Skip to main content

Adipose Tissue Lipid Metabolism During Exercise

  • Chapter
  • First Online:
Exercise Metabolism

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 1831 Accesses

Abstract

Adipose tissue-derived fatty acids are the primary source of energy during low-intensity exercise. Although the relative contribution of fat to energy production during exercise decreases with increasing exercise intensity, fatty acids still contribute meaningfully to energy production even during vigorous exercise. How exercise triggers the liberation of fatty acids from this “remote” energy storage site for subsequent oxidation in the exercising muscle is complex, with multiple integrated steps and some seemingly paradoxical regulation. Adipose tissue metabolic function and composition differ considerably in subcutaneous vs. visceral adipose tissue beds, and there are also sizable differences between subcutaneous adipose tissue in different regions of the human body (e.g., subcutaneous abdominal vs. subcutaneous femoral/gluteal), whereas most of the fatty acids used for energy during exercise are derived from triacylglycerol stored in subcutaneous abdominal white adipose tissue. This chapter will focus primarily on changes in subcutaneous white adipose tissue that occur during and right after a session of endurance exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht E, Norheim F, Thiede B, Holen T, Ohashi T, Schering L, Lee S, Brenmoehl J, Thomas S, Drevon CA, Erickson HP, Maak S (2015) Irisin–a myth rather than an exercise-inducible myokine. Sci Rep 5:463–410

    Article  CAS  Google Scholar 

  • Arner P (2005) Human fat cell lipolysis: biochemistry, regulation and clinical role. Best Pract Res Cl En 19:471–482

    Article  CAS  Google Scholar 

  • Arner P, Kriegholm E, Engfeldt P, Bolinder J (1990) Adrenergic regulation of lipolysis in situ at rest and during exercise. J Clin Invest 85:893–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bäckdahl J, Franzén L, Massier L, Li Q, Jalkanen J, Gao H, Andersson A, Bhalla N, Thorell A, Rydén M, Ståhl PL, Mejhert N (2021) Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metab 33(9):1869–1882

    Article  PubMed  CAS  Google Scholar 

  • Bartness TJ, Liu Y, Shrestha YB, Ryu V (2014) Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol 35:473–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bobbert T, Wegewitz U, Brechtel L, Freudenberg M, Mai K, Möhlig M, Diederich S, Ristow M, Rochlitz H, Pfeiffer A, Spranger J (2007) Adiponectin oligomers in human serum during acute and chronic exercise: relation to lipid metabolism and insulin sensitivity. Int J Sports Med 28:1–8

    Article  CAS  PubMed  Google Scholar 

  • Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buford TW, Lott DJ, Marzetti E, Wohlgemuth SE, Vandenborne K, Pahor M, Leeuwenburgh C, Manini TM (2012) Age-related differences in lower extremity tissue compartments and associations with physical function in older adults. Exp Gerontol 47:38–44

    Article  PubMed  Google Scholar 

  • Campbell P, Carlson M, Hill J, Nurjhan N (1992) Regulation of free fatty acid metabolism by insulin in humans: role of lipolysis and reesterification. Am J Phys 26:E1063–E1069

    Google Scholar 

  • Chan MHS, Carey AL, Watt MJ, Febbraio MA (2004) Cytokine gene expression in human skeletal muscle during concentric contraction: evidence that IL-8, like IL-6, is influenced by glycogen availability. Am J Physiology-regulatory Integr Comp Physiology 287:R322–R327

    Article  CAS  Google Scholar 

  • Chenevire X, Borrani F, Sangsue D, Gojanovic B, Malatesta D (2011) Gender differences in whole-body fat oxidation kinetics during exercise. Appl Physiology Nutrition Metabolism 36:88–95

    Article  CAS  Google Scholar 

  • Christiansen T, Bruun JM, Paulsen SK, Ølholm J, Overgaard K, Pedersen SB, Richelsen B (2013) Acute exercise increases circulating inflammatory markers in overweight and obese compared with lean subjects. Eur J Appl Physiol 113:1635–1642

    Article  CAS  PubMed  Google Scholar 

  • Correa-de-Araujo R, Harris-Love MO, Miljkovic I, Fragala MS, Anthony BW, Manini TM (2017) The need for standardized assessment of muscle quality in skeletal muscle function deficit and other aging-related muscle dysfunctions: a symposium report. Front Physiol 8:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Coyle EF, Jeukendrup AE, Wagenmakers AJ, Saris WH (1997) Fatty acid oxidation is directly regulated by carbohydrate metabolism during exercise. Am J Phys 273:E268–E275

    CAS  Google Scholar 

  • Crampes F, Riviere D, Beauville M, Marceron M, Garrigues M (1989) Lipolytic response of adipocytes to epinephrine in sedentary and exercise-trained subjects: sex-related differences. Eur J Appl Physiol O 59:249–255

    Article  CAS  Google Scholar 

  • Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, Boudreau R, Manini TM, Nevitt M, Newman AB, Goodpaster BH (2009) Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutrition 90:1579–1585

    Article  CAS  Google Scholar 

  • Devries MC, Samjoo IA, Hamadeh MJ, McCready C, Raha S, Watt MJ, Steinberg GR, Tarnopolsky MA (2013) Endurance training modulates intramyocellular lipid compartmentalization and morphology in skeletal muscle of lean and obese women. J Clin Endocrinol Metab 98:4852–4862

    Article  CAS  PubMed  Google Scholar 

  • Ding Q, Mracek T, Gonzalez-Muniesa P, Kos K, Wilding J, Trayhurn P, Bing C (2009) Identification of macrophage inhibitory Cytokine-1 in adipose tissue and its secretion as an Adipokine by human adipocytes. Endocrinology 150:1688–1696

    Article  CAS  PubMed  Google Scholar 

  • Dodt C, Lönnroth P, Fehm HL, Elam M (1999) Intraneural stimulation elicits an increase in subcutaneous interstitial glycerol levels in humans. J Physiology 521:545–552

    Article  CAS  Google Scholar 

  • Durheim MT, Slentz CA, Bateman LA, Mabe SK, Kraus WE (2008) Relationships between exercise-induced reductions in thigh intermuscular adipose tissue, changes in lipoprotein particle size, and visceral adiposity. Am J Physiol-endoc M 295:E407–E412

    CAS  Google Scholar 

  • Eichmann TO, Kumari M, Haas JT, Farese RV, Zimmermann R, Lass A, Zechner R (2012) Studies on the substrate and stereo/Regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases*. J Biol Chem 287:41446–41457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson MA, White LJ, McCoy S, Kim H-W, Petty T, Wilsey J (2004) Plasma adiponectin response to acute exercise in healthy subjects. Eur J Appl Physiol 91:324–329

    Article  CAS  PubMed  Google Scholar 

  • Friedlander A, Casazza G, Horning M, Huie M, Piacentini M, Trimmer J, Brooks G (1998) Training-induced alterations of carbohydrate metabolism in women: women respond differently from men. J Appl Physiol Respir Environ Exerc Physiol 85:1175–1186

    CAS  Google Scholar 

  • Froberg K, Pedersen PK (1984) Sex differences in endurance capacity and metabolic response to prolonged, heavy exercise. Eur J Appl Physiol O 52:446–450

    Article  CAS  Google Scholar 

  • Frühbeck G, Méndez-Giménez L, Fernández-Formoso J-A, Fernández S, Rodríguez A (2014) Regulation of adipocyte lipolysis. Nutr Res Rev 27:63–93

    Article  PubMed  CAS  Google Scholar 

  • Galitzky J, Reverte M, Portillo M, Carpene C, Lafontan M, Berlan M (1993) Coexistence of beta 1-, beta 2-, and beta 3-adrenoceptors in dog fat cells and their differential activation by catecholamines. Am J Phys 264:E402–E412

    Google Scholar 

  • Galliera E, Lombardi G, Marazzi MG, Grasso D, Vianello E, Pozzoni R, Banfi G, Romanelli MMC (2014) Acute exercise in elite rugby players increases the circulating level of the cardiovascular biomarker GDF-15. Scand J Clin Lab Invest 74:492–499

    Article  CAS  PubMed  Google Scholar 

  • Grahn THM, Kaur R, Yin J, Schweiger M, Sharma VM, Lee M-J, Ido Y, Smas CM, Zechner R, Lass A, Puri V (2014) Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes*. J Biol Chem 289:12029–12039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hellström L, Blaak E, Hagström-Toft E (1996) Gender differences in Adrenergic regulation of lipid mobilization during exercise. Int J Sports Med 17:439–447

    Article  PubMed  Google Scholar 

  • Hirsch IB, Marker JC, Smith LJ, Spina RJ, Parvin CA, Holloszy JO, Cryer PE (1991) Insulin and glucagon in prevention of hypoglycemia during exercise in humans. Am J Physiol-endoc M 260:E695–E704

    CAS  Google Scholar 

  • Hodgetts V, Coppack SW, Frayn KN, Hockaday TD (1991) Factors controlling fat mobilization from human subcutaneous adipose tissue during exercise. J Appl Physiol 71:445–451

    Article  CAS  PubMed  Google Scholar 

  • Højbjerre L, Rosenzweig M, Dela F, Bruun JM, Stallknecht B (2007) Acute exercise increases adipose tissue interstitial adiponectin concentration in healthy overweight and lean subjects. Eur J Endocrinol 157:613–623

    Article  PubMed  CAS  Google Scholar 

  • Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242:2278–2282

    Article  CAS  PubMed  Google Scholar 

  • Holloszy JO, Booth FW (1976) Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol 38:273–291

    Article  CAS  PubMed  Google Scholar 

  • Holloszy JO, Coyle E (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol 56:831–838

    CAS  PubMed  Google Scholar 

  • Holloway GP, Bezaire V, Heigenhauser GJF, Tandon NN, Glatz JFC, Luiken JJFP, Bonen A, Spriet LL (2006) Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. J Physiology 571:201–210

    Article  CAS  Google Scholar 

  • Horowitz JF, Braudy RJ, Martin WH, Klein S (1999) Endurance exercise training does not alter lipolytic or adipose tissue blood flow sensitivity to epinephrine. [online]. Am J Phys 277:E325–E331. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10444429

    CAS  Google Scholar 

  • Horowitz JF, Coyle EF (1993) Metabolic responses to preexercise meals containing various carbohydrates and fat. Am J Clin Nutr 58:235–241

    Article  CAS  PubMed  Google Scholar 

  • Horowitz JF, Leone TC, Feng W, Kelly DP, Klein S (2000) Effect of endurance training on lipid metabolism in women: a potential role for PPARalpha in the metabolic response to training. Am J Phys Endocrinol Metab 279:E348–E355

    Article  CAS  Google Scholar 

  • Horowitz JF, Mora-Rodriguez R, Byerley LO, Coyle EF (1997) Lipolytic suppression following carbohydrate ingestion limits fat oxidation during exercise. Am J Phys 273:E768–E775

    CAS  Google Scholar 

  • Huang W-S, Lee M-S, Perng H-W, Yang S-P, Kuo S-W, Chang H-D (2002) Circulating brain natriuretic peptide values in healthy men before and after exercise. Metabolis 51:1423–1426

    Article  CAS  Google Scholar 

  • Jensen MD, Haymond M, Rizza R, Cryer PE, Miles J (1989) Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest 83:1168–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karastergiou K, Fried SK, Xie H, Lee M-J, Divoux A, Rosencrantz MA, Chang RJ, Smith SR (2013) Distinct developmental signatures of human abdominal and gluteal subcutaneous adipose tissue depots. J Clin Endocrinol Metab 98:362–371

    Article  CAS  PubMed  Google Scholar 

  • Karastergiou K, Smith SR, Greenberg AS, Fried SK (2012) Sex differences in human adipose tissues–the biology of pear shape. Biol Sex Differ 3:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller P, Keller C, Steensberg A, Robinson LE, Pedersen BK (2005) Leptin gene expression and systemic levels in healthy men: effect of exercise, carbohydrate, interleukin-6, and epinephrine. J Appl Physiol 98:1805–1812

    Article  CAS  PubMed  Google Scholar 

  • Kiens B, Lithell H (1989) Lipoprotein metabolism influenced by training-induced changes in human skeletal muscle. J Clin Invest 83:558–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein S, Coyle E, Wolfe R (1994) Fat metabolism during low-intensity exercise in endurance trained and untrained men. Am J Phys 267:E934–E940

    CAS  Google Scholar 

  • Kleinert M, Clemmensen C, Sjøberg KA, Carl CS, Jeppesen JF, Wojtaszewski JFP, Kiens B, Richter EA (2018) Exercise increases circulating GDF15 in humans. Molecular metabolism 9:187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konopka AR, Wolff CA, Suer MK, Harber MP (2018) Relationship between intermuscular adipose tissue infiltration and myostatin before and after aerobic exercise training. Am J Physiology-regulatory Integr Comp Physiology 315:R461–R468

    Article  CAS  Google Scholar 

  • Kulminskaya N, Oberer M (2020) Protein-protein interactions regulate the activity of adipose triglyceride lipase in intracellular lipolysis. Biochimie 169:62–68

    Article  CAS  PubMed  Google Scholar 

  • Lass A, Zimmermann R, Haemmerle G, Riederer M, Schoiswohl G, Schweiger M, Kienesberger P, Strauss JG, Gorkiewicz G, Zechner R (2006) Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman syndrome. Cell Metab 3:309–319

    Article  CAS  PubMed  Google Scholar 

  • Laurens C, Bergouignan A, Moro C (2020a) Exercise-released Myokines in the control of energy metabolism. Front Physiol 11:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurens C, Parmar A, Murphy E, Carper D, Lair B, Maes P, Vion J, Boulet N, Fontaine C, Marqués M-A, Larrouy D, Harant I, Thalamas C, Montastier E, Caspar-Bauguil S, Bourlier V, Tavernier G, Grolleau J-L, Bouloumié A, Langin D, Viguerie N, Bertile F, Blanc S, de Glisezinski I, O’Gorman DJ, Moro C (2020b) Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. Jci Insight 5

    Google Scholar 

  • Lee S, Norheim F, Langleite TM, Gulseth HL, Birkeland KI, Drevon CA (2019) Effects of long-term exercise on plasma adipokine levels and inflammation-related gene expression in subcutaneous adipose tissue in sedentary dysglycaemic, overweight men and sedentary normoglycaemic men of healthy weight. Diabetologia 62:1048–1064

    Article  CAS  PubMed  Google Scholar 

  • Lonnroth P, Smith U (1986) The antilipolytic effect of insulin in human adipocytes requires activation of the phosphodiesterase. Biochem Bioph Res Co 141:1157–1161

    Article  CAS  Google Scholar 

  • Loon LJC, Greenhaff PL, Constantin-Teodosiu D, Saris WHM, Wagenmakers AJM (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiology 536:295–304

    Article  Google Scholar 

  • Ludzki AC, Krueger EM, Baldwin TC, Schleh MW, Porsche CE, Ryan BJ, Muir LA, Singer K, Lumeng CN, Horowitz JF (2020) Acute aerobic exercise remodels the adipose tissue progenitor cell phenotype in obese adults. Front Physiol 11:2238–2238

    Article  Google Scholar 

  • Ludzki AC, Pataky MW, Cartee GD, Horowitz JF (2018) Acute endurance exercise increases Vegfa mRNA expression in adipose tissue of rats during the early stages of weight gain. Appl Physiology Nutrition Metabolism 43:751–754

    Article  CAS  Google Scholar 

  • Lundsgaard A-M, Fritzen AM, Kiens B (2020) The importance of fatty acids as nutrients during post-exercise recovery. Nutrients 12:280

    Article  CAS  PubMed Central  Google Scholar 

  • Makino H, Suzuki T, Kajinuma H, Yamazaki M, Ito H, Yoshida S (1992) The role of insulin-sensitive phosphodiesterase in insulin action. Adv Second Messenger Phosphoprotein Res 25:185–199

    CAS  PubMed  Google Scholar 

  • Martin WH, Dalsky GP, Hurley BF, Matthews DE, Bier DM, Hagberg JM, Rogers MA, King DS, Holloszy JO (1993) Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol-endoc M 265:E708–E714

    CAS  Google Scholar 

  • Martin ML, Jensen MD (1991) Effects of body fat distribution on regional lipolysis in obesity. J Clin Invest 88:609–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauriege P, Galitzky J, Berlan m, Lafontan M. (1987) Heterogeneous distribution of beta and alpha-2 adrenoceptor binding sites in human fat cells from various fat deposits: functional consequences. Eur J Clin Investig 17:156–165

    Article  CAS  Google Scholar 

  • Mauriège P, Imbeault P, Langin D, Lacaille M, Alméras N, Tremblay A, Després JP (1999) Regional and gender variations in adipose tissue lipolysis in response to weight loss. J Lipid Res 40:1559–1571

    Article  PubMed  Google Scholar 

  • Millet L, Barbe P, Lafontan M, Berlan M, Galitzky J (1998) Catecholamine effects on lipolysis and blood flow in human abdominal and femoral adipose tissue. J Appl Physiol 85:181–188

    Article  CAS  PubMed  Google Scholar 

  • Mittendorfer B, Horowitz JF, Klein S (2002) Effect of gender on lipid kinetics during endurance exercise of moderate intensity in untrained subjects. Am J Phys Endocrinol Metab 283:E58–E65

    Article  CAS  Google Scholar 

  • Mittendorfer B, Magkos F, Fabbrini E, Mohammed BS, Klein S (2009) Relationship between body fat mass and free fatty acid kinetics in men and women. Obesity (Silver Spring, Md) 17:1872–1877

    Article  CAS  Google Scholar 

  • Montain SJ, Hopper MK, Coggan AR, Coyle EF (1991) Exercise metabolism at different time intervals after a meal. J Appl Physiol 70:882–888

    Article  CAS  PubMed  Google Scholar 

  • Morio B, Holmbäck U, Gore D, Wolfe RR (2004) Increased VLDL-TAG turnover during and after acute moderate-intensity exercise. Med Sci Sports Exerc 36:801–806

    Article  CAS  PubMed  Google Scholar 

  • Moro C, Crampes F, Sengenes C, Glisezinski ID, Galitzky J, Thalamas C, Lafontan M, Berlan M (2004b) Atrial natriuretic peptide contributes to the physiological control of lipid mobilization in humans. FASEB J 18:908–910

    Article  CAS  PubMed  Google Scholar 

  • Moro C, Galitzky J, Sengenes C, Crampes F, Lafontan M, Berlan M (2004a) Functional and pharmacological characterization of the natriuretic peptide-dependent Lipolytic pathway in human fat cells. J Pharmacol Exp Ther 308:984–992

    Article  CAS  PubMed  Google Scholar 

  • Moro C, Klimcakova E, Lafontan M, Berlan M, Galitzky J (2007) Phosphodiesterase-5A and neutral endopeptidase activities in human adipocytes do not control atrial natriuretic peptide-mediated lipolysis. Brit J Pharmacol 152:1102–1110

    Article  CAS  Google Scholar 

  • Nederveen JP, Warnier G, Carlo AD, Nilsson MI, Tarnopolsky MA (2021) Extracellular vesicles and exosomes: insights from exercise science. Front Physiol 11:604274

    Article  PubMed  PubMed Central  Google Scholar 

  • Nellemann B, Gormsen LC, Sørensen LP, Christiansen JS, Nielsen S (2012) Impaired insulin-mediated Antilipolysis and lactate release in adipose tissue of upper-body obese women. Obesity 20:57–64

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TT, Mijares AH, Johnson CM, Jensen MD (1996) Postprandial leg and splanchnic fatty acid metabolism in nonobese men and women. Am J Phys 271:E965–E972

    CAS  Google Scholar 

  • Nielsen S, Guo Z, Johnson CM, Hensrud DD, Jensen MD (2004) Splanchnic lipolysis in human obesity. J Clin Invest 113:1582–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norheim F, Langleite TM, Hjorth M, Holen T, Kielland A, Stadheim HK, Gulseth HL, Birkeland KI, Jensen J, Drevon CA (2014) The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J 281(3):739–749

    Article  CAS  PubMed  Google Scholar 

  • Nurjhan N, Campbell P, Kennedy F, Miles J, Gerich J (1986) Insulin dose-response characteristics for suppression of glycerol release and conversion to glucose in humans. Diabetes (Suppl 1) 35:1326–1331

    Article  CAS  Google Scholar 

  • Ogasawara J, Nomura S, Rahman N, Sakurai T, Kizaki T, Izawa T, Ishida H, Haga S, Ohno H (2010) Hormone-sensitive lipase is critical mediators of acute exercise-induced regulation of lipolysis in rat adipocytes. Biochem Bioph Res Co 400:134–139

    Article  CAS  Google Scholar 

  • Pedersen BK, Steensberg A, Keller P, Keller C, Fischer C, Hiscock N, van Hall G, Plomgaard P, Febbraio MA (2003) Muscle-derived interleukin-6: lipolytic, anti-inflammatory and immune regulatory effects. Pflugers Arch 446:9–16

    Article  CAS  PubMed  Google Scholar 

  • Pelt DWV, Guth LM, Wang AY, Horowitz JF (2017) Factors regulating subcutaneous adipose tissue storage, fibrosis, and inflammation may underlie low fatty acid mobilization in insulin-sensitive obese adults. Am J Phys Endocrinol Metab 313:E429–E439

    Article  CAS  Google Scholar 

  • Petersen EW, Carey AL, Sacchetti M, Steinberg GR, Macaulay SL, Febbraio MA, Pedersen BK (2005) Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. Am J Physiol-endoc M 288:E155–E162

    CAS  Google Scholar 

  • Petrick HL, Holloway GP (2019) High intensity exercise inhibits carnitine palmitoyltransferase-I sensitivity to l-carnitine. Biochem J 476:547–558

    Article  CAS  PubMed  Google Scholar 

  • Phillips S, Green H, Tarnopolsky MA, Heigenhauser G, Hill R, Grant S (1996) Effects of training duration on substrate turnover and oxidation during exercise. J Appl Physiol Respir Environ Exerc Physiol 81:2182–2191

    CAS  Google Scholar 

  • Rahn T, Ridderstråle M, Tornqvist H, Manganiello V, Fredrikson G, Belfrage P, Degerman E (1994) Essential role of phosphatidylinositol 3-kinase in insulin-induced activation and phosphorylation of the cGMP-inhibited cAMP phosphodiesterase in rat adipocytes studies using the selective inhibitor wortmannin. FEBS Lett 350:314–318

    Article  CAS  PubMed  Google Scholar 

  • Richterova B, Stich V, Moro C, Polak J, Klimcakova E, Majercik M, Harant I, Viguerie N, Crampes F, Langin D, Lafontan M, Berlan M (2004) Effect of endurance training on adrenergic control of lipolysis in adipose tissue of obese women. J Clin Endocrinol Metabolism 89:1325–1331

    Article  CAS  Google Scholar 

  • Rigamonti AE, Bollati V, Pergoli L, Iodice S, Col AD, Tamini S, Cicolini S, Tringali G, Micheli RD, Cella SG, Sartorio A (2020) Effects of an acute bout of exercise on circulating extracellular vesicles: tissue-, sex-, and BMI-related differences. Int J Obesity 44:1108–1118

    Article  CAS  Google Scholar 

  • Riviere D, Crampes F, Beauville M, Garrigues M (1989) Lipolytic response of fat cells to catecholamines in sedentary and exercise-trained women. J Appl Physiol 66:330–335

    Article  CAS  PubMed  Google Scholar 

  • Roepstorff C, Steffensen CH, Madsen M, Stallknecht B, Kanstrup I-L, Richter EA, Kiens B (2002) Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. Am J Physiol-endoc M 282:E435–E447

    CAS  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Phys 265:E380–E391

    CAS  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Rosenblatt J, Wolfe RR (2000) Substrate metabolism during different exercise intensities in endurance-trained women. J Appl Physiol 88:1707–1714

    Article  CAS  PubMed  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Zhang XJ, Wolfe RR (1995) Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. J Appl Physiol 79:1939–1945

    Article  CAS  PubMed  Google Scholar 

  • Sachs S, Zarini S, Kahn DE, Harrison KA, Perreault L, Phang T, Newsom SA, Strauss A, Kerege A, Schoen JA, Bessesen DH, Schwarzmayr T, Graf E, Lutter D, Krumsiek J, Hofmann SM, Bergman BC (2019) Intermuscular adipose tissue directly modulates skeletal muscle insulin sensitivity in humans. Am J Phys Endocrinol Metab 316:E866–E879

    Article  CAS  Google Scholar 

  • Safdar A, Saleem A, Tarnopolsky MA (2016) The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Publ Group 12:504–517

    CAS  Google Scholar 

  • Safdar A, Tarnopolsky MA (2018) Exosomes as mediators of the systemic adaptations to endurance exercise. Cold Spring Harb Perspect Med 8:a029827–a029824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samjoo IA, Safdar A, Hamadeh MJ, Glover AW, Mocellin NJ, Santana J, Little JP, Steinberg GR, Raha S, Tarnopolsky MA (2013) Markers of skeletal muscle mitochondrial function and lipid accumulation are moderately associated with the homeostasis model assessment index of insulin resistance in obese men. PLoS One 8:e66322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santosa S, Hensrud DD, Votruba SB, Jensen MD (2008) The influence of sex and obesity phenotype on meal fatty acid metabolism before and after weight loss. Am J Clin Nutr 88:1134–1141

    Article  CAS  PubMed  Google Scholar 

  • Santosa S, Jensen MD (2012) Adipocyte fatty acid storage factors enhance subcutaneous fat storage in postmenopausal women. Diabetes 62:775–782

    Article  PubMed  CAS  Google Scholar 

  • Saunders TJ, Palombella A, McGuire KA, Janiszewski PM, Després J-P, Ross R (2012) Acute exercise increases adiponectin levels in abdominally obese men. J Nutrition Metabolism 2012:148729

    Article  Google Scholar 

  • Schweiger M, Paar M, Eder C, Brandis J, Moser E, Gorkiewicz G, Grond S, Radner FPW, Cerk I, Cornaciu I, Oberer M, Kersten S, Zechner R, Zimmermann R, Lass A (2012) G0/G1 switch gene-2 regulates human adipocyte lipolysis by affecting activity and localization of adipose triglyceride lipase. J Lipid Res 53:2307–2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P, Tornqvist H, Zechner R, Zimmermann R (2006) Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism*. J Biol Chem 281:40236–40241

    Article  CAS  PubMed  Google Scholar 

  • Sengenès C, Bouloumié A, Hauner H, Berlan M, Busse R, Lafontan M, Galitzky J (2003) Involvement of a cGMP-dependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes*. J Biol Chem 278:48617–48626

    Article  PubMed  Google Scholar 

  • Shaw CS, Jones DA, Wagenmakers AJM (2008) Network distribution of mitochondria and lipid droplets in human muscle fibres. Histochem Cell Biol 129:65–72

    Article  CAS  PubMed  Google Scholar 

  • Sondergaard E, Rahbek I, Sørensen LP, Christiansen JS, Gormsen LC, Jensen MD, Nielsen S (2011) Effects of exercise on VLDL-triglyceride oxidation and turnover. AJP: Endocrinol Metab 300:E939–E944

    CAS  Google Scholar 

  • Song M-Y, Ruts E, Kim J, Janumala I, Heymsfield S, Gallagher D (2004) Sarcopenia and increased adipose tissue infiltration of muscle in elderly African American women. Am J Clin Nutrition 79:874–880

    Article  CAS  Google Scholar 

  • Stanford KI, Goodyear LJ (2017) Muscle-adipose tissue cross talk. Csh Perspect Med 8:a029801

    Google Scholar 

  • Stanford KI, Lynes MD, Takahashi H, Baer LA, Arts PJ, May FJ, Lehnig AC, Middelbeek RJW, Richard JJ, So K, Chen EY, Gao F, Narain NR, Distefano G, Shettigar VK, Hirshman MF, Ziolo MT, Kiebish MA, Tseng Y-H, Coen PM, Goodyear LJ (2018) 12,13-diHOME: an exercise-induced Lipokine that increases skeletal muscle fatty acid uptake. Cell Metab 27:1111–1120.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanford KI, Middelbeek RJW, Townsend KL, Lee M-Y, Takahashi H, So K, Hitchcox KM, Markan KR, Hellbach K, Hirshman MF, Tseng Y-H, Goodyear LJ (2015) A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis. Diabetes 64:2002–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steele IC, McDowell G, Moore A, Campbell NPS, Shaw C, Buchanan KD, Nicholls DP (1997) Responses of atrial natriuretic peptide and brain natriuretic peptide to exercise in patients with chronic heart failure and normal control subjects. Eur J Clin Investig 27:270–276

    Article  CAS  Google Scholar 

  • Stephens FB, Galloway SDR (2013) Carnitine and fat oxidation. Nestlé Nutrition Inst Work Ser 76:13–23

    Article  Google Scholar 

  • Stinkens R, Brouwers B, Jocken JW, Blaak EE, Teunissen-Beekman KF, Hesselink MK, van Baak MA, Schrauwen P, Goossens GH (2018) Exercise training-induced effects on the abdominal subcutaneous adipose tissue phenotype in humans with obesity. J Appl Physiol Respir Environ Exerc Physiol 125:1585–1593

    CAS  Google Scholar 

  • Stöckli J, Zadoorian A, Cooke KC, Deshpande V, Yau B, Herrmann G, Kebede MA, Humphrey SJ, James DE (2019) ABHD15 regulates adipose tissue lipolysis and hepatic lipid accumulation. Mol Metab 25:83–94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Subramanian V, Rothenberg A, Gomez C, Cohen AW, Garcia A, Bhattacharyya S, Shapiro L, Dolios G, Wang R, Lisanti MP, Brasaemle DL (2004) Perilipin a mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes*. J Biol Chem 279:42062–42071

    Article  CAS  PubMed  Google Scholar 

  • Sztalryd C, Xu G, Dorward H, Tansey JT, Contreras JA, Kimmel AR, Londos C (2003) Perilipin a is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J Cell Biol 161:1093–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Alves CRR, Stanford KI, Middelbeek RJW, Nigro P, Ryan RE, Xue R, Sakaguchi M, Lynes MD, So K, Mul JD, Lee M-Y, Balan E, Pan H, Dreyfuss JM, Hirshman MF, Azhar M, Hannukainen JC, Nuutila P, Kalliokoski KK, Nielsen S, Pedersen BK, Kahn CR, Tseng Y-H, Goodyear LJ (2019) TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nat Metab 1:291–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tansey J, Sztalryd C, Hlavin E, Kimmel A, Londos C (2004) The central role of Perilipin a in lipid metabolism and adipocyte lipolysis. IUBMB Life 56:379–385

    Article  CAS  PubMed  Google Scholar 

  • Tarnopolsky MA, Atkinson SA, Phillips SM, MacDougall JD (1995) Carbohydrate loading and metabolism during exercise in men and women. J Appl Physiol 78:1360–1368

    Article  CAS  PubMed  Google Scholar 

  • Timmons JA, Baar K, Davidsen PK, Atherton PJ (2012) Is irisin a human exercise gene? Nature 488:E9-10.-discussion E10-1

    Article  CAS  Google Scholar 

  • Tsai VW-W, Manandhar R, Jørgensen SB, Lee-Ng KKM, Zhang HP, Marquis CP, Jiang L, Husaini Y, Lin S, Sainsbury A, Sawchenko PE, Brown DA, Breit SN (2014) The anorectic actions of the TGFβ cytokine MIC-1/GDF15 require an intact brainstem area Postrema and nucleus of the solitary tract. PLoS One 9:e100370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turcotte L, Richter EA, Kiens B (1992) Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans. Am J Phys 262:E791–E799

    CAS  Google Scholar 

  • van Aggel-Leijssen D, Saris WHM, Homan M, van Baak M (2001) The effect of exercise training on beta-adrenergic stimulation of fat metabolism in obese men. Int J Obes Relat Metab Disord 25:16–23

    Article  PubMed  CAS  Google Scholar 

  • van Hall G, Steensberg A, Sacchetti M, Fischer C, Keller C, Schjerling P, Hiscock N, Møller K, Saltin B, Febbraio MA, Pedersen BK (2003) Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metabolism 88:3005–3010

    Article  CAS  Google Scholar 

  • Varady KA, Bhutani S, Church EC, Phillips SA (2010) Adipokine responses to acute resistance exercise in trained and untrained men. Medicine Sci Sports Exerc 42:456–462

    Article  CAS  Google Scholar 

  • Verboven K, Stinkens R, Hansen D, Wens I, Frederix I, Eijnde BO, Jocken JWE, Goossens GH, Blaak EE (2018) Adrenergically and non-adrenergically mediated human adipose tissue lipolysis during acute exercise and exercise training. Clin Sci 132:1685–1698

    Article  CAS  Google Scholar 

  • Wahrenberg H, Bolinder J, Arner P (1991) Adrenergic regulation of lipolysis in human fat cells during exercise. Eur J Clin Investig 21:534–541

    Article  CAS  Google Scholar 

  • Walton RG, Finlin BS, Mula J, Long DE, Zhu B, Fry CS, Westgate PM, Lee JD, Bennett T, Kern PA, Peterson CA (2015) Insulin-resistant subjects have normal angiogenic response to aerobic exercise training in skeletal muscle, but not in adipose tissue. Physiol Rep 3:e12415–e12415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wasserman DH, Lacy DB, Goldstein RE, Williams PE, Cherrington AD (1989) Exercise-induced fall in insulin and increase in fat metabolism during prolonged muscular work. Diabetes 38:484–490

    Article  CAS  PubMed  Google Scholar 

  • Watt MJ, Steinberg GR (2008) Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem J 414:313–325

    Article  CAS  PubMed  Google Scholar 

  • Whitham M, Parker BL, Friedrichsen M, Hingst JR, Hjorth M, Hughes WE, Egan CL, Cron L, Watt KI, Kuchel RP, Jayasooriah N, Estevez E, Petzold T, Suter CM, Gregorevic P, Kiens B, Richter EA, James DE, Wojtaszewski JFP, Febbraio MA (2018) Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab 27:237–251.e4

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm EN, González-Alonso J, Parris C, Rakobowchuk M (2016) Exercise intensity modulates the appearance of circulating microvesicles with proangiogenic potential upon endothelial cells. Am J Physiol-heart C 311:H1297–H1310

    Article  Google Scholar 

  • Wolfe R, Klein S, Carraro F, Weber J (1990) Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am J Phys 258:E382–E389

    CAS  Google Scholar 

  • Xia W, Pessentheiner AR, Hofer DC, Amor M, Schreiber R, Schoiswohl G, Eichmann TO, Walenta E, Itariu B, Prager G, Hackl H, Stulnig T, Kratky D, Rülicke T, Bogner-Strauss JG (2018) Loss of ABHD15 impairs the anti-lipolytic action of insulin by altering PDE3B stability and contributes to insulin resistance. Cell Rep 23:1948–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Langlais P, Zhang X, Heckmann BL, Saarinen AM, Mandarino LJ, Liu J (2014) Identification of a novel phosphorylation site in adipose triglyceride lipase as a regulator of lipid droplet localization. Am J Physiol-endoc M 306:E1449–E1459

    CAS  Google Scholar 

  • Yang X, Lu X, Lombès M, Rha GB, Chi Y-I, Guerin TM, Smart EJ, Liu J (2010) The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab 11:194–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youngstrom TG, Bartness TJ (1995) Catecholaminergic innervation of white adipose tissue in Siberian hamsters. Am J Physiology-regulatory Integr Comp Physiology 268:R744–R751

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey F. Horowitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horowitz, J.F. (2022). Adipose Tissue Lipid Metabolism During Exercise. In: McConell, G. (eds) Exercise Metabolism. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-94305-9_7

Download citation

Publish with us

Policies and ethics