Skip to main content

Exercise and Muscle Glycogen Metabolism

  • Chapter
  • First Online:
Exercise Metabolism

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

Muscle glycogen is an important fuel source for contracting skeletal muscle, and it is well documented that exercise performance is impaired when the muscle’s stores of glycogen are exhausted. The role of carbohydrate (CHO) availability on exercise performance has been known for more than a century, while the specific role of muscle glycogen for muscle function has been known for half a century. Nonetheless, the precise cellular and molecular mechanisms by which glycogen availability regulates cell function and contractile-induced fatigue are unresolved. Alterations of pre-exercise muscle glycogen reserves by dietary and exercise manipulations or modifying the degree of dependency on endogenous glycogen during exercise have collectively established a close relationship between muscle glycogen and the resistance to fatigue. It is also apparent that glycogen availability regulates rates of muscle glycogenolysis and resynthesis, muscle glucose uptake, key steps in excitation-contraction coupling, and exercise-induced cell signaling regulating training adaptation. The present review provides both a historical and contemporary overview of the effects of exercise on muscle glycogen metabolism, addressing factors affecting glycogen use during exercise as well as the evolving concepts of how glycogen and glycolysis are integrated with cell function, skeletal muscle fatigue, and training adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlborg G, Jensen-Urstad M (1991) Metabolism in exercising arm vs. leg muscle. Clin Physiol 11:459–468

    Article  CAS  PubMed  Google Scholar 

  • Akerstrom TC, Birk JB, Klein DK, Erikstrup C, Plomgaard P, Pedersen BK, Wojtaszewski JF (2006) Oral glucose ingestion attenuates exercise-induced activation of 5′-AMP-activated protein kinase in human skeletal muscle. Biochem Biophys Res Commun 342:949–955

    Article  CAS  PubMed  Google Scholar 

  • Albers PH, Pedersen AJT, Birk JB, Kristensen DE, Vind BF, Baba O, Nøhr J, Højlund K, Wojtaszewski J (2015) Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes. Diabetes 64:485–497

    Article  CAS  PubMed  Google Scholar 

  • Alghannam AF, Jedrzejewski D, Tweddle MG, Gribble H, Bilzon J, Thompson D, Tsintzas K, Betts JA (2016) Impact of muscle glycogen availability on the capacity for repeated exercise in man. Med Sci Sports Exerc 48:123–131

    Article  CAS  PubMed  Google Scholar 

  • Andrade-Souza VM, Ghiarone T, Sansonio A, Santos Silva KA, Tomazini F, Enrico Perri F, Saner N, Kuang K, Bertuzzi R, Leandro CG, Bishop DJ, Lima-Silva AE (2020) Exercise twice-a-day potentiates markers of mitochondrial biogenesis in men. FASEB J 34:1602–1609

    Article  CAS  PubMed  Google Scholar 

  • Areta JL, Hopkins WG (2018) Skeletal muscle glycogen content at rest and during endurance exercise in humans a meta-analysis. Sports Med 48:2091–2102

    Article  PubMed  Google Scholar 

  • Areta JL, Iraki J, Owens DJ, Joanisse S, Philp A, Morton JP, Hallén J (2020) Achieving energy balance with a high-fat meal does not enhance skeletal muscle adaptation and impairs glycemic response in a sleep-low training model. Exp Physiol:EP088795

    Google Scholar 

  • Arkinstall MJ, Bruce CR, Clark SA, Rickards CA, Burke LM, Hawley JA (2004) Regulation of fuel metabolism by preexercise muscle glycogen content and exercise intensity. J Appl Physiol 97(6):2275–2283

    Article  CAS  PubMed  Google Scholar 

  • Ball S, Colleoni C, Cenci U, Raj JN, Tirtiaux C (2011) The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J Exp Bot 62(6):1775–1801

    Article  CAS  PubMed  Google Scholar 

  • Ball-Burnett M, Green HJ, Houston ME (1991) Energy metabolism in human slow and fast twitch fibres during prolonged cycle exercise. J Physiol 437:257–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balsom PD, Gaitanos GC, Söderlund K, Ekblom B (1999) High-intensity exercise and muscle glycogen availability in humans. Acta Physiol Scand 165:337–345

    Article  CAS  PubMed  Google Scholar 

  • Bangsbo J, Gollnick PD, Graham TE, Saltin B (1991) Substrates for muscle glycogen synthesis in recovery from intense exercise in man. J Physiol 434:423–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bangsbo J, Graham TE, Kiens B, Saltin B (1992) Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. J Physiol 451:205–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes M, Gibson LM, Stephenson DG (2001) Increased muscle glycogen content is associated with increased capacity to respond to T-system depolarisation in mechanically skinned skeletal muscle fibres from the rat. Pflugers Arch 442(1):101–106

    Article  CAS  PubMed  Google Scholar 

  • Bartlett, J. D., Louhelainen, J., Iqbal, Z., Cochran, A. J., Gibala, M. J., Gregson, W., . . . Morton, J. P. (2013). Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: implications for mitochondrial biogenesis. American journal of physiology. Regulatory, Integrative and Comparative Physiology, 304, R450–R458

    Article  CAS  PubMed  Google Scholar 

  • Bergström J, Hultman E (1966a) The effect of exercise on muscle glycogen and electrolytes in normals. Scand J Clin Lab Invest 18(1):16–20

    Article  PubMed  Google Scholar 

  • Bergström J, Hultman E (1966b) Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature 210:309–310

    Article  PubMed  Google Scholar 

  • Bergström J, Hermansen L, Hultman E, Saltin B (1967) Diet, muscle glycogen and physical performance. Acta Physiol Scand 71:140–150

    Article  PubMed  Google Scholar 

  • Blazev R, Lamb GD (1999) Low [ATP] and elevated [Mg2+] reduce depolarization-induced Ca2+ release in rat skinned skeletal muscle fibres. J Physiol 520(Pt 1):203–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK (1996) Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol 80(3):876–884

    Article  CAS  PubMed  Google Scholar 

  • Bosch AN, Dennis SC, Noakes TD (1993) Influence of carbohydrate loading on fuel substrate turnover and oxidation during prolonged exercise. J Appl Physiol 74(4):1921–1927

    Article  CAS  PubMed  Google Scholar 

  • Bosch AN, Weltan SM, Dennis SC, Noakes TD (1996) Fuel substrate kinetics of carbohydrate loading differs from that of carbohydrate ingestion during prolonged exercise. Metabolism 45(4):415–423

    Article  CAS  PubMed  Google Scholar 

  • Braun B, Mawson JT, Muza SR et al (2000) Women at altitude: carbohydrate utilization during exercise at 4,300 m. J Appl Physiol 88:246–256

    Article  CAS  PubMed  Google Scholar 

  • Brooks GA (1986) Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise. Fed Proc 45(13):2924–2929

    CAS  PubMed  Google Scholar 

  • Brooks GA (1992) Increased glucose dependency in circulatory compensated hypoxia. In: Houston C, Coates J (eds) Hypoxia and mountain medicine. Queen City, Burlington, VT, pp 213–226

    Google Scholar 

  • Brooks GA, Butterfield GE, Wolfel RR et al (1991) Increased dependence on blood glucose after acclimatization to 4,300 m. J Appl Physiol 70:919–927

    Article  CAS  PubMed  Google Scholar 

  • Bundgaard H, Kjeldsen K, Suarez Krabbe K, van Hall G, Simonsen L, Qvist J, Hansen CM, Moller K, Fonsmark L, Lav Madsen P, Klarlund Pedersen B (2003) Endotoxemia stimulates skeletal muscle Na+-K+-ATPase and raises blood lactate under aerobic conditions in humans. Am J Physiol Heart Circ Physiol 284(3):H1028–H1034

    Article  CAS  PubMed  Google Scholar 

  • Burke LM (2006) “Fat adaptation” for athletic performance: the nail in the coffin? J Appl Physiol 100(1):7–8

    Article  PubMed  Google Scholar 

  • Burke LM, Angus DJ, Cox GR, Cummings NK, Febbraio MA, Gawthorn K, Hawley JA, Minehan M, Martin DT, Hargreaves M (2000) Effect of fat adaptation and carbohydrate restoration on metabolism and performance during prolonged cycling. J Appl Physiol 89(6):2413–2421

    Article  CAS  PubMed  Google Scholar 

  • Burke LM, Loon LJC, Hawley JA (2017) Postexercise muscle glycogen resynthesis in humans. J Appl Physiol 122(5):1055–1067

    Article  CAS  PubMed  Google Scholar 

  • Burke LM, Hawley JA, Jeukendrup A, Morton JP, Stellingwerff T, Maughan RJ (2018) Toward a common understanding of diet–exercise strategies to manipulate fuel availability for training and competition preparation in endurance sport. Int J Sport Nutr Exerc Metab 28:451–463

    Article  PubMed  Google Scholar 

  • Caldwell PC, Hodgkin AL, Keynes RD, Shaw TL (1960) The effects of injecting energy-rich phosphate compounds on the active transport of ions in the giant axons of Loligo. J Physiol 152:561–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter J, Jeukendrup AE, Mundel T et al (2003) Carbohydrate supplementation improves moderate and high-intensity exercise in the heat. Pflugers Arch 446:211–219

    Article  CAS  PubMed  Google Scholar 

  • Caulfield J, Klionsky B (1959) Myocardial ischemia and early infarction: an electron microscopy study. Amer J Path 35:489–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chesley A, Heigenhauser GJ, Spriet LL (1996) Regulation of muscle glycogen phosphorylase activity following short-term endurance training. Am J Phys 270(2 Pt 1):E328–E335

    CAS  Google Scholar 

  • Chin ER, Allen DG (1997) Effects of reduced muscle glycogen concentration on force, Ca2+ release and contractile protein function in intact mouse skeletal muscle. J Physiol 498:17–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen T (1965) The relationship between the transport of glucose and cations across cell membranes in isolated tissues. I. Stimulation of glycogen deposition and inhibition of lactic acid production in diaphragm, induced by ouabain. Biochim Biophys Acta 109:164–171

    Article  CAS  PubMed  Google Scholar 

  • Clausen T, Nielsen OB (2007) Potassium, Na+,K+-pumps and fatigue in rat muscle. J Physiol 584(Pt 1):295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costill DL, Jansson E, Gollnick PD, Saltin B (1974) Glycogen utilization in leg muscles of men during level and uphill running. Acta Physiol Scand 91:475–481

    Article  CAS  PubMed  Google Scholar 

  • Costill DL, Coyle E, Dalsky G, Evans W, Fink W, Hoopes D (1977) Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J Appl Physiol Respir Environ Exerc Physiol 43(4):695–699

    CAS  PubMed  Google Scholar 

  • Coyle EF, Coggan AR, Hemmert MK, Ivy JL (1986) Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol 61(1):165–172

    Article  CAS  PubMed  Google Scholar 

  • Coyle EF, Coggan AR, Hopper MK, Walters TJ (1988) Determinants of endurance in well-trained cyclists. J Appl Physiol. (Bethesda, Md.: 1985), 64(6):2622–2630

    Article  CAS  PubMed  Google Scholar 

  • De Bock K, Derave W, Ramaekers M, Richter EA, Hespel P (2006) Fiber type-specific muscle glycogen sparing due to carbohydrate intake before and during exercise. J Appl Physiol 102(1):183–188

    Article  PubMed  CAS  Google Scholar 

  • de Bruijn WC (1973) Glycogen, its chemistry and morphologic appearance in the electron microscope. I. a modified OsO 4 fixative which selectively contrasts glycogen. J Ultrastruct Res 42:29–50

    Article  PubMed  Google Scholar 

  • de Paoli FV, Overgaard K, Pedersen TH, Nielsen OB (2007) Additive protective effects of the addition of lactic acid and adrenaline on excitability and force in isolated rat skeletal muscle depressed by elevated extracellular K+. J Physiol 581:829–839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Paoli FV, Ørtenblad N, Pedersen TH, Jørgensen R, Nielsen OB (2010) Lactate per se improves the excitability of depolarized rat skeletal muscle by reducing the cl- conductance. J Physiol 588(Pt 23):4785–4794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Stefano N, Argov Z, Matthews PM et al (1996) Impairment of muscle mitochondrial oxidative metabolism in McArdles’s disease. Muscle Nerve 19(6):764–769

    Article  PubMed  Google Scholar 

  • Devries MC (2016) Sex-based differences in endurance exercise muscle metabolism: impact on exercise and nutritional strategies to optimize health and performance in woman. Exp Physiol 101:243–249

    Article  PubMed  Google Scholar 

  • Devries MC, Hamadeh MJ, Phillips SM, Tarnopolsky MA (2006) Menstrual cycle phase and sex influence muscle glycogen utilization and glucose turnover during moderate-intensity endurance exercise. Am J Physiol Regul Intergr Comp Physiol 291:1120–1128

    Article  CAS  Google Scholar 

  • Dhar-Chowdhury P, Malester B, Rajacic P, Coetzee WA (2007) The regulation of ion channels and transporters by glycolytically derived ATP. Cell Mol Life Sci 64:3069–3083

    Article  CAS  PubMed  Google Scholar 

  • Duhamel TA, Green HJ, Perco JG, Ouyang J (2006a) Comparative effects of a low-carbohydrate diet and exercise plus a low-carbohydrate diet on muscle sarcoplasmic reticulum responses in males. Am J Physiol Cell Physiol 291:C607–C617

    Article  CAS  PubMed  Google Scholar 

  • Duhamel TA, Green HJ, Perco JG, Ouyang J (2006b) Effects of prior exercise and a low-carbohydrate diet on muscle sarcoplasmic reticulum function during cycling in women. J Appl Physiol 101:695–706

    Article  CAS  PubMed  Google Scholar 

  • Duhamel TA, Perco JG, Green HJ (2006c) Manipulation of dietary carbohydrates after prolonged effort modifies muscle sarcoplasmic reticulum responses in exercising males. Am J Physiol Regul Integr Comp Physiol 291:R1100–R1110

    Article  CAS  PubMed  Google Scholar 

  • Dulhunty AF (1984) Heterogeneity of T-tubule geometry in vertebrate skeletal muscle fibres. J Muscle Res Cell Motil 5:333–347

    Article  CAS  PubMed  Google Scholar 

  • Dutka TL, Lamb GD (2007a) Na+-K+ pumps in the transverse tubular system of skeletal muscle fibers preferentially use ATP from glycolysis. Am J Physiol-Cell Physiol 293:C967–C977

    Article  CAS  PubMed  Google Scholar 

  • Dutka TL, Lamb GD (2007b) Transverse tubular system depolarization reduces tetanic force in rat skeletal muscle fibers by impairing action potential repriming. Am J Physiol Cell Physiol 292:C2112–C2121

    Article  CAS  PubMed  Google Scholar 

  • Dyck DJ, Putman CT, Heigenhauser GJ, Hultman E, Spriet LL (1993) Regulation of fat-carbohydrate interaction in skeletal muscle during intense aerobic cycling. Am J Phys 265(6 Pt 1):E852–E859

    CAS  Google Scholar 

  • Dyck DJ, Peters SJ, Wendling PS, Chesley A, Hultman E, Spriet LL (1996) Regulation of muscle glycogen phosphorylase activity during intense aerobic cycling with elevated FFA. Am J Phys 270(1 Pt 1):E116–E125

    CAS  Google Scholar 

  • Edwards HT, Margaria R, Dill DB (1934) Metabolic rate, blood sugar, and the utilization of carbohydrate. Am J Phys 58:203–209

    Article  Google Scholar 

  • Entman ML, Keslensky SS, Chu A, Van Winkle B (1980) The sarcoplasmic reticulum-glycogenolytic complex in mammalian fast twitch skeletal muscle. J Biol Chem 255:6245–6252

    Article  CAS  PubMed  Google Scholar 

  • Essén B, Henriksson J (1974) Glycogen content of individual muscle fibres in man. Acta Physiol Scand 90:645–647

    Article  PubMed  Google Scholar 

  • Essén-Gustavsson B, Tesch PA (1990) Glycogen and triglyceride utilization in relation to muscle metabolic characteristics in men performing heavy-resistance exercise. Eur J Appl Physiol 61:5–10

    Article  Google Scholar 

  • Febbraio MA, Snow RJ, Hargreaves M et al (1994) Muscle metabolism during exercise and heat stress in trained men: effect of acclimation. J Appl Physiol 76:589–597

    Article  CAS  PubMed  Google Scholar 

  • Fell JM, Hearris MA, Ellis DG, Moran J, Jevons EFP, Owens DJ, Strauss JA, Cocks MC, Louis JB, Shepherd SO, Morton JP (2021) Carbohydrate intake improves exercise capacity but does not affect subcellular lipid droplet morphology, AMPK and p53 signalling in human skeletal muscle. J Physiol 599:2823–2849

    Article  CAS  PubMed  Google Scholar 

  • Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82(4):893–922

    Article  CAS  PubMed  Google Scholar 

  • Fink WJ, Costill DL, Van Handel PJ (1975) Leg muscle metabolism during exercise in the heat and cold. Eur J Appl Physiol 34:183–190

    Article  CAS  Google Scholar 

  • Frentzel J, Reach F (1901) Untersuchungen zur Frage nach der Quelle der Muskelkraft. Pflugers Arch 83:477–508

    Article  CAS  Google Scholar 

  • Fridén J, Seger J, Ekblom B (1989) Topographical localization of muscle glycogen: an ultrahistochemical study in the human vastus lateralis. Acta Physiol Scand 135:381–391

    Article  PubMed  Google Scholar 

  • Fridén J, Seger J, Ekblom B (1985) Implementation of periodic acid-thiosemicarbazide-silver proteinate staining for ultrastructural assessment of muscle glycogen utilization during exercise. Cell Tissue Res 242:229–232

    Article  PubMed  Google Scholar 

  • Gaitanos GC, Williams C, Boobis LH, Brooks S (1993) Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 75(2):712–719

    Article  CAS  PubMed  Google Scholar 

  • Galbo H, Holst JJ, Christensen NJ (1979) The effect of different diets and of insulin on the hormonal response to prolonged exercise. Acta Physiol Scand 107:19–32

    Article  CAS  PubMed  Google Scholar 

  • Galloway SDR, Maughan RJ (1997) Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc 29:1240–1249

    Article  CAS  PubMed  Google Scholar 

  • Gejl K, Hvid LG, Ulrik Frandsen U, Jensen K, Sahlin K, Ørtenblad N (2014) Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. Med Sci Sports Ex 46(3):496–505

    Article  CAS  Google Scholar 

  • Gejl KD, Ørtenbad N, Andersson E, Plomgaard P, Holmberg HC, Nielsen J (2017a) Local depletion of glycogen with supra-maximal exercise in human skeletal muscle fibres. J Physiol 595:2809–2821

    Article  CAS  PubMed  Google Scholar 

  • Gejl KD, Thams L, Hansen M, Rokkedal-Lausch T, Plomgaard P, Nybo L, Larsen FJ, Cardinale DA, Jensen K, Holmberg HC, Vissing K, Ørtenblad N (2017b) No superior adaptations to carbohydrate periodization in elite endurance athletes. Med Sci Sports Exerc 49(12):2486–2497

    Article  CAS  PubMed  Google Scholar 

  • Gejl KD, Ørtenblad N, Andersson E, Plomgaard P, Holmberg HC, Nielsen J (2017c) Local depletion of glycogen with supra-maximal exercise in human skeletal muscle fibres. J Physiol 595(9):2809–2821

    Article  CAS  PubMed  Google Scholar 

  • Gejl KD, Vissing K, Hansen M, Thams L, Rokkedal-Lausch T, Plomgaard P, Meinild Lundby AK, Nybo L, Jensen K, Holmberg HC, Ørtenblad N (2018) Changes in metabolism but not myocellular signaling by training with CHO-restriction in endurance athletes. Physiol Rep 6(17):e13847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldstein MA, Murphy DL, Van Winkle WB, Entman ML (1985) Cytochemical studies of a glycogen-sarcoplasmic reticulum complex. J Muscle Res Cell Motility 6:177–187

    Article  CAS  Google Scholar 

  • Gollnick PD, Piehl K, Saubert CW, Armstrong RB, Saltin B (1972) Diet, exercise, and glycogen changes in human muscle fibers. J Appl Physiol 33(4):421–425

    Article  CAS  PubMed  Google Scholar 

  • Gollnick PD, Piehl K, Saltin B (1974) Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol 241:45–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman C, Blazev R, Stephenson G (2005 Sep) Glycogen content and contractile responsiveness to T-system depolarization in skinned muscle fibres of the rat. Clin Exp Pharmacol Physiol 32(9):749–756

    Article  CAS  PubMed  Google Scholar 

  • Graham TE, Adamo KB, Shearer J, Marchand I, Saltin B (2001) Pro- and macroglycogenolysis: relationship with exercise intensity and duration. J Appl Physiol 90(3):873–879

    Article  CAS  PubMed  Google Scholar 

  • Green HJ (1991) How important is endogenous muscle glycogen to fatigue in prolonged exercise? Can J Physiol Pharmacol 69(2):290–297

    Article  CAS  PubMed  Google Scholar 

  • Green HJ, Ball-Burnett M, Jamieson G, Cadefau J, Cussó R (1995) Metabolic adaptations to short-term training are expressed early in submaximal exercise. Can J Physiol Pharmacol 73(4):474–482

    Article  CAS  PubMed  Google Scholar 

  • Greenhaff PL, Söderlund K, Ren JM, Hultman E (1993) Energy metabolism insingle human muscle fibres during intermittent contraction with occluded circulation. J Physiol 460:443–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths A, Shannon OM, Matu J, King R, Deighton K, O'Hara JP (2019) The effects of environmental hypoxia on substrate utilisation during exercise: a meta-analysis. J Int Soc Sports Nutr 16(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Haff GG, Lehmkuhl MJ, McCoy LB, Stone MH (2003) Carbohydrate supplementation and resistance training. Strength Cond Res 17(1):187–196

    Google Scholar 

  • Haller RG, Clausen T, Vissing J (1998) Reduced levels of skeletal muscle Na+K+ -ATPase in McArdle disease. Neurology 50:37–40

    Article  CAS  PubMed  Google Scholar 

  • Hammond KM, Sale C, Fraser W, Tang J, Shepherd SO, Strauss JA, Close GL, Cocks M, Louis J, Pugh J, Stewart C, Sharples AP, Morton JP (2019) Post-exercise carbohydrate and energy availability induce independent effects on skeletal muscle cell signalling and bone turnover: implications for training adaptation. J Physiol 597(18):4779–4796

    Article  CAS  PubMed  Google Scholar 

  • Han JW, Thieleczek R, Varsanyi M, Heilmeyer LM Jr (1992) Compartmentalized ATP synthesis in skeletal muscle triads. Biochemistry 31:377–384

    Article  CAS  PubMed  Google Scholar 

  • Hansen AK, Fischer CP, Plomgaard P, Andersen JL, Saltin B, Pedersen BK (2005) Skeletal muscle adaptation: training twice every second day vs. training once daily. J Appl Physiol 98(1):93–99

    Article  PubMed  Google Scholar 

  • Harber MP, Crane JD, Douglass MD, Weindel KD, Trappe TA, Trappe SW, Fink WF (2010) Resistance exercise reduces muscular substrates in women. Int J Sports Med 29(9):719–725

    Article  CAS  Google Scholar 

  • Hargreaves M, McConell G, Proietto J (1995) Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans. J Appl Physiol 78(1):288–292

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves M, Angus D, Howlett K et al (1996) Effect of heat stress on glucose kinetics during exercise. J Appl Physiol 81:1594–1597

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves M, Finn JP, Withers RT, Halbert JA, Scroop GC, Mackay M, Snow RJ, Carey MF (1997) Effect of muscle glycogen availability on maximal exercise performance. Eur J Appl Physiol 75:188–192

    Article  CAS  Google Scholar 

  • Hasin Y, Barry WH (1984) Myocardial metabolic inhibition and membrane potential, contraction, and potassium uptake. Am J Phys 247:H322–H329

    CAS  Google Scholar 

  • Hawley JA (2002) Effect of increased fat availability on metabolism and exercise capacity. Med Sci Sports Exerc 34(9):1485–1491

    Article  CAS  PubMed  Google Scholar 

  • Hawley JA, Palmer GS, Noakes TD (1997a) Effects of 3 days of carbohydrate supplementation on muscle glycogen content and utilisation during a 1-h cycling performance. Eur J Appl Physiol Occup Physiol 75:407–412

    Article  CAS  PubMed  Google Scholar 

  • Hawley JA, Schabort EJ, Noakes TD, Dennis SC (1997b) Carbohydrate-loading and exercise performance. Sports Med 24(2):73–81

    Article  CAS  PubMed  Google Scholar 

  • Hearris MA, Hammond KM, Fell JM, Morton JP (2018) Regulation of muscle glycogen metabolism during exercise: implications for endurance performance and training adaptations. Nutrients 10(3):298

    Article  PubMed Central  CAS  Google Scholar 

  • Hearris MA, Hammond KM, Seaborne RA, Stocks B, Shepherd SO, Philp A, Sharples AP, Morton JP, Louis JB (2019) Graded reductions in preexercise muscle glycogen impair exercise capacity but do not augment skeletal muscle cell signaling: implications for CHO periodization. J Appl Physiol 126(6):1587–1597

    Article  CAS  PubMed  Google Scholar 

  • Hearris MA, Owens DJ, Strauss JA, Shepherd SO, Sharples AP, Morton JP, Louis JB (2020) Graded reductions in pre-exercise glycogen concentration do not augment exercise-induced nuclear AMPK and PGC-1α protein content in human muscle. Exp Physiol 105(11):1882–1894

    Article  CAS  PubMed  Google Scholar 

  • Helander I, Westerblad H, Katz A (2002 Jun) Effects of glucose on contractile function, [Ca2+]i, and glycogen in isolated mouse skeletal muscle. Am J Physiol Cell Physiol 282(6):C1306–C1312

    Article  CAS  PubMed  Google Scholar 

  • Helge JW, Damsgaard R, Overgaard K, Andersen JL, Donsmark M, Dyrskog SE, Hermansen K, Saltin B, Daugaard JR (2008) Low-intensity training dissociates metabolic from aerobic fitness. Scand J Med Sci Sports 18:86–94

    Article  CAS  PubMed  Google Scholar 

  • Hermansen L, Hultman E, Saltin B (1967) Muscle glycogen during prolonged severe exercise. Acta Physiol 71(2–3):129–139

    Article  CAS  Google Scholar 

  • Hill AV (1913) The energy degraded in the recovery processes of stimulated muscles. J Physiol 46(1):28–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hingst JR, Bruhn L, Hansen MB, Rosschou MF, Birk JB, Fentz J, Foretz M, Viollet B, Sakamoto K, Færgeman NJ, Havelund JF, Parker BL, James DE, Kiens B, Richter EA, Jensen J, Wojtaszewski JFP (2018) Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle. Molecular Metabolism

    Google Scholar 

  • Hintz CS, Chi MM-Y, Fell RD, Ivy JL, Kaiser KK, Lowry CV, Lowry OH (1982) Metabolite changes in individual rat muscle fibers during stimulation. Am J Physiol Cell Physiol 242:C218–C228

    Article  CAS  Google Scholar 

  • Hokken R, Laugesen S, Aagaard P, Suetta C, Frandsen U, Ørtenblad N, Nielsen J (2020) Subcellular localization- and fibre type-dependent utilization of muscle glycogen during heavy resistance exercise in elite power and Olympic weightlifters. Acta Physiol (Oxf) e13561

    Google Scholar 

  • Holloszy JO (1973) Biochemical adaptations to exercise: aerobic metabolism. Exerc Sport Sci Rev 1:45–71

    Article  CAS  PubMed  Google Scholar 

  • Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol 56(4):831–838

    CAS  PubMed  Google Scholar 

  • Howlett RA, Parolin ML, Dyck DJ, Jones NL, Heigenhauser GJ, Spriet LL (1998) Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs. Am J Phys 275:R418–R425

    CAS  Google Scholar 

  • Hulston CJ, Venables MC, Mann CH, Martin C, Philp A, Baar K, Jeukendrup AE (2010) Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sports Exerc 42:2046–2055

    Article  CAS  PubMed  Google Scholar 

  • Hultman, Greenhaff (1999) Role of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscle. J Appl Physiol 87(2):598–604

    Article  PubMed  Google Scholar 

  • Impey SG, Hammond KM, Shepherd SO, Sharples AP, Stewart C, Limb M et al (2016) Fuel for the work required: a practical approach to amalgamating train-low paradigms for endurance athletes. Physiol Rep 4:e12803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Impey SG, Hearris MA, Hammond KM, Bartlett JD, Louis J, Close GL, Morton JP (2018) Fuel for the work required: a theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Med 48:1031–1048

    Article  PubMed  PubMed Central  Google Scholar 

  • Impey SG, Jevons E, Mees G, Cocks M, Strauss J, Chester N, Laurie I, Target D, Hodgson A, Shepherd SO, Morton JP (2020) Glycogen utilization during running: intensity, sex, and muscle-specific responses. Med Sci Sports Exerc 52(9):1966–1975

    Article  CAS  PubMed  Google Scholar 

  • James JH, Fang CH, Schrantz SJ, Hasselgren PO, Paul RJ, Fischer JE (1996) Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis. J Clin Invest 98(10):2388–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James JH, Luchette FA, McCarter FD, Fischer JE (1999a) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354(9177):505–508

    Article  CAS  PubMed  Google Scholar 

  • James JH, Wagner KR, King J-K, Leffler RE, Upputuri RK, Balasubramanian A, Friend LA, Shelly DA, Paul RJ, Fischer JE (1999b) Stimulation of both aerobic glycolysis and Na+-K+-ATPase activity in skeletal muscle by epinephrine or amylin. Am J Physiol Endocrinol Metab 277:E176–E186

    Article  CAS  Google Scholar 

  • Jensen TE, Richter EA (2012) Regulation of glucose and glycogen metabolism during and after exercise. J Physiol 590(5):1069–1076

    Article  CAS  PubMed  Google Scholar 

  • Jensen R, Nielsen J, Ørtenblad N (2020a) Inhibition of glycogenolysis prolongs action potential repriming period and impairs muscle function in rat skeletal muscle. J Physiol 598(4):789–803

    Article  CAS  PubMed  Google Scholar 

  • Jensen R, Ørtenblad N, Stausholm MH, Skjærbæk MC, Larsen DN, Hansen M, Holmberg HC, Plomgaard P, Nielsen J (2020b) Heterogeneity in subcellular muscle glycogen utilisation during exercise impacts endurance capacity in men. J Physiol 598:4271–4292

    Article  CAS  PubMed  Google Scholar 

  • Jensen R, Ørtenblad N, Stausholm MH, Skjærbæk MC, Larsen DN, Hansen M, Holmberg HC, Plomgaard P, Nielsen J (2021) Glycogen supercompensation is due to increased number, not size, of glycogen particles in human skeletal muscle. Exp Physiol 106:1272–1284

    Article  CAS  PubMed  Google Scholar 

  • Jensen-Urstad M, Ahlborg G (1992) Is the high lactate release during arm exercise due to a low training status? Clin Physiol 12:487–496

    Article  CAS  PubMed  Google Scholar 

  • Jensen-Urstad M, Ahlborg G, Sahlin K (1993) High lactate and NH3 release during arm vs. leg exercise is not due to beta-adrenoceptor stimulation. J Appl Physiol 74:2860–2867

    Article  CAS  PubMed  Google Scholar 

  • Jones DP (1986) Intracellular diffusion gradients of O2 and ATP. Am J Phys 250:C663–C675

    Article  CAS  Google Scholar 

  • Kabbara AA, Nguyen LT, Stephenson GM, Allen DG (2000) (2000). Intracellular calcium during fatigue of cane toad skeletal muscle in the absence of glucose. J Muscle Res Cell Motil 21(5):481–489

    Article  CAS  PubMed  Google Scholar 

  • Karlsson J, Saltin B (1971) Diet, muscle glycogen, and endurance performance. J Appl Physiol 31(2):203–206

    Article  CAS  PubMed  Google Scholar 

  • Karlsson J, Nordesjō LO, Saltin B (1974) Muscle glycogen utilization during exercise after physical training. Acta Physiol 90:210–217

    Article  CAS  Google Scholar 

  • Katayama K, Goto K, Ishida K, Ogita F (2009) Substrate utilization during exercise and recovery at moderate altitude. Metabolism 59(7):959–966

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BG, Lunn G, Hoffman JF (1986 Jan) Effects of altering the ATP/ADP ratio on pump-mediated Na/K and Na/Na exchanges in resealed human red blood cell ghosts. J Gen Physiol 87(1):47–72

    Article  CAS  PubMed  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44(22):3358–3393

    Article  CAS  PubMed  Google Scholar 

  • Koh HE, Ørtenblad N, Winding KM, Hellsten Y, Mortensen SP, Nielsen J (2018) High-intensity interval, but not endurance training induces muscle fiber type-specific subsarcolemmal lipid droplet size reduction in type 2 diabetic patients. Am J Physiol Endocrinol Metab 315(5):E872–E884

    Article  CAS  PubMed  Google Scholar 

  • Koopman R, Manders RJ, Jonkers RA, Hul GB, Kuipers H, van Loon LJ (2006) Intramyocellular lipid and glycogen content are reduced following resistance exercise in untrained healthy males. Eur J Appl Physiol 96:525–534

    Article  CAS  PubMed  Google Scholar 

  • Korge P, Campbell KB (1995) The importance of ATPase microenvironment in muscle fatigue: a hypothesis. Int J Sports Med 16:172–179

    Article  CAS  PubMed  Google Scholar 

  • Krogh A, Lindhard J (1920) The relative value of fat and carbohydrate as sources of muscular energy: with appendices on the correlation between standard metabolism and the respiratory quotient during rest and work. Biochem J 14:290–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb GD, Stephenson DG (1994) Effects of intracellular pH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibres of the rat. J Physiol 478(Pt 2):331–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb GD, Stephenson DG (2018) Measurement of force and calcium release using mechanically skinned fibers from mammalian skeletal muscle. J Appl Physiol 125(4):1105–1127

    Article  CAS  PubMed  Google Scholar 

  • Lambert EV, Speechly DP, Dennis SC, Noakes TD (1994) Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation to a high fat diet. Eur J Appl Physiol Occup Physiol 69:287–293

    Article  CAS  PubMed  Google Scholar 

  • Larsen S, Ara I, Rabol R, Andersen JL, Boushel R, Dela F, Helge JW (2009) Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes? Diabetologia 52:1400–1408

    Article  CAS  PubMed  Google Scholar 

  • Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE (2005) Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365(9462):871–875

    Article  CAS  PubMed  Google Scholar 

  • Lucia A, Nogales-Gadea G, Perez M et al (2008) McArdle disease: what do neurologists need to know? Nat Clin Pract Neurol 4(10):568–577

    Article  PubMed  Google Scholar 

  • Lundby C, Van Hall G (2002) Substrate utilization in sea level residents during exercise in acute hypoxia and after 4 weeks of acclimatization to 4100 m. Acta Physiol Scand 176(3):195–201

    Article  CAS  PubMed  Google Scholar 

  • Lundby C, Calbet JAL, van Hall G, Saltin B, Sander M (2004) Pulmonary gas exchange at maximal exercise in Danish lowlanders during 8 wk of acclimatization to 4100 m and in high-altitude Aymara natives. Am J Phys Regul Integr Comp Phys 287(5):R1202–R1208

    CAS  Google Scholar 

  • Macdonald WA, Ørtenblad N, Nielsen OB (2007) Energy conservation attenuates the loss of skeletal muscle excitability during intense contractions American. Journal of Physiology (Endocrin and Metab) 292:E771–E778

    Article  CAS  Google Scholar 

  • MacDougal JD, Ray S, Slae DG, McCartney N, Lee P, Garner S (1999) Muscle substrate utilization and lactate production during weightlifting. Can J Appl Physiol 24(3):209–215

    Article  Google Scholar 

  • MacLeod KT (1989) Effects of hypoxia and metabolic inhibition on the intracellular sodium activity of mammalian ventricular muscle. J Physiol 416:455–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen K, Pedersen PK, Rose P, Richter EA (1990) Carbohydrate supercompensation and muscle glycogen utilization during exhaustive running in highly trained athletes. Eur J Appl Physiol Occup Physiol 61:467–472

    Article  CAS  PubMed  Google Scholar 

  • Marchand I, Chorneyko K, Tarnopolsky M, Hamilton S, Shearer J, Potvin J, Graham TE (2002) Quantification of subcellular glycogen in resting human muscle: granule size, number, and location. J Appl Physiol 93:1598–1607

    Article  CAS  PubMed  Google Scholar 

  • Marchand I, Tarnopolsky M, Adamo KB, Bourgeois JM, Chorneyko K, Graham TE (2007) Quantitative assessment of human muscle glycogen granules size and number in subcellular locations during recovery from prolonged exercise. J Physiol 580(2):617–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margaria R, Cerretelli P, Mangili F (1964) Balance and kinetics of anaerobic energy release during strenuous exercise in man. J Appl Physiol 19:623–628

    Article  CAS  PubMed  Google Scholar 

  • Marquet LA, Brisswalter J, Louis J, Tiollier E, Burke LM, Hawley JA, Hausswirth C (2016a) Enhanced endurance performance by periodization of carbohydrate intake: “sleep low” strategy. Med Sci Sports Exerc 48:663–672

    Article  CAS  PubMed  Google Scholar 

  • Marquet LA, Hausswirth C, Molle O, Hawley JA, Burke LM, Tiollier E, Brisswalter J (2016b) Periodization of carbohydrate intake: short- term effect on performance. Nutrients 8:755

    Article  PubMed Central  Google Scholar 

  • Matu J, Gonzalez JT, Ispoglou T, Duckworth L, Deighton K (2018) The effects of hypoxia on hunger perceptions, appetite-related hormone concentrations and energy intake: a systematic review and meta-analysis. Appetite 125:98–108

    Article  PubMed  Google Scholar 

  • Maunder E, Bradley HE, Deane CS, Hodgson AB, Jones M, Joanisse S, Turner AM, Breen L, Philp A, Wallis GA (2021) Effects of short term graded dietary carbohydrate intake on intramuscular and whole body metabolism during moderate intensity exercise. J Appl Physiol 131(1):376–387

    Article  CAS  PubMed  Google Scholar 

  • McArdle B (1951) Myopathy due to a defect in muscle glycogen breakdown. Clin Sci 10:20

    Google Scholar 

  • McBride A, Hardie DG (2009) AMP-activated protein kinase–a sensor of glycogen as well as AMP and ATP? Acta Physiol 196:99–113

    Article  CAS  Google Scholar 

  • McBride A, Ghilagaber S, Nikolaev A, Hardie DG (2009) The glycogen-binding domain on the AMPK β subunit allows the kinase to act as a glycogen sensor. Cell Metab 9:23–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClelland GB, Hochachka PW, Weber JM (1998) Carbohydrate utilization during exercise after high-altitude acclimation: a new perspective. Proc Natl Acad Sci 95:10288–10293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGilvery RW (1975) The use of fuels for muscular work. In: Howald H et al (eds) Metabolic adaptation to prolonged physical exercise. Springer, Basel

    Google Scholar 

  • McInerney P, Lessard SJ, Burke LM, Coffey VG, Lo Giudice SL, Southgate RJ, Hawley JA (2005) Failure to repeatedly supercompensate muscle glycogen stores in highly trained men. Med Sci Sports Exerc 37(3):404–411

    Article  CAS  PubMed  Google Scholar 

  • Medbø JI (1993) Glycogen breakdown and lactate accumulation during high-intensity cycling. Acta Physiol Scand 149(1):85–89

    Article  PubMed  Google Scholar 

  • Medbø JI, Jebens E, Noddeland H, Hanem S, Toska K (2006) Lactate elimination and glycogen resynthesis after intense bicycling. Scand J Clin Lab Invest 66(3):211–226

    Article  PubMed  CAS  Google Scholar 

  • Melendez-Hevia E, Wadell TG, Shelton ED (1993) Optimization of molecular design in the evolution of metabolism: the glycogen molecule. Biochem J 295:477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melzer W, Herrmann-Frank A, Lüttgau HC (1995) The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim Biophys Acta 1241(1):59–116

    Article  PubMed  Google Scholar 

  • Mercer RW, Dunham PB (1981 Nov) Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes. J Gen Physiol 78(5):547–568

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JB, Costill DL, Houmard JA, Fink WJ, Pascoe DD, Pearson DR (1989) Influence of carbohydrate dosage on exercise performance and glycogen metabolism. J Appl Physiol 67(5):1843–1849

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JB, DiLauro PC, Pizza FX, Cavender DL (1997) The effect of preexercise carbohydrate status on resistance exercise performance. Int J Sport Nutr 7(3):185–196

    Article  CAS  PubMed  Google Scholar 

  • Morton JP, Croft L, Bartlett JD, MacLaren DPM, Reilly T, Evans L et al (2009) Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle. J Appl Physiol 106:1513–1521

    Article  CAS  PubMed  Google Scholar 

  • Morton RW, Sonne MW, Zuniga AF, Mohammad IYZ, Jones A, McGlory C, Keir PJ, Potvin JR, Philips SM (2019) Muscle fibre activation is unaffected by load and repetition duration when resistance exercise is performed to task failure. J Physiol 597:4601–4613

    Article  CAS  PubMed  Google Scholar 

  • Nakamura-Tsuruta S, Yasuda M, Nakamura T, Shinoda E, Furuyashiki T, Kakutani R, Takata H, Kato Y, Ashida H (2012) Comparative analysis of carbohydrate-binding specificities of two anti-glycogen monoclonal antibodies using ELISA and surface plasmon resonance. Carbohydr Res 350:49–54

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J, Ørtenblad N (2013) Physiological aspects of the subcellular localization of glycogen in skeletal muscle (review). Appl Physiol Nutr Metab 38(2):91–99

    Article  CAS  PubMed  Google Scholar 

  • Nielsen OB, Ørtenblad N, Lamb GD, Stephenson DG (2004) Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity. J Physiol 557:133–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen J, Schrøder HD, Rix CG, Ørtenblad N (2009) Distinct effects of subcellular glycogen localization on tetanic relaxation time and endurance in mechanically skinned rat skeletal muscle fibres. J Physiol 587:3679–3690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen J, Mogensen M, Vind BF, Sahlin K, Højlund K, Schrøder HD, Ørtenblad N (2010) Increased subsarcolemmal lipids in type 2 diabetes: effect of training on localization of lipids, mitochondria, and glycogen in sedentary human skeletal muscle. Am J Physiol Endocrinol Metab 298:E706–E713

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J, Holmberg HC, Schrøder HD, Saltin B, Ørtenbald N (2011) Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type. J Physiol 589(11):2871–2885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen J, Cheng AJ, Ørtenblad N, Westerblad H (2014) Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres. J Physiol 592(9):2003–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norman B, Sollevi A, Jansson E (1988) Increased IMP content in glycogen-depleted muscle fibres during submaximal exercise in man. Acta Physiol Scand 133(1):97–100

    Article  CAS  PubMed  Google Scholar 

  • Odland LM, Heigenhauser GJF, Wong D, Hollidge-Horvat MG, Spriet LL (1998) Effects of increased fat availability on fat-carbohydrate interaction during prolonged exercise in men. Am J Phys Regul Integr Comp Phys 274(4):R894–R902

    CAS  Google Scholar 

  • O'Hara JP, Woods DR, Mellor A, Boos C, Gallagher L, Tsakirides C, Arjomandkhah NC, Holdsworth DA, Cooke CB, Morrison DJ, Preston T, King RF (2017) A comparison of substrate oxidation during prolonged exercise in men at terrestrial altitude and normobaric normoxia following the coingestion of 13C glucose and 13C fructose. Physiol Rep 5(1):e13101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okamoto K, Wang W, Rounds J, Chambers EA, Jacobs DO (2001) ATP from glycolysis is required for normal sodium homeostasis in resting fast-twitch rodent skeletal muscle. Am J Physiol Endocrinol Metab 281:E479–E488

    Article  CAS  PubMed  Google Scholar 

  • Olsson K-E, Saltin B (1970) Variation in total body water with muscle glycogen changes in man. Acta Physiol Scand 80:11–18

    Article  CAS  PubMed  Google Scholar 

  • Ørngreen MC, Jeppesen TD, Taivassalo T, Hauerslev S, Preisler N, Heinicke K, Haller RG, Vissing J, van Hall G (2015) Lactate and energy metabolism during exercise in patients with blocked Glycogenolysis (McArdle disease). J Clin Endocrinol Metab 100(8):E1096–E1104

    Article  PubMed  CAS  Google Scholar 

  • Ørtenblad N, Stephenson GD (2003) A novel signalling pathway originating in mitochondria modulates muscle membrane excitability. J Physiol 548:139–145

    PubMed  PubMed Central  Google Scholar 

  • Ørtenblad N, Nielsen J (2015) Muscle glycogen and cell function–location, location, location. Scand J Med Sci Sports Suppl 4:34–40

    Article  Google Scholar 

  • Ørtenblad N, Macdonald WA, Sahlin K (2009) Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state. Biochem J 420:161–168

    Article  PubMed  CAS  Google Scholar 

  • Ørtenblad N, Nielsen J, Saltin B, Holmberg HC (2011) Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J Physiol 589(3):711–725

    Article  PubMed  CAS  Google Scholar 

  • Ørtenblad N, Westerblad H, Nielsen J (2013) Muscle glycogen stores and fatigue (review). J Physiol 591(18):4405–4413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ørtenblad N, Nielsen J, Boushel R, Söderlund K, Saltin B, Holmberg H-C (2018) The muscle fiber profiles, mitochondrial content and enzyme activities of the exceptionally well-trained arm and leg muscles of elite cross-country skiers. Front Physiol 9:1031

    Article  PubMed  PubMed Central  Google Scholar 

  • Palladin AV (1945) The biochemistry of muscle training. Science 102:576–578

    Article  CAS  PubMed  Google Scholar 

  • Parolin ML, Chesley A, Matsos MP, Spriet LL, Jones NL, Heigenhauser GJF (1999) Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Phys 277:E890–E900

    CAS  Google Scholar 

  • Pascoe DD, Costill DL, Fink WJ, Robergs RA, Zachwieja JJ (1993) Glycogen resynthesis in skeletal muscle following resistive exercise. Med Sci Sports Exerc 25(3):349–354

    Article  CAS  PubMed  Google Scholar 

  • Passonneau JV, Lowry OH (1993) Enzymatic analysis, vol 2. The Humana Press Inc., New Jersey, USA

    Book  Google Scholar 

  • Pearse AGE (1961) Carbohydrates. In: Histochemistry, theoretical and applied, Boston, Little, Brown and Company, pp 228–280

    Google Scholar 

  • Pedersen TH, Clausen T, Nielsen OB (2003) Loss of force induced by high extracellular [K+] in rat muscle: effect of temperature, lactic acid and beta2-agonist. J Physiol 551:277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pederson BA, Schroeder JM, Parker GE, Smith MW, DePaoli-Roach AA, Roach PJ (2005) Glucose metabolism in mice lacking muscle glycogen synthase. Diabetes 54:3466–3473

    Article  CAS  PubMed  Google Scholar 

  • Philipson KD, Nishimoto AY (1983) ATP-dependent Na+ transport in cardiac sarcolemmal vesicles. Biochim Biophys Acta 733:133–141

    Article  CAS  PubMed  Google Scholar 

  • Pilegaard H, Keller C, Steensberg A, Helge JW, Pedersen BK, Saltin B, Darrell Neufer P (2002) Influence of pre-exercise muscle glycogen content on exercise-induced transcriptional regulation of metabolic genes. J Physiol 541:261–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilegaard H, Osada T, Andersen LT, Helge JW, Saltin B, Neufer PD (2005) Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise. Metabolism 54:1048–1055

    Article  CAS  PubMed  Google Scholar 

  • Pitsiladis YP, Maughan RJ (1999) The effects of exercise and diet manipulation on the capacity to perform prolonged exercise in the heat and in the cold in trained humans. J Physiol 517:919–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole DC, Rossiter HB, Brooks GA, Gladden LB (2020) The anaerobic threshold: 50+ years of controversy. J Physiol JP279963

    Google Scholar 

  • Psilander N, Frank P, Flockhart M, Sahlin K (2013) Exercise with low glycogen increases PGC-1α gene expression in human skeletal muscle. Eur J Appl Physiol 113:951–963

    Article  CAS  PubMed  Google Scholar 

  • Rauch LH, Rodger I, Wilson GR, Belonje JD, Dennis SC, Noakes TD, Hawley JA (1995) The effects of carbohydrate loading on muscle glycogen content and cycling performance. Int J Sport Nutr 5(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Roach PJ, DePaoli-Roach AA, Hurley TD, Tagliabracci VS (2012) Glycogen and its metabolism: some new developments and old themes. Biochem J 441:763–787

    Article  CAS  PubMed  Google Scholar 

  • Robergs RA, Pearson DR, Costill DD, Fink WJ, Pascoe DD, Benedict MA, Lambert CP, Zachweija JJ (1991) Muscle glycogenolysis during different intensities of weight-resistance exercise. J Appl Physiol 70(4):1700–1706

    Article  CAS  PubMed  Google Scholar 

  • Roberts AC, Butterfield GE, Cymerman A, Reeves JT, Wolfel EE, Brooks GA (1996a) Acclimatization to 4,300-m altitude decreases reliance on fat as a substrate. J Appl Physiol 81:1762–1771

    Article  CAS  PubMed  Google Scholar 

  • Roberts AC, Reeves JT, Butterfield GE et al (1996b) Altitude and b-blockade augments glucose utilization during submaximal exercise. J Appl Physiol 80:605–615

    Article  CAS  PubMed  Google Scholar 

  • Roepstorff C, Halberg N, Hillig T, Saha AK, Ruderman NB, Woj- taszewski JF, Richter EA, Kiens B. (2005) Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Am J Physiol Endocrinol Metab 288:E133–E142

    Article  CAS  PubMed  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Phys 265(3 Pt 1):E380–E391

    CAS  Google Scholar 

  • Rowlands DS, Hopkins WG (2002) Effects of high-fat and high-carbohydrate diets on metabolism and performance in cycling. Metab Clin Exp 51(6):678–690

    Article  CAS  PubMed  Google Scholar 

  • Rybicka KK (1996) Glycosomes--the organelles of glycogen metabolism. Tissue Cell 28:253–265

    Article  CAS  PubMed  Google Scholar 

  • Sahlin K, Söderlund K, Tonkonogi M, Hirakoba K (1997) Phosphocreatine content in single fibers of human muscle after sustained submaximal exercise. Am J Phys 273(1 Pt 1):C172–C178

    Article  CAS  Google Scholar 

  • Sahlin K, Tonkonogi M, Söderlund K (1998) Energy supply and muscle fatigue in humans. Acta Physiol Scand 162(3):261–266

    Article  CAS  PubMed  Google Scholar 

  • Saks V, Beraud N, Wallimann T (2008) Metabolic compartmentation–a system level property of muscle cells. Int J Mol Sci 9:751–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saltin B (1973) Metabolic fundamentals in exercise. Med Sci Sports 5(3):137–146

    CAS  PubMed  Google Scholar 

  • Saltin B, Karlsson J (1971) Muscle glycogen utilization during work of different intensities. In: Pernow B, Saltin B (eds) Muscle metabolism during exercise, vol 11. Springer, US, pp 289–299

    Chapter  Google Scholar 

  • Saltin B, Nazar K, Costill DL, Stein E, Jansson E, Essen B, Gollnick PD (1976) The nature of the training response: peripheral and central adaptations of one-legged exercise. Acta Physiol Scand 96:289–305

    Article  CAS  PubMed  Google Scholar 

  • Samuelson H, Moberg M, Apró W, Ekblom B, Blomstrand E (2016) Intake of branched-chain or essential amino acids attenuates the elevation in muscle levels of PGC-1α4 mRNA caused by resistance exercise. Am J Physiol Endocrinol Metab 311(1):246–251

    Article  Google Scholar 

  • Santalla A, Nogales-Gadea G, Ørtenblad N, Brull A, de Luna N, Pinós T, Lucia A (2014) McArdle disease: a unique study model in sports medicine. (review). Sports Med 44(11):1531–1544

    Article  PubMed  Google Scholar 

  • Sawyer JC, Wood RJ, Davidson PW, Collins SM, Matthews TD, Gregory SM, Paolone VJ (2013) Effects of a short-term carbohydrate restricted diet on strength and power performance. J Strength Cond Res 27:2255–2262

    Article  PubMed  Google Scholar 

  • Schrier SL (1966 Jan) Organization of enzymes in human erythrocyte membranes. Am J Phys 210(1):139–145

    Article  CAS  Google Scholar 

  • Sear RP (2019) Diffusionphoresis in cells: a general nonequilibrium, nonmotor mechanism for the metabolism-dependent transport of particles in cells. Phys Rev let 122:128101

    Article  CAS  Google Scholar 

  • Sejersted OM, Sjøgaard G (2000) Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 80:1411–1481

    Article  CAS  PubMed  Google Scholar 

  • Sherman WM, Costill DL, Fink WJ, Miller JM (1981) Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilization during performance. Int J Sports Med 2:114–118

    Article  CAS  PubMed  Google Scholar 

  • Shearer J, Graham T (2004) Novel aspects of skeletal muscle glycogen and its regulation during rest and exercise. Exerc Sport Sci Rev 32:120–126

    Article  PubMed  Google Scholar 

  • Shiose K, Yamada Y, Motonaga K, Sagayama H, Higaki Y, Tanaka H, Takahashi H (2016) Segmental extracellular and intracellular water distribution and muscle glycogen after 72-h carbohydrate loading using spectroscopic techniques. J Appl Physiol 121(1):205–211

    Article  CAS  PubMed  Google Scholar 

  • Sjöström M, Fridén J, Ekblom B (1982a) Fine structural details of human muscle fibres after fibre type specific glycogen depletion. Histochemistry 76:425–438

    Article  PubMed  Google Scholar 

  • Sjöström M, Kidman S, Larsén KH, Ängquist KA (1982b) Z- and M-band appearance in different Histochemically defined types of human skeletal muscle fibers. J Histochem Cytochem 30(1):1–11

    Article  PubMed  Google Scholar 

  • Skurat AV, Segvich DM, DePaoli-Roach AA, Roach PJ (2017) Novel method for detection of glycogen in cells. Glycobiology 27(5):416–424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JW, Zachwieja JJ, Péronnet F, Passe DH, Massicotte D, Lavoie C, Pascoe DD (2010) Fuel selection and cycling endurance performance with ingestion of [13C]glucose: evidence for a carbohydrate dose response. J Appl Physiol 108(6):1520–1529

    Article  CAS  PubMed  Google Scholar 

  • Srere PA (1967) Enzyme concentrations in tissues. Science 158(3803):936–937

    Article  CAS  PubMed  Google Scholar 

  • Steinberg GR, Watt MJ, McGee SL, Chan S, Hargreaves M, Febbraio MA et al (2006) Reduced glycogen availability is associated with increased AMPKα2 activity, nuclear AMPKα2 protein abundance, and GLUT4 mRNA expression in contracting human skeletal muscle. Appl Physiol Nutr Metab 31:302–312

    Article  CAS  PubMed  Google Scholar 

  • Stellingwerff T (2012) Case study: nutrition and training periodization in three elite marathon runners. Int J Sport Nutr Exer Metab 22(5):392–400

    Article  Google Scholar 

  • Stellingwerff T, Spriet LL, Watt MJ, Kimber NE, Hargreaves M, Hawley JA, Burke LM (2006) Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. American Journal of Physiology-Endocrinology and Metabolism 290(2):E380–E388

    Article  CAS  PubMed  Google Scholar 

  • Stephenson DG (1996) Molecular cogs in machina carnis. Clin Exp Pharmacol Physiol 23(10–11):898–907

    Article  CAS  PubMed  Google Scholar 

  • Stephenson DG, Nguyen LT, Stephenson GM (1999) Glycogen content and excitation-contraction coupling in mechanically skinned muscle fibres of the cane toad. J Physiol 519:177–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun RC, Dukhande VV, Zhou Z, Young LEA, Emanuelle S, Brainson CF, Gentry MS (2019) Nuclear glycogenolysis modulates histone acetylation in human non-small cell lung cancers. Cell Metab 30(5):903–916.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symons JD, Jacobs I (1989) High-intensity exercise performance is not impaired by low intramuscular glycogen. Med Sci Sports Exerc 21(5):550–557

    Article  CAS  PubMed  Google Scholar 

  • Tammineni ER, Kraeva N, Figueros L, Manno C, Ibarra CA, Klip A, Riazi S, Rios E (2020) Intracellular calcium leak lowers glucose storage in human muscle, promoting hyperglycemia and diabetes. eLife 9:e53999

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarnopolsky LJ, MacDougall JD, Atkinson SA, Tarnopolsky MA, Sutton JR (1990) Gender differences in substrate for endurance exercise. J Appl Physiol 68:302–308

    Article  CAS  PubMed  Google Scholar 

  • Taylor R, Price TB, Rothman DL, Shulman RG, Shulman GI (1992) Validation of 13C NMR measurement of human skeletal muscle glycogen by direct biochemical assay of needle biopsy samples. Magn Reson Med 27(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Tesch PA, Colliander EB, Kaiser P (1986) Muscle metabolism during intense, heavy resistance exercise. Eur J Appl Physiol 55:362–366

    Article  CAS  Google Scholar 

  • Tesch PA, Ploutz-Snyder LL, Yström L, Castro MJ, Dudley GA (1998) Skeletal muscle glycogen loss evoked by resistance exercise. J Strength Cond Res 12(2):67–73

    Google Scholar 

  • Testoni G, Duran J, García-Rocha M, Vilaplana F, Serrano AL, Sebastián D, López-Soldado I, Sullivan MA, Slebe F, Vilaseca M, Munoz-Cánoves P, Guinovart JJ (2017) Lack of glycogenin causes glycogen accumulation and muscle function impairment. Cell Metab 26:256–266

    Article  CAS  PubMed  Google Scholar 

  • Tomcik KA, Camera DM, Bone JL, Ross ML, Jeacocke NA, Tachtsis B, Senden J, LJC VANL, Hawley JA and Burke LM. (2018) Effects of Creatine and carbohydrate loading on cycling time trial performance. Med Sci Sports Exerc 50:141–150

    Article  CAS  PubMed  Google Scholar 

  • Tsintzas OK, Williams C, Boobis L, Greenhaff P (1995) Carbohydrate ingestion and glycogen utilization in different muscle fibre types in man. J Physiol 489(Pt 1):243–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsintzas OK, Williams C, Boobis L, Greenhaff P (1996) Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. J Appl Physiol 81(2):801–809

    Article  CAS  PubMed  Google Scholar 

  • Tsintzas K, Williams C, Constantin-Teodosiu D, Hultman E, Boobis L, Clarys P, Greenhaff P (2001) Phosphocreatine degradation in type I and type II muscle fibres during submaximal exercise in man: effect of carbohydrate ingestion. J Physiol 537(1):305–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Hall G, Jensen-Urstad M, Rosdahl H, Holmberg HC, Saltin B, Calbet JA (2003) Leg and arm lactate and substrate kinetics during exercise. Am J Physiol Endocrinol Metab 284(1):E193–E205

    Article  PubMed  Google Scholar 

  • van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536(Pt 1):295

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandenberghe K, Hespel P, Vanden Eynde B, Lyssens R, Richter EA (1995) No effect of glycogen level on glycogen metabolism during high intensity exercise. Med Sci Sports Exerc 27:1278–1283

    Article  CAS  PubMed  Google Scholar 

  • Vigh-Larsen JF, Ørtenblad N, Spriet LL, Overgaard K, Mohr M (2021) Muscle glycogen metabolism and high-intensity exercise performance–a narrative review. Sports Med 51(9):1855–1874

    Article  PubMed  Google Scholar 

  • Virágh S, Szabó E, Challice CE (1982) Glycogen-containing lysosomes and glycogen loss in the cardiomyocytes of embryonic and neonatal mice. Adv Myocardiol 3:553–561

    Article  PubMed  Google Scholar 

  • Visuttijai K, Hedberg-Oldfors C, Thomsen C, Glamuzina E, Kornblum C, Tasca G, Hernandez-Lain A, Sandstedt J, Dellgren G, Roach P, Oldfors A (2020) Glycogenin is deispensable for glycogen synthesis in human muscle, and glycogen deficiency causes polyglucosan storage. J Clin Endocrinol Metab 105:557–566

    Article  Google Scholar 

  • Vukovich MD, Costill DL, Hickey MS, Trappe SW, Cole KJ, Fink WJ (1993) Effect of fat emulsion infusion and fat feeding on muscle glycogen utilization during cycle exercise. J Appl Physiol 75(4):1513–1518

    Article  CAS  PubMed  Google Scholar 

  • Walker JL, Heigenhauser GJ, Hultman E, Spriet LL (2000) Dietary carbohydrate, muscle glycogen content, and endurance performance in well-trained women. J Appl Physiol (Bethesda, Md: 1985) 88:2151–2158

    Article  CAS  Google Scholar 

  • Wallimann T, Eppenberger HM (1985) Localization and function of M-line-bound creatine kinase. J Muscle Res Cell Motility 6:239–285

    Article  CAS  Google Scholar 

  • Wanson JC, Drochmans P (1968) Rabbit skeletal muscle glycogen. A morphological and biochemical study of glycogen betaparticles isolated by the precipitation-centrifugation method. J Cell Biol 38:130–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanson JC, Drochmans P (1972) Role of the sarcoplasmic reticulum in glycogen metabolism. J Cell Biol 54:206–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe D, Wada M (2019) Effects of reduced muscle glycogen on excitation–contraction coupling in rat fast-twitch muscle: a glycogen removal study. J Muscle Res Cell Motil

    Google Scholar 

  • Widrick JJ, Costill DL, Fink WJ, Hickey MS, McConell GK, Tanaka H (1993) Carbohydrate feedings and exercise performance: effect of initial muscle glycogen concentration. J Appl Physiol (Bethesda, Md: 1985) 74:2998–3005

    Article  CAS  Google Scholar 

  • Wojtaszewski JFP, MacDonald C, Nielsen JN, Hellsten Y, Hardie DG, Kemp BE et al (2003) Regulation of 5′AMP- activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab 284:E813–E822

    Article  CAS  PubMed  Google Scholar 

  • Xirouchaki CE, Mangiafico SP, Bate K, Ruan Z, Huang AM, Tedjosiswoyo BW, Lamont B, Pong W, Favaloro J, Blair AR, Zajac JD, Proietto J, Andrikopoulos S (2016) Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1) deletion in adult mice. Mol Metab 5:221–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu KY, Becker LC (1998) Ultrastructural localization of glycolytic enzymes on sarcoplasmic reticulum vesticles. J Histochem Cytochem 46:419–427

    Article  CAS  PubMed  Google Scholar 

  • Yaspelkis BB, Patterson JG, Anderla PA, Ding Z, Ivy JL (1993) Carbohydrate supplementation spares muscle glycogen during variable-intensity exercise. J Appl Physiol 75(4):1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA (2008) Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol 105:1462–1470

    Article  CAS  PubMed  Google Scholar 

  • Yeo WK, McGee SL, Carey AL, Paton CD, Garnham AP, Hargreaves M, Hawley JA (2010) Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Young AJ, Young PM, McCullough RE, Moore LG, Cymerman A, Reeves JT (1991) Effect of betaadrenergic blockade on plasma lactate concentration during exercise at high altitude. Eur J Appl Physiol Occup Physiol 63:315–322

    Article  CAS  PubMed  Google Scholar 

  • Zuntz N (1896) Über die Rolle des Zuckers im tierischen Stoffwechsel. Arch Physiol:538–542

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Ørtenblad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ørtenblad, N., Nielsen, J., Morton, J.P., Areta, J.L. (2022). Exercise and Muscle Glycogen Metabolism. In: McConell, G. (eds) Exercise Metabolism. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-94305-9_5

Download citation

Publish with us

Policies and ethics