Skip to main content

Mechanics of Microsystems: A Recent Journey in a Fascinating Branch of Mechanics

  • Conference paper
  • First Online:
50+ Years of AIMETA

Abstract

Microsystems or Micro Electro Mechanical Systems (MEMS) are very small machines that over the last thirty years had an impressive development in terms of potentialities and diffusion. MEMS are now widespread as micro sensors and/or micro actuators and can be found in many objects of common use. The purpose of the present Chapter is to give an overview of the importance of Mechanics in the study, design and fabrication of MEMS. Inertial and piezoelectrically actuated MEMS are first described. Key issues concerning Microsystems reliability are then discussed, such as fracture, fatigue and consequences of impacts due to accidental drop, along with other uncertainty-related issues at the device scale. The content of this chapter is based on the activity carried out in our research group at the Politecnico di Milano, along the last 20 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feynman, R.P.: There’s plenty of room at the bottom. In: Gilbert, H.D. (eds.) Miniaturization, Reinhold, 282 (1960)

    Google Scholar 

  2. Nathanson, H., Newell, W.E., Wickstrom, R.A. and Ransford Davis, Jr., J.: The resonant gate transistor. IEEE Trans Electron Devices 14(3), 117–133 (1967)

    Google Scholar 

  3. Senturia, S.: Microsystem Design. Springer (2001)

    Google Scholar 

  4. Adams, T., Layton, R.: Introductory MEMS: Fabrication and Applications (2010)

    Google Scholar 

  5. Madou, M.: Fundamentals of Microfabrication. CRC Press (2002)

    Google Scholar 

  6. Corigliano, A., De Masi, B., Frangi, A., Comi, C., Villa, A., Marchi, M.: Mechanical characterization of polysilicon through on chip tensile tests. J. Microelectromech. Syst. 13(2), 200–219 (2004)

    Article  Google Scholar 

  7. Corigliano, A., Ardito, R., Comi, C., Frangi, A., Ghisi, A., Mariani, S.: Mechanics of Microsystems. Wiley. ISBN 978–1–119–05383–5 (2018)

    Google Scholar 

  8. Corigliano, A., Cacchione, F., De Masi, B., Riva, C.: On-chip electrostatically actuated bending tests for the mechanical characterization of polysilicon at the micro scale. Meccanica 40, 485–503 (2005)

    Article  Google Scholar 

  9. Ardito, R., Baldasarre, L., Corigliano, A., de Masi, B., Frangi, A., Magagnin, L.: Experimental evaluation and numerical modeling of adhesion phenomena in polysilicon MEMS. Meccanica 48(8), 1835–1844 (2013)

    Article  Google Scholar 

  10. Yao, Z., Zega, V., Su, Y., Zhou, Y., Ren, J., Zhang, J., Corigliano, A.: Design, fabrication and experimental validation of a metaplate for vibration isolation in MEMS. J. Microelectromech. Syst. 29(5), 1401–1410 (2020)

    Article  Google Scholar 

  11. Massimino, G., Colombo, A., Ardito, R., Quaglia, F., Corigliano, A.: Piezo-Micro-Ultrasound-Transducers for air-coupled arrays: modelling and experiments in the linear and nonlinear regimes. Extreme Mech. Lett. 40, 100968 (2020)

    Google Scholar 

  12. Comi, C., Zega, V., Corigliano, A.: Non-linear mechanics in resonant inertial micro sensors. Int. J. Non-Linear Mech. 120,103386 (2020)

    Google Scholar 

  13. Vigna, B., Ferrari, P., Villa, F.F., Lasalandra, E., Zerbini, S., eds.: Silicon Sensors and Actuators. The Feynman Roadmap. ISBN 978–3–030–80134–2, Springer (2022)

    Google Scholar 

  14. Ruzziconi, L., Ramini, A.H., Younis, M.I., Lenci, S.: Theoretical prediction of experimental jump and pull-in dynamics in a MEMS sensor. Sensors 14(9), 17089–17111 (2014)

    Article  Google Scholar 

  15. Belardinelli, P., Lenci, S., Demeio, L.: Vibration frequency analysis of an electrically-actuated microbeam resonator accounting for thermoelastic coupling effects. Int. J. Dyn. Control 3, 157–172 (2015)

    Article  MathSciNet  Google Scholar 

  16. Pantano, M.F., Pugno, N.M.: Design of a bent beam electrothermal actuator for in situ tensile testing of ceramic nanostructures. J. Eur. Ceramic Soc. 34(11), 2767–2773 (2014)

    Article  Google Scholar 

  17. Pantano, M.F., Bernal, R.A., Pagnotta, L., Espinosa, H.D.: Multiphysics design and implementation of a microsystem for displacement-controlled tensile testing of nanomaterials. Meccanica 50, 549–560 (2015)

    Article  Google Scholar 

  18. Giannini, D., Bonaccorsi, G., Braghin, F.: Size optimization of MEMS gyroscopes using substructuring. Eur. J. Mech.—A/Solids 84, 104045 (2020)

    Google Scholar 

  19. Stassi, S., Lamberti, A., Roppolo, I., Casu, A., Bianco, S., Scaiola, D., Falqui, A., Pirri, C.F., Ricciardi, C.: Evolution of nanomechanical properties and crystallinity of individual titanium dioxide nanotube resonators. Nanotechnology 29(8), 085702 (2018)

    Google Scholar 

  20. Davini, C., Favata, A., Micheletti, A., Paroni, R.: A 2D microstructure with auxetic out-of-plane behavior and non-auxetic in-plane behavior. Smart Mater. Struct. 26, 125007 (2017)

    Google Scholar 

  21. Jeong, Y., Serrano, D.E., Ayazi, F.: Low-pressure wafer-level-packaged capacitive accelerometers with high dynamic range and wide bandwidth using nano-gap sloped electrode design. J. Microelectromech. Syst. 26, 1335–1344 (2017)

    Article  Google Scholar 

  22. Maspero, F., Delachanal, S., Berthelot, A., Joet, L., Langfelder, G., Hentz, S.: Quarter-mm2 high dynamic range silicon capacitive accelerometer with a 3D process. IEEE Sens. J. 20, 689–699 (2020)

    Article  Google Scholar 

  23. Frangi, A., De Masi, B., Simoni, B.: Microelectromechanical three-axis capacitive accelerometer. US Patent US8863575 B2, filed Jun.15 2011 and issued Oct. 21 2014 (2011)

    Google Scholar 

  24. Szermer, M., Zając, P., Amrozik, P., Maj, C., Jankowski, M., Jabłoński, G., Kiełbik, R., Nazdrowicz, J., Napieralska, M., Sakowicz, B.: A capacitive 3-Axis MEMS accelerometer for medipost: a portable system dedicated to monitoring imbalance disorders. Sensors 21, 3564 (2021)

    Article  Google Scholar 

  25. Marra, C.R., Tocchio, A., Rizzini, F., Langfelder, G.: Solving FSR versus offset-drift trade-offs with three-axis time-switched FM MEMS accelerometer. J. Microelectromech. Syst. 27(5), 790–799 (2018)

    Article  Google Scholar 

  26. Comi, C., Corigliano, A., Langfelder, G., Longoni, A., Tocchio, A., Simoni, B.: A resonant micro-accelerometer with high sensitivity operating in an oscillating circuit. J. Microelectromech. Syst. 19(5), 1140–1152 (2010)

    Article  Google Scholar 

  27. Caspani, A., Comi, C., Corigliano, A., Langfelder, G., Tocchio, A.: Compact biaxial micromachined resonant accelerometer. J. Micromech. Microeng. 23(10), 105012 (2013)

    Google Scholar 

  28. Comi, C., Corigliano, A., Langfelder, G., Zega, V., Zerbini, S.: Sensitivity and temperature behavior of a novel z-axis differential accelerometer. J. Micromech. Microeng. 26, 035006 (2016)

    Google Scholar 

  29. Zhang, J., Wang, Y., Zega, V., Su, Y., Corigliano, A.: Nonlinear dynamics under varying temperature conditions of the resonating beams of a differential resonant accelerometer. J. Micromech. Microeng. 28, 075004 (2018)

    Google Scholar 

  30. Tocchio, A., Comi, C., Langfelder, G., Corigliano, A., Longoni, A.: Enhancing the linear range of MEMS resonators for sensing applications. IEEE Sensor J. 11, 3202–3210 (2011)

    Article  Google Scholar 

  31. Caspani, A., Comi, C., Corigliano, A., Langfelder, G., Zega, V., Zerbini, S.: Dynamic nonlinear behavior of torsional resonators in MEMS. J. Micromech. Microeng. 24, 095025 (2014)

    Google Scholar 

  32. Acar, C., Shkel, A.: MEMS Vibratory Gyroscopes. Springer (2009)

    Google Scholar 

  33. Eminoglu, B., Yeh, Y.-C., Izyumin, I., Nacita, I., Wireman, M., Reinelt, A., Boser, B.E.: Comparison of long-term stability of am versus fm gyroscopes. In: IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 954957. Shanghai, China (2016)

    Google Scholar 

  34. Zega, V., Comi, C., Minotti, P., Langfelder, G., Falorni, L., Corigliano, A.: A new MEMS three-axial frequency-modulated (FM) gyroscope: a mechanical perspective. Eur. J. Mech./A Solids 70, 203–212 (2018)

    Article  MathSciNet  Google Scholar 

  35. Nitzan, S., Zega, V., Li, M., Ahn, C.H., Corigliano, A., Kenny, T.W., Horsley, D.A.: Self-induced parametric amplification arising from nonlinear elastic coupling in a micro-mechanical resonating disk gyroscope. Sci. Rep. 5, 9036 (2015)

    Article  Google Scholar 

  36. Gobat, G., Zega, V., Fedeli, P., Guerinoni, L., Touzé, C., Frangi, A.: Reduced order modelling and experimental validation of a MEMS gyroscope test-structure exhibiting 1:2 internal resonance. Sci. Rep. 11(1), 16390 (2021)

    Article  Google Scholar 

  37. Zega, V., Langfelder, G., Falorni, L.G., Comi, C.: Hardening, softening and linear behavior of elastic beams in MEMS: an analytical approach. J. Microelectromech. Syst. 28(2), 189–198 (2019)

    Article  Google Scholar 

  38. Curie, P., Curie, J.: Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Comptes Rendus (France) 91, 294–295 (1880)

    MATH  Google Scholar 

  39. Lippmann, G.: Principe de la conservation de l’elecricité. Ann de Chemie et de Physique 24, 145 (1881)

    Google Scholar 

  40. Safari, A., Akdogan, E.K.: Piezoelectric and Acoustic Materials for Transducer Applications, Section 20.2.2.1. Springer, New York (2008)

    Google Scholar 

  41. Giurgiutiu, V.: Chapter 2 - Electroactive and Magnetoactive Materials. In: Giurgiutiu, V. (ed.) Structural Health Monitoring with Piezoelectric Wafer Active Sensors (Second Edition), pp. 21–49. Academic Press, Oxford (2014)

    Chapter  Google Scholar 

  42. Landis, C.M.: Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics. J. Mech. Phys. Solids 50(1), 127–152 (2002)

    Google Scholar 

  43. Ghisi, A., Boni, N., Carminati, R., Mariani, S.: A piezo-MEMS device for fatigue testing of thin metal layers. Eng. Proc. 4(1), 17 (2021)

    Google Scholar 

  44. Mariani, S., Martini, R., Ghisi, A., Corigliano, A., Beghi, M.: Overall elastic properties of polysilicon films: a statistical investigation of the effects of polycrystal morphology. J. Multiscale Comput. Eng. 9, 327–346 (2011)

    Article  Google Scholar 

  45. Mirzazadeh, R., Mariani, S.: Uncertainty quantification of microstructure-governed proper-ties of polysilicon MEMS. Micromachines 8, 248 (2017)

    Article  Google Scholar 

  46. Mariani, S., Ghisi, A., Corigliano, A., Zerbini, S.: Multi-scale analysis of MEMS sensors subject to drop impacts. Sensors 7, 1817–1833 (2007)

    Article  Google Scholar 

  47. Mariani, S., Ghisi, A., Corigliano, A., Zerbini, S.: Modeling impact-induced failure of polysilicon MEMS: a multi-scale approach. Sensors 9, 556–567 (2009)

    Article  Google Scholar 

  48. Mariani, S., Ghisi, A., Corigliano, A., Martini, R., Simoni, B.: Two-scale simulation of drop-induced failure of polysilicon MEMS sensors. Sensors 11, 4972–4989 (2011)

    Article  Google Scholar 

  49. Ghisi, A., Mariani, S., Corigliano, A., Zerbini, S.: Physically-based reduced order modelling of a uni-axial polysilicon MEMS accelerometer. Sensors 12, 13985–14003 (2012)

    Article  Google Scholar 

  50. Mariani, S., Quesada Molina, J.P.: A two-scale multi-physics deep learning model for smart MEMS sensors. J. Mater. Sci. Chem. Eng. 9, 41–52 (2021)

    Google Scholar 

  51. Bagherinia, M., Mariani, S.: Stochastic effects on the dynamics of the resonant structure of a Lorentz force MEMS magnetometer. Actuators 8, 36 (2019)

    Article  Google Scholar 

  52. Bagherinia, M., Bruggi, M., Corigliano, A., Mariani, S., Lasalandra, E.: Geometry optimization of a Lorentz force, resonating MEMS magnetometer. Microelectron. Reliab. 54, 1192–1199 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Corigliano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Corigliano, A., Ghisi, A., Mariani, S., Zega, V. (2022). Mechanics of Microsystems: A Recent Journey in a Fascinating Branch of Mechanics. In: Rega, G. (eds) 50+ Years of AIMETA. Springer, Cham. https://doi.org/10.1007/978-3-030-94195-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94195-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94194-9

  • Online ISBN: 978-3-030-94195-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics