Skip to main content

Metabolism in the Brain During Exercise in Humans

  • Chapter
  • First Online:
Exercise Metabolism

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 1816 Accesses

Abstract

This chapter discusses the regulation of cerebral metabolism and fuel utilization at rest and during dynamic whole-body exercise in humans. The relative contributions of cerebral metabolic rates of key substrates (oxygen, glucose, lactate, ketone bodies) are outlined with respect to rest and exercise. A brief overview of the current gold-standard techniques to assess cerebral metabolism during dynamic exercise in humans is also provided, and future research areas are highlighted throughout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainslie PN, Shaw AD, Smith KJ et al (2014) Stability of cerebral metabolism and substrate availability in humans during hypoxia and hyperoxia. Clin Sci 126:661–670

    Article  CAS  Google Scholar 

  • Amiel SA, Archibald HR, Chusney G et al (1991) Ketone infusion lowers hormonal responses to hypoglycaemia: evidence for acute cerebral utilization of a non-glucose fuel. Clin Sci 81:189–194

    Article  CAS  Google Scholar 

  • Askew EW, Dohm GL, Huston RL (1975) Fatty acid and ketone body metabolism in the rat: response to diet and exercise. J Nutr 105:1422–1432

    Article  CAS  PubMed  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Bailey DM (2019) Oxygen and brain death; back from the brink. Exp Physiol 104:1769–1779

    Article  CAS  PubMed  Google Scholar 

  • Balasse EO, Féry F, Neef MA (1978) Changes induced by exercise in rates of turnover and oxidation of ketone bodies in fasting man. J Appl Physiol Respir Environ Exerc Physiol 44:5–11

    CAS  PubMed  Google Scholar 

  • Barros LF, Deitmer JW (2010) Glucose and lactate supply to the synapse. Brain Res Rev 63:149–159

    Article  CAS  PubMed  Google Scholar 

  • Blomqvist G, Thorell JO, Ingvar M et al (1995) Use of R-beta-[1-11C]hydroxybutyrate in PET studies of regional cerebral uptake of ketone bodies in humans. Am J Physiology-Legacy Content 269:E948–E959

    CAS  Google Scholar 

  • Brassard P, Seifert T, Wissenberg M et al (2010) Phenylephrine decreases frontal lobe oxygenation at rest but not during moderately intense exercise. J Appl Physiol 108:1472–1478

    Article  CAS  PubMed  Google Scholar 

  • Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55:1263–1271

    Article  PubMed  Google Scholar 

  • Buxton RB, Frank LR (1997) A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 17:64–72

    Article  CAS  PubMed  Google Scholar 

  • Cahill GF (1976) Starvation in man. Clin Endocrinol Metab 5:397–415

    Article  CAS  PubMed  Google Scholar 

  • Calbet JAL, Jensen-Urstad M, van Hall G et al (2004) Maximal muscular vascular conductances during whole body upright exercise in humans. J Physiol 558:319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldwell HG, Carr JMJR, Minhas JS et al (2021) Acid-base balance and cerebrovascular regulation. J Physiol 599:5337–5359

    Article  CAS  PubMed  Google Scholar 

  • Clarke DD, Sokoloff L (1999) Substrates of cerebral metabolism. In: Siegel GJ, Agranoff BW, Albers RW et al (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott-Raven, Philadelphia. Available from https://www.ncbi.nlm.nih.gov/books/NBK28048/

    Google Scholar 

  • Dalsgaard MK (2006) Fuelling cerebral activity in exercising man. J Cereb Blood Flow Metab 26:731–750

    Article  CAS  PubMed  Google Scholar 

  • Dalsgaard MK, Ogoh S, Dawson EA et al (2004a) Cerebral carbohydrate cost of physical exertion in humans. Am J Physiol Regul Integr Comp Physiol 287:R534–R540

    Article  CAS  PubMed  Google Scholar 

  • Dalsgaard MK, Quistorff B, Danielsen ER et al (2004b) A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain. J Physiol 554:571–578

    Article  CAS  PubMed  Google Scholar 

  • Edmond J, Robbins RA, Bergstrom JD et al (1987) Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J Neurosci Res 18:551–561

    Article  CAS  PubMed  Google Scholar 

  • Edvinsson LM, Krause DN (2002) Cerebral blood flow and metabolism. Lippincott, Williams & Wilkins, Philadelphia

    Google Scholar 

  • Ekblom B, Huot R, Stein EM, Thorstensson AT (1975) Effect of changes in arterial oxygen content on circulation and physical performance. J Appl Physiol 39:71–75

    Article  CAS  PubMed  Google Scholar 

  • Engl E, Attwell D (2015) Non-signalling energy use in the brain. J Physiol 593:3417–3429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans M, Cogan KE, Egan B (2016) Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation. J Physiol 595:2857–2871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Féry F, Balasse EO (1983) Ketone body turnover during and after exercise in overnight-fasted and starved humans. Am J Physiol 245:E318–E325

    PubMed  Google Scholar 

  • Féry F, Balasse EO (1986) Response of ketone body metabolism to exercise during transition from postabsorptive to fasted state. Am J Physiol 250:E495–E501

    PubMed  Google Scholar 

  • Féry F, Balasse EO (1988) Effect of exercise on the disposal of infused ketone bodies in humans. J Clin Endocrinol Metab 67:245–250

    Article  PubMed  Google Scholar 

  • Fisher JP, Hartwich D, Seifert T et al (2013) Cerebral perfusion, oxygenation and metabolism during exercise in young and elderly individuals. J Physiol 591:1859–1870

    Article  CAS  PubMed  Google Scholar 

  • Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci 83:1140–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464

    Article  CAS  PubMed  Google Scholar 

  • Garber AJ, Menzel PH, Boden G, Owen OE (1974) Hepatic ketogenesis and gluconeogenesis in humans. J Clin Investig 54:981–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gjedde A (2005) The pathways of oxygen in brain. I. Delivery and metabolism of oxygen. Adv Exp Med Biol 566:269–275

    Article  CAS  PubMed  Google Scholar 

  • Gonzales AL, Klug NR, Moshkforoush A et al (2020) Contractile pericytes determine the direction of blood flow at capillary junctions. Proc Natl Acad Sci U S A 117:27022–27033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagenfeldt L, Wahren J (1968) Human forearm muscle metabolism during exercise III uptake, release and oxidation of β-hydroxybutyrate and observations on the β-hydroxybutyrate/acetoacetate ratio. Scand J Clin Lab Invest 21:314–320

    Article  CAS  PubMed  Google Scholar 

  • Hagenfeldt L, Wahren J (1971) Human forearm muscle metabolism during exercise. VI. Substrate utilization in prolonged fasting. Scand J Clin Lab Invest 27:299–306

    Article  CAS  PubMed  Google Scholar 

  • Han Y-M, Bedarida T, Ding Y et al (2018) β-Hydroxybutyrate prevents vascular senescence through hnRNP A1-mediated upregulation of Oct4. Mol Cell 71:1064–1078.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasselbalch SG, Knudsen GM, Jakobsen J et al (1994) Brain metabolism during short-term starvation in humans. J Cereb Blood Flow Metab 14:125–131

    Article  CAS  PubMed  Google Scholar 

  • Hasselbalch SG, Knudsen GM, Jakobsen J et al (1995) Blood-brain barrier permeability of glucose and ketone bodies during short-term starvation in humans. Am J Physiology-Legacy Content 268:E1161–E1166

    CAS  Google Scholar 

  • Hasselbalch SG, Madsen PL, Hageman LP et al (1996) Changes in cerebral blood flow and carbohydrate metabolism during acute hyperketonemia. Am J Physiology-Endocrinology Metabolism 270:E746–E751

    Article  CAS  Google Scholar 

  • Haymond MW, Karl IE, Clarke WL et al (1982) Differences in circulating gluconeogenic substrates during short-term fasting in men, women, and children. Metabolism 31:33–42

    Article  CAS  PubMed  Google Scholar 

  • Heni M, Eckstein SS, Schittenhelm J et al (2020) Ectopic fat accumulation in human astrocytes impairs insulin action. R Soc Open Sci 7:200701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ide K, Secher NH (2000) Cerebral blood flow and metabolism during exercise. Prog Neurobiol 61:397–414

    Article  CAS  PubMed  Google Scholar 

  • Ide K, Schmalbruch IK, Quistorff B et al (2000) Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. J Physiol (Lond) 522(Pt 1):159–164

    Article  CAS  Google Scholar 

  • Johnson RH, Walton JL, Krebs HA, Williamson DH (1969) Metabolic fuels during and after severe exercise in athletes and non-athletes. Lancet 2:452–455

    Article  CAS  PubMed  Google Scholar 

  • Johnston CS, Tjonn SL, Swan PD et al (2006) Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets. Am J Clin Nutr 83:1055–1061

    Article  CAS  PubMed  Google Scholar 

  • Kety SS, Schmidt CF (1945) The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Physiol 143:53–66

    Article  CAS  Google Scholar 

  • Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Investig 27:476–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura I, Inoue D, Maeda T et al (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A 108:8030–8035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koepsell H (2020) Glucose transporters in brain in health and disease. Pflugers Arch 472:1299–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuschinsky W, Paulson OB (1992) Capillary circulation in the brain. Cerebrovasc Brain Metab Rev 4:261–286

    CAS  PubMed  Google Scholar 

  • Laffel L (1999) Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev 15:412–426

    Article  CAS  PubMed  Google Scholar 

  • Langfort J, Pilis W, Zarzeczny R et al (1996) Effect of low-carbohydrate-ketogenic diet on metabolic and hormonal responses to graded exercise in men. J Physiol Pharmacol 47:361–371

    CAS  PubMed  Google Scholar 

  • Larsen TS, Rasmussen P, Overgaard M et al (2008) Non-selective β-adrenergic blockade prevents reduction of the cerebral metabolic ratio during exhaustive exercise in humans. J Physiol 586:2807–2815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenstein D, Saïfi R, Augarde R et al (2001) The internal jugular veins are asymmetric. Usefulness of ultrasound before catheterization. Intensive Care Med 27:301–305

    Article  CAS  PubMed  Google Scholar 

  • Lundby C, Sander M, van Hall G et al (2006) Maximal exercise and muscle oxygen extraction in acclimatizing lowlanders and high altitude natives. J Physiol 573:535–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen PL, Vorstrup S (1991) Cerebral blood flow and metabolism during sleep. Cerebrovasc Brain Metab Rev 3:281–296

    CAS  PubMed  Google Scholar 

  • Marosi K, Kim SW, Moehl K et al (2016) 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J Neurochem 139:769–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui T, Omuro H, Liu Y-F et al (2017) Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity. Proc Natl Acad Sci U S A 114:6358–6363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikkelsen KH, Seifert T, Secher NH et al (2015) Systemic, cerebral and skeletal muscle ketone body and energy metabolism during acute hyper-D-β-hydroxybutyratemia in post-absorptive healthy males. J Clin Endocrinol Metab 100:636–643

    Article  CAS  PubMed  Google Scholar 

  • Mintun MA, Lundstrom BN, Snyder AZ et al (2001) Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc Natl Acad Sci 98:6859–6864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell RW, On NH, Del Bigio MR et al (2011) Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J Neurochem 117:735–746

    CAS  PubMed  Google Scholar 

  • Morland C, Andersson KA, Haugen ØP et al (2017) Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun 8:15557–15559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nay K, Smiles WJ, Kaiser J et al (2021) Molecular mechanisms underlying the beneficial effects of exercise on brain function and neurological disorders. Int J Mol Sci 22:4052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nybo L, Møller K, Volianitis S et al (2002) Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans. J Appl Physiol 93:58–64

    Article  PubMed  Google Scholar 

  • Nybo L, Møller K, Pedersen BK et al (2003) Association between fatigue and failure to preserve cerebral energy turnover during prolonged exercise. Acta Physiol Scand 179:67–74

    Article  CAS  PubMed  Google Scholar 

  • Owen OE, Morgan AP, Kemp HG et al (1967) Brain metabolism during fasting. J Clin Investig 46:1589–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen OE, Felig P, Morgan AP et al (1969) Liver and kidney metabolism during prolonged starvation. J Clin Investig 48:574–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan JW, Rothman TL, Behar KL et al (2000) Human brain beta-hydroxybutyrate and lactate increase in fasting-induced ketosis. J Cereb Blood Flow Metab 20:1502–1507

    Article  CAS  PubMed  Google Scholar 

  • Patching SG (2017) Glucose transporters at the blood-brain barrier: function, regulation and gateways for drug delivery. Mol Neurobiol 54:1046–1077

    Article  CAS  PubMed  Google Scholar 

  • Proctor DN, Shen PH, Dietz NM et al (1998) Reduced leg blood flow during dynamic exercise in older endurance-trained men. J Appl Physiol 85:68–75

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen P, Nielsen J, Overgaard M et al (2010a) Reduced muscle activation during exercise related to brain oxygenation and metabolism in humans. J Physiol 588:1985–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen P, Overgaard A, Bjerre AF et al (2010b) The effects of normoxia, hypoxia, and hyperoxia on cerebral haemoglobin saturation using near infrared spectroscopy during maximal exercise. Int J Ind Ergon 40:190–196

    Article  Google Scholar 

  • Rasmussen P, Wyss MT, Lundby C (2011) Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans. FASEB J 25:2865–2873

    Article  CAS  PubMed  Google Scholar 

  • Rebelos E, Mari A, Bucci M et al (2020) Brain substrate metabolism and ß-cell function in humans: a positron emission tomography study. Endocrinol Diabetes Metab 3:e00136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson CS, Narayan RK, Gokaslan ZL et al (1989) Cerebral arteriovenous oxygen difference as an estimate of cerebral blood flow in comatose patients. J Neurosurg 70:222–230

    Article  CAS  PubMed  Google Scholar 

  • Robinson AM, Williamson DH (1980) Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev 60:143–187

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Sadamoto T (2010) Different blood flow responses to dynamic exercise between internal carotid and vertebral arteries in women. J Appl Physiol 109:864–869

    Article  PubMed  Google Scholar 

  • Schönfeld P, Reiser G (2013) Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cereb Blood Flow Metab 33:1493–1499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimazu T, Hirschey MD, Newman J et al (2013) Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–214

    Article  CAS  PubMed  Google Scholar 

  • Siesjö BK (1978) Brain metabolism and anaesthesia. Acta Anaesthesiol Scand Suppl 70:56–59

    PubMed  Google Scholar 

  • Simard M, Arcuino G, Takano T et al (2003) Signaling at the gliovascular interface. J Neurosci 23:9254–9262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766–1791

    Article  CAS  PubMed  Google Scholar 

  • Skattebo Ø, Calbet JAL, Rud B et al (2020) Contribution of oxygen extraction fraction to maximal oxygen uptake in healthy young men. Acta Physiol (Oxf) 230:e13486

    Article  CAS  Google Scholar 

  • Sleiman SF, Henry J, Al-Haddad R et al (2016) Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. elife

    Google Scholar 

  • Smith KJ, Ainslie PN (2017) Regulation of cerebral blood flow and metabolism during exercise. Exp Physiol 102(11):1356–1371

    Article  CAS  PubMed  Google Scholar 

  • Smith KJ, MacLeod D, Willie CK et al (2014) Influence of high altitude on cerebral blood flow and fuel utilization during exercise and recovery. J Physiol 592:5507–5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokoloff L (1960) The metabolism of the central nervous system in vivo. In: Handbook of physiology–neurophysiology, vol 3. American Physiological Society, Washington, DC, pp 1843–1864

    Google Scholar 

  • Svart M, Gormsen LC, Hansen J et al (2018) Regional cerebral effects of ketone body infusion with 3-hydroxybutyrate in humans: reduced glucose uptake, unchanged oxygen consumption and increased blood flow by positron emission tomography. A randomized, controlled trial. PLoS One 13:e0190556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas KN, Lewis NCS, Hill BG, Ainslie PN (2015) Technical recommendations for the use of carotid duplex ultrasound for the assessment of extracranial blood flow. Am J Physiol Regul Integr Comp Physiol 309:1–7

    Article  CAS  Google Scholar 

  • Trangmar SJ, Chiesa ST, Stock CG et al (2014) Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans. J Physiol 592:3143–3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Hall G, Strømstad M, Rasmussen P et al (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29:1121–1129

    Article  PubMed  CAS  Google Scholar 

  • Veech RL (2004) The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 70:309–319

    Article  CAS  PubMed  Google Scholar 

  • Veneman T, Mitrakou A, Mokan M et al (1994) Effect of hyperketonemia and hyperlacticacidemia on symptoms, cognitive dysfunction, and counterregulatory hormone responses during hypoglycemia in normal humans. Diabetes Care 43:1311–1317

    Article  CAS  Google Scholar 

  • Vlassenko AG, Rundle MM, Raichle ME, Mintun MA (2006) Regulation of blood flow in activated human brain by cytosolic NADH/NAD+ ratio. Proc Natl Acad Sci 103:1964–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volek JS, Freidenreich DJ, Saenz C et al (2016) Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism 65:100–110

    Article  CAS  PubMed  Google Scholar 

  • Volianitis S, Fabricius-Bjerre A, Overgaard A et al (2008) The cerebral metabolic ratio is not affected by oxygen availability during maximal exercise in humans. J Physiol 586:107–112

    Article  CAS  PubMed  Google Scholar 

  • Volianitis S, Rasmussen P, Seifert T et al (2011) Plasma pH does not influence the cerebral metabolic ratio during maximal whole body exercise. J Physiol 589:423–429

    Article  CAS  PubMed  Google Scholar 

  • Wahren J, Sato Y, Ostman J et al (1984) Turnover and splanchnic metabolism of free fatty acids and ketones in insulin-dependent diabetics at rest and in response to exercise. J Clin Investig 73:1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JL, Shea M, Jones SC (1993) Evidence that heterogeneity of cerebral blood flow does not involve vascular recruitment. Am J Physiology-Legacy Content 264:H1740–H1743

    CAS  Google Scholar 

  • Wu X, Miao D, Liu Z et al (2020) β-Hydroxybutyrate antagonizes aortic endothelial injury by promoting generation of VEGF in diabetic rats. Tissue Cell 64:101345

    Article  CAS  PubMed  Google Scholar 

  • Xin L, Ipek Ö, Beaumont M et al (2018) Nutritional ketosis increases NAD+/NADH ratio in healthy human brain: an in vivo study by 31P-MRS. Front Nutr 5:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yancy WS Jr, Olsen MK, Guyton JR et al (2004) A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia. Ann Intern Med 140:769–777

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah G. Caldwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caldwell, H.G., Gliemann, L., Ainslie, P.N. (2022). Metabolism in the Brain During Exercise in Humans. In: McConell, G. (eds) Exercise Metabolism. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-94305-9_13

Download citation

Publish with us

Policies and ethics