google Scholar 

  123. Surnova, A., Balkaev, D., Musin, D. Amirov, R. & Dimiev, A. M. Fully exfoliated graphene oxide accelerates epoxy resin curing, and results in dramatic improvement of the polymer mechanical properties. Compos. Part B. Eng. 162, 685-691 (2019).

    Article  CAS  Google Scholar 

  124. Feng, Y. et al. Multiple synergistic effects of graphene-based hybrid and hexagonal born nitride in enhancing thermal conductivity and flame retardancy of epoxy. Chem. Eng. J. 379, 122402 (2020).

    Google Scholar 

  125. Gong, X. et al. Amino graphene oxide/dopamine modified aramid fibers: Preparation, epoxy nanocomposites and property analysis. Polym. 168, 131-137 (2019).

    Article  CAS  Google Scholar 

  126. Zhang, T. et al. Grafting of polystyrene onto reduced graphene oxide by emulsion polymerization for dielectric polymer composites: High dielectric constant and low dielectric loss tuned by varied grafting amount of polystyrene. Eur. Polym. J. 94, 196-207 (2017).

    Article  CAS  Google Scholar 

  127. Liu, Y. et al. Polystyrene/graphene oxide nanocomposites synthesized via Pickering polymerization. Prog. Org. Coat. 99, 23-31 (2016).

    Article  CAS  Google Scholar 

  128. He, F. et al. Fabrication of graphene nanosheet (GNS)–Fe3O4 hybrids and GNS–Fe3O4/syndiotactic polystyrene composites with high dielectric permittivity. Carbon 58, 175 (2 013)

    Google Scholar 

  129. Tu, Z. et al. A facile approach for preparation of polystyrene/graphene nanocomposites with ultra-low percolation threshold through an electrostatic assembly process. Compos. Sci. Technol. 134, 49-56 (2016).

    Article  CAS  Google Scholar 

  130. Chen, Y. et al. Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles. Carbon 82, 67-76 (2015).

    Article  CAS  Google Scholar 

  131. Wang, J., Jin, X., Zhang, X., Wu, H. & Guo, S. Effect of tunable styrene content on achieving high-performance poly (styrene-b-ethylene-ran-butylene-b-styrene)/graphene oxide nanocomposites. Compos. Sci. Technol. 164, 229-237 (2018).

    Article  CAS  Google Scholar 

  132. Deshmukh, K. et al.Graphene oxide reinforced poly (4-styrenesulfonic acid)/polyvinyl alcohol blend composites with enhanced dielectric properties for portable and flexible electronics. Mater. Chem.Phys. 186, 188-201 (2017).

    Article  CAS  Google Scholar 

  133. Adloo, A., Sadeghi, M., Masoomi, M. & Pazhooh, H. N. High performance polymeric bipolar plate based on polypropylene/graphite/graphene/nano-carbon black composites for PEM fuel cells. Renew. Energy 99, 867-874 (2016).

    Article  CAS  Google Scholar 

  134. Wang, D. et al. Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polym. 54, 1916-1922 (2013).

    Article  CAS  Google Scholar 

  135. Cao, L., Su, D., Su, Z. & Chen, X. Fabrication of multiwalled carbon nanotube/polypropylene conductive fibrous membranes by melt electrospinning. Ind. Eng. Chem. Res. 53, 2308-2317 (2014).

    Article  CAS  Google Scholar 

  136. Song, N. et al. Highly thermally conductive polypropylene/graphene composites for thermal management. Compos. Part A: Appl. Sci. Manufact. 135, 105912 (2020).

    Google Scholar 

  137. Bafana, A.P. et al., Polypropylene nanocomposites reinforced with low weight percent graphene nanoplatelets. Compos. Part B: Eng. 109, 101-107 (2017).

    Article  CAS  Google Scholar 

  138. Song, P. et al. Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polym. 52, 4001-4010 (2011).

    Article  CAS  Google Scholar 

  139. Chen, M. et al. Dielectric and mechanical properties and thermal stability of polyimide–graphene oxide composite films. Thin Solid Films 584, 232-237 (2015).

    Article  CAS  Google Scholar 

  140. Luong, N. D. et al. Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization, Polym. 52, 5237-5242 (2011).

    Article  Google Scholar 

  141. Ramakrishnan, S., Dhakshnamoorthy, M., Jelmy, E. J., Vasanthakumari, R. & Kothurkar, N. K. Synthesis and characterization of graphene oxide–polyimide nanofiber composites. RSC Adv. 4, 9743-9749 (2014).

    Article  CAS  Google Scholar 

  142. Yi, B., Zhao, Y., Tian, E., Li, J. & Ren, Y. High-performance polyimide nanofiber membranes prepared by electrospinning. High Performance Polym. 31, 438-448 (2019).

    Article  CAS  Google Scholar 

  143. Pokharel, P. et al. Effects of functional groups on the graphene sheet for improving the thermomechanical properties of polyurethane nanocomposites. Compos. Part B 78, 192-201 (2015).

    Article  CAS  Google Scholar 

  144. Yuan, Z., Lu, Z., Yang, Z., Sun, J. & Xie, F. A criterion for the normal properties of graphene/polymer interface. Comput. Mater. Sci. 120, 13-20 (2016).

    Article  CAS  Google Scholar 

  145. Jiang, L.Y. et al. A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force. J. Mech. Phys. Solids 54, 2436-2452 (2006).

    Article  CAS  Google Scholar 

  146. Sadasivuni, K. K. et al. Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Compos. Sci. Technol. 104, 18-25 (2014).

    Article  CAS  Google Scholar 

  147. Gupta, S., McDonald, B., Carrizosa, S. B. & Price, C. Microstructure, residual stress, and intermolecular force distribution maps of graphene/polymer hybrid composites: Nanoscale morphology-promoted synergistic effects. Compos. Part B: Eng. 92, 175-192 (2016).

    Article  CAS  Google Scholar 

  148. Du, Y. et al. Simultaneous increase in conductivity and Seebeck coefficient in a polyaniline/graphene nanosheets thermoelectric nanocomposite. Synt. Met. 161, 2688 -2692 (2012).

    Article  Google Scholar 

  149. Haldar, P., Biswas, S., Sharma, V., Chowdhury, A. & Chandra, A. Mn3O4-polyaniline-graphene as distinctive composite for use in high-performance supercapacitors. Appl. Surf. Sci. 491, 171-179 (2019).

    Article  CAS  Google Scholar 

  150. Gómez, H. et al. Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J. Power Sources, 196, 4102-4108 (2011).

    Article  Google Scholar 

  151. Wang, H., Hao, Q., Yang, X., Lu, L. & Wang, X. Graphene Oxide Doped Polyaniline for Supercapacitors. Electrochem. commun. 11, 1158-1161(2009).

    Article  CAS  Google Scholar 

  152. Jin, Y., Huang, S., Zhang, M. & Jia, M. Preparation of sulfonated graphene–polyaniline nanofiber composites by oil/water interfacial polymerization and their application for supercapacitors. Synth. Met., 168, 58-64 (2013).

    Article  CAS  Google Scholar 

  153. Ansari, M.O. et al. pTSA doped conducting graphene/polyaniline nanocomposite fibers: Thermoelectric behavior and electrode analysis. Chem. Eng. J. 242, 155-161 (2014).

    Article  CAS  Google Scholar 

  154. Luo, Y. et al. Electricity generation from indole and microbial community analysis in the microbial fuel cell. J. Hazard Mater. 176, 759-764 (2010).

    Article  CAS  Google Scholar 

  155. Liu, Y. et al. Graphene/polypyrrole intercalating nanocomposites as supercapacitors electrode Electrochim. Acta 112, 44-52 (2013).

    CAS  Google Scholar 

  156. Li, S. et al. One-step synthesis of graphene/polypyrrole nanofiber composites as cathode material for a biocompatible zinc/polymer battery. ACS Appl. Mater. Interfaces 6, 16679-16686 (2014).

    Article  CAS  Google Scholar 

  157. Ding, X., Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors. J. Mater. Chem. A 2, 12355-12360 (2014).

    Article  CAS  Google Scholar 

  158. Li, Y. et al. Remarkably enhanced performances of novel polythiophene-grafting-graphene oxide composite via long alkoxy linkage for supercapacitor application. Carbon, 147, 519-531 (2019).

    Article  CAS  Google Scholar 

  159. Nayebi, P. & Zaminpayma, E. A molecular dynamic simulation study of mechanical properties of graphene–polythiophene composite with Reax force field. Phys. Lett. A 380, 628-633 (2016).

    Article  CAS  Google Scholar 

  160. Iguchi, H. Et al. Preparation of uncurled and planar multilayered graphene using polythiophene derivatives via liquid-phase exfoliation of graphite. Flat Chem. 8, 31-39 (2018).

    Article  CAS  Google Scholar 

  161. Alabadi, A., Razzaque, S., Dong, Z., Wang, W. & Tan, B. Graphene oxide-polythiophene derivative hybrid nanosheet for enhancing performance of supercapacitor. J. Power Sources 306, 241-247 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Naresh Mahaling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moharana, S., Sahu, B.B., Singh, L., Mahaling, R.N. (2022). Graphene-Based Polymer Composites: Physical and Chemical Properties. In: Sahoo, S., Tiwari, S.K., Das, A.K. (eds) Defect Engineering of Carbon Nanostructures. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-94375-2_7

Download citation

Publish with us

Policies and ethics