Skip to main content
Log in

Vibration frequency analysis of an electrically-actuated microbeam resonator accounting for thermoelastic coupling effects

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

The paper deals with a thermo-mechanical problem for a slender microbeam subjected to an electric actuation; the purpose of the study is to improve the knowledge of loss mechanisms in micro-electro-mechanical devices and to predict accurately the dynamical behaviour. The thermoelastic damping in microbeam resonators is strictly correlated to the mechanical behaviour, and the thermoelastic response of the structure changes significantly near critical frequencies. To fully understand the thermoelastic coupling effects, we add the description of the thermal phenomena to the mechanical problem obtaining a system of two coupled PDEs. The proposed governing equations, by making use of a unified model, are able to describe the response by using the classical thermoelastic formulation and two distinct generalized theories, namely, the Lord–Shulman and the Green–Lindsay models. The study is carried out by means of a spectral approximation method and numerical simulations. The results show the influence of the relaxation times and the presence of dissipation peaks in the different formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Clark T, Nguyen C (1995) Micromechanical resonators for oscillators and filters. In: 1995 IEEE proceedings of the ultrasonics symposium, 1995, vol 1, pp 489–499

  2. Luo H, Zhang G, Carley L, Fedder G (2002) A post-CMOS micromachined lateral accelerometer. J Microelectromech Syst 11(3):188–195

    Article  Google Scholar 

  3. Rhoads J, Shaw S, Turner K, Moehlis J, DeMartini B, Zhang W (2006) Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. J Sound Vib 296(4–5):797–829

    Article  Google Scholar 

  4. Nayfeh AH, Younis MI (2004) A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping. J Micromech Microeng 14(2):170–181

    Article  Google Scholar 

  5. Rhoads J, Shaw S, Turner KL (2010) Nonlinear dynamics and its applications in micro- and nanoresonators. J Dyn Syst Meas Control 132(3). doi:10.1115/1.4001333

  6. Younis MI (2011) MEMS linear and nonlinear statics and dynamics, microsystems, vol 20. Springer, New York

    Book  Google Scholar 

  7. Belardinelli P, Brocchini M, Demeio L, Lenci S (2013) Dynamical characteristics of an electrically actuated microbeam under the effects of squeeze-film and thermoelastic damping. Int J Eng Sci 69:16–32

    Article  MathSciNet  Google Scholar 

  8. Zener C (1937) Internal friction in solids. I. Theory of internal friction in reeds. Phys Rev 52:230–235

    Article  MATH  Google Scholar 

  9. Zener C (1938) Internal friction in solids II. General theory of thermoelastic internal friction. Phys Rev 53:90–99

    Article  MATH  Google Scholar 

  10. Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro- and nanomechanical systems. Phys Rev B 61(8):5600–5609

    Article  Google Scholar 

  11. De SK, Aluru NR (2006) Theory of thermoelastic damping in electrostatically actuated microstructures. Phys Rev B 74:144305-1–144305-13

    Article  Google Scholar 

  12. Ignaczak J (1981) Linear dynamic thermoelasticity: a survey. Shock Vib Dig 13(9):3–8

    Article  Google Scholar 

  13. Green A, Lindsay K (1972) Thermoelasticity. J Elast 2(1):1–7

    Article  MATH  Google Scholar 

  14. Nowacki W (1975) Dynamic problems of thermoelasticity. Noordhoff, Leyden

    Google Scholar 

  15. Awrejcewicz J, Krysko V (2003) Nonclassical thermoelastic problems in nonlinear dynamics of shells: applications of the Bubnov–Galerkin and finite difference numerical methods. Physics and astronomy online library. Springer, Berlin

    Book  Google Scholar 

  16. Chandrasekharaiah DS (1986) Thermoelasticity with second sound: a review. Appl Mech Rev 39(3):355–376

    Article  MATH  MathSciNet  Google Scholar 

  17. Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15(5):299–309

    Article  MATH  Google Scholar 

  18. Sharma JN (2011) Thermoelastic damping and frequency shift in micro/nanoscale anisotropic beams. J Therm Stress 34(7):650–666

    Article  Google Scholar 

  19. Sun Y, Fang D, Soh AK (2006) Thermoelastic damping in micro-beam resonators. Int J Solids Struct 43(10):3213–3229

    Article  MATH  Google Scholar 

  20. Krysko V, Awrejcewicz J, Kutepov I, Zagniboroda N, Papkova I, Serebryakov A, Krysko A (2013) Chaotic dynamics of flexible beams with piezoelectric and temperature phenomena. Phys Lett A 377(34–36):2058

    Article  MathSciNet  Google Scholar 

  21. Mestrom R, Fey R, van Beek J, Phan K, Nijmeijer H (2008) Modelling the dynamics of a MEMS resonator: simulations and experiments. Sens Actuators A 142(1):306–315

    Article  Google Scholar 

  22. Zook JD, Burns DW, Guckel H, Sniegowski JJ, Engelstad RL, Feng Z (1992) Characteristics of polysilicon resonant microbeams. Sens Actuators A 35(1):51–59

    Article  Google Scholar 

  23. Legtenberg R, Tilmans H (1994) Electrostatically driven vacuum-encapsulated polysilicon resonators. Part I. Design and fabrication. Sens Actuators A 45(1):57–66

    Article  Google Scholar 

  24. Abdel Rahman EM, Younis MI, Nayfeh AH (2002) Characterization of the mechanical behavior of an electrically actuated microbeam. J Micromech Microeng 12(6):759–766

    Article  Google Scholar 

  25. Najar F, Choura S, El-Borgi S, Abdel-Rahman EM, Nayfeh AH (2005) Modeling and design of variable-geometry electrostatic microactuators. J Micromech Microeng 15(3):419–429

    Article  Google Scholar 

  26. Lam D, Yang F, Chong A, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508

    Article  MATH  Google Scholar 

  27. Belardinelli P, Lenci S, Brocchini M (2014) Modeling and analysis of an electrically actuated microbeam based on non-classical beam theory. J Comput Nonlinear Dyn 9(3):031016

    Article  Google Scholar 

  28. Rezazadeh G, Vahdat A, Tayefeh-rezaei S, Cetinkaya C (2012) Thermoelastic damping in a micro-beam resonator using modified couple stress theory. Acta Mech 223(6):1137–1152

    Article  MATH  MathSciNet  Google Scholar 

  29. Ghayesh MH, Farokhi H, Amabili M (2013) Nonlinear behaviour of electrically actuated MEMS resonators. Int J Eng Sci 71:137–155

    Article  MathSciNet  Google Scholar 

  30. Goldstein H (1980) Classical mechanics Addison-Wesley, Boston

  31. Awrejcewicz J (2012) Classical mechanics: kinematics and statics. In: Advances in mechanics and mathematics. Springer, Berlin

  32. Batra RC, Porfiri M, Spinello D (2008) Vibrations of narrow microbeams predeformed by an electric field. J Sound Vib 309(35):600–612

    Article  Google Scholar 

  33. van der Meijs N, Fokkema J (1984) VLSI circuit reconstruction from mask topology. Integr VLSI J 2(2):85–119

    Article  Google Scholar 

  34. Kacem N, Baguet S, Hentz S, Dufour R (2011) Computational and quasi-analytical models for non-linear vibrations of resonant MEMS and NEMS sensors. Int J Non-Linear Mech 46(3):532–542

    Article  Google Scholar 

  35. Nayfeh AH, Pai PF (2004) Linear and nonlinear structural mechanics. Wiley, New York

    Book  MATH  Google Scholar 

  36. Hetnarski R, Eslami MR (2009) Thermal stresses—advanced theory and applications. Springer, New York

    MATH  Google Scholar 

  37. Belardinelli P, Lenci S, Demeio L (2014) A comparison of different semi-analytical techniques to determine the nonlinear oscillations of a slender microbeam. Meccanica 49(8):1821–1831

    Article  MATH  MathSciNet  Google Scholar 

  38. Palmer HB (1937) The capacitance of a parallel-plate capacitor. Trans Am Inst Electr Eng 56(3):363–366

    Article  Google Scholar 

  39. Inman DJ (2007) Engineering vibration. Prentice Hall PTR, Upper Saddle River, New Jersey

  40. Nayfeh A, Younis M, Abdel-Rahman E (2005) Reduced-order models for MEMS applications. Nonlinear Dyn 41(1–3):211–236

  41. Younis MI, Abdel-Rahman EM, Nayfeh AH (2003) A reduced-order model for electrically actuated microbeam-based MEMS. J Microelectromech Syst 12(5):672–680

  42. Nayfeh D, Mook AH (1995) Nonlinear oscillations. Wiley, New York

    Book  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Italian Ministry of Education, University and Research (MIUR) by the PRIN-funded program 2010/11 N.2010MBJK5B “Dynamics, Stability and Control of Flexible Structures”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierpaolo Belardinelli.

Appendix

Appendix

1.1 Appendix 1

We report here the dimensionless parameters used in the dimensionless system (25):

$$\begin{aligned}&\alpha _3=\dfrac{D_{2}}{D_{1} L^{2}}, \quad c=\dfrac{\hat{c}L^{2}}{\sqrt{\rho A D_{1}}}, \quad N=\dfrac{EAL^{2}}{D_{1}}N_{0}, \nonumber \\&t_{0,1,2}=\sqrt{\dfrac{D_{1}}{\rho A L^{4}}}\hat{t}_{0,1,2},\quad \beta =\dfrac{h b L^{2}}{D_{1}}T_{0}\hat{\beta },\nonumber \\&\gamma =\dfrac{h}{g},\quad \alpha _{2} V^{2}=\dfrac{L^{4} \varepsilon _{0} \varepsilon _{r} b}{2 D_{1} g^{3}}V^{2}, \quad \fancyscript{L}=\dfrac{h}{L},\nonumber \\&\alpha _{1}=\dfrac{EA}{2 D_{1}}\left( \dfrac{g}{L} \right) ^{2}, \quad \eta =\dfrac{g}{b},\quad \xi =\dfrac{h}{b}, \nonumber \\&k=\dfrac{h b L^{2}}{D_{1}}\sqrt{\dfrac{\rho A L^{4}}{D_{1}}}\dfrac{T_{0}}{h^{2}}\hat{k},\quad \fancyscript{C}=\rho {c}_{\varepsilon }T_{0}\dfrac{h b L^{2}}{D_{1}},\nonumber \\&\alpha _{4}=\dfrac{D_{3}}{D_{1}}\left( \dfrac{g}{L} \right) ^{2}. \end{aligned}$$
(60)

1.2 Appendix 2

$$\begin{aligned}&F_{e}\left[ r \right] =\alpha _{2} \left( 2 V_{dc}V_{ac}+V_{ac}^{2}\right) \nonumber \\&\qquad \frac{ \left( 1 +0.265 (1-w_{s})^{0.75} \eta ^{0.75}+0.53 \sqrt{1-w_{s}} \sqrt{\gamma } \eta \right) }{(1-w_{s})^{2}}\nonumber \\&\qquad +\,\alpha _{2} \left( V_{ac}+V_{dc}\right) ^{2} r^{3} \left( \frac{-\frac{0.0103516 \eta ^{0.75}}{(1-w_s)^{2.25}}-\frac{0.033125 \sqrt{\gamma } \eta }{(1-w_{s})^{5/2}}}{(1-w_{s})^2}\right. \nonumber \\&\qquad \left. -\frac{2 \left( -\frac{0.0248438 \eta ^{0.75}}{(1-w_{s})^{1.25}}-\frac{0.06625 \sqrt{\gamma } \eta }{(1-w_{s})^{3/2}}\right) }{(-1+w_{s})^{3}} \right. \nonumber \\&\qquad +\frac{3 \left( -\frac{0.19875 \eta ^{0.75}}{(1-w_{s})^{0.25}}-\frac{0.265 \sqrt{\gamma } \eta }{\sqrt{1-w_{s}}}\right) }{(-1+w_{s})^4}\nonumber \\&\qquad \left. -\frac{4 \left( 1\!+\!0.265 (1-w_{s})^{0.75} \eta ^{0.75}\!+\!0.53 \sqrt{1\!-\!w_{s}} \sqrt{\gamma } \eta \right) }{(-1\!+\!w_{s})^5}\right) \nonumber \\&\qquad +\,\alpha _{2} \left( V_{ac}+V_{dc}\right) ^{2} r^{2} \left( \frac{-\frac{0.0248438 \eta ^{0.75}}{(1-w_{s})^{1.25}}-\frac{0.06625 \sqrt{\gamma } \eta }{(1-w_{s})^{3/2}}}{(1-w_{s})^2}\right. \nonumber \\&\qquad \left. -\frac{2 \left( -\frac{0.19875 \eta ^{0.75}}{(1-w_{s})^{0.25}}-\frac{0.265 \sqrt{\gamma } \eta }{\sqrt{1-w_{s}}}\right) }{(-1+w_{s})^3} \right. \nonumber \\&\qquad +\left. \frac{3 \left( 1\!+\!0.265 (1\!-\!w_{s})^{0.75} \eta ^{0.75}\!+\!0.53 \sqrt{1\!-\!w_{s}} \sqrt{\gamma } \eta \right) }{(-1+w_{s})^4}\right) \nonumber \\&\qquad +\,\alpha _{2}\left( V_{ac}+V_{dc}\right) ^{2} r \left( \frac{-\frac{0.19875 \eta ^{0.75}}{(1-w_{s})^{0.25}}-\frac{0.265 \sqrt{\gamma } \eta }{\sqrt{1-w_{s}}}}{(1-w_{s})^2}\right. \nonumber \\&\qquad \left. -\frac{2 \left( 1\!+\!0.265 (1\!-\!w_{s})^{0.75} \eta ^{0.75}\!+\!0.53 \sqrt{1\!-\!w_{s}} \sqrt{\gamma } \eta \right) }{(-1+w_{s})^{3}}\right) .\nonumber \\ \end{aligned}$$
(61)

1.3 Appendix 3

$$\begin{aligned}&f_{1}(t)=\omega _{1}^{2}-\alpha _1\int _{0}^{1}\left( 2 w_{s}^{\prime }\phi _{1}^{\prime } \right) dx\int _{0}^{1}\left( w_{s}^{\prime \prime }\phi _1 \right) dx\nonumber \\&\quad -\alpha _{1}\int _{0}^ {1}\left( w_{s}^{\prime } \right) ^{2}dx\int _{0}^{1}\left( \phi _{1}^{\prime \prime }\phi _{1} \right) dx\nonumber \\&\quad -\alpha _{2}\left( v_{ac}\cos \varOmega t+V_{dc} \right) ^{2}\int _{0}^{1}\left( \frac{-\frac{0.19875 \eta ^{0.75}}{(1-w_{s})^{0.25}}-\frac{0.265 \sqrt{\gamma } \eta }{\sqrt{1-w_{s}}}}{(1-w_{s})^{2}}\right. \nonumber \\&\quad \left. -\frac{2 \left( 1\!+\!0.265 (1\!-\!w_{s})^{0.75} \eta ^{0.75}\!+\!0.53 \sqrt{1-w_{s}} \sqrt{\gamma } \eta \right) }{(-1\!+\!w_{s})^3}\right) \phi _{1}^{2} dx,\nonumber \\ \end{aligned}$$
(62)
$$\begin{aligned}&f_{2}(t)=-\alpha _{1}\int _{0}^{1}\left( \phi _{1}^{\prime } \right) ^{2} dx\int _{0}^{1}\left( w_{s}^{\prime \prime }\phi _{1} \right) dx\nonumber \\&\quad -\alpha _{1}\int _{0}^{1}\left( 2 w_{s}^{\prime }\phi _{1}^{'} \right) dx\int _{0}^{1}\left( \phi _{1}^{''}\phi _{1} \right) dx\nonumber \\&\quad -\alpha _{2}\left( v_{ac}\cos \varOmega t+V_{dc} \right) ^{2}\int _{0}^{1} \left( \frac{-\frac{0.0248438 \eta ^{0.75}}{(1-w_{s})^{1.25}}-\frac{0.06625 \sqrt{\gamma } \eta }{(1-w_{s})^{3/2}}}{(1-w_{s})^2}\right. \nonumber \\&\left. \quad -\frac{2 \left( -\frac{0.19875 \eta ^{0.75}}{(1-w_{s})^{0.25}}-\frac{0.265 \sqrt{\gamma } \eta }{\sqrt{1-w_{s}}}\right) }{(-1+w_{s})^{3}} \right. \nonumber \\&\quad +\left. \frac{3 \left( 1\!+\!0.265 (1\!-\!w_{s})^{0.75} \eta ^{0.75}\!+\!0.53 \sqrt{1-w_{s}} \sqrt{\gamma } \eta \right) }{(-1+w_{s})^{4}}\right) \phi _{1}^{3} dx,\nonumber \\ \end{aligned}$$
(63)
$$\begin{aligned}&f_{3}(t)=-\alpha _{1}\int _{0}^{1}\left( \phi _{1}^{'} \right) ^{2} dx\int _{0}^{1}\left( \phi _{1}^{''}\phi _{1} \right) dx\nonumber \\&\quad -\alpha _{2}\left( v_{ac}\cos \varOmega t+V_{dc} \right) ^{2}\int _{0}^{1} \left( \frac{-\frac{0.0103516 \eta ^{0.75}}{(1-w_{s})^{2.25}}-\frac{0.033125 \sqrt{\gamma } \eta }{(1-w_{s})^{5/2}}}{(1-w_{s})^2}\right. \nonumber \\&\quad \left. -\frac{2 \left( -\frac{0.0248438 \eta ^{0.75}}{(1-w_{s})^{1.25}}-\frac{0.06625 \sqrt{\gamma } \eta }{(1-w_{s})^{3/2}}\right) }{(-1+w_{s})^{3}} \right. \nonumber \\&\quad +\left. \frac{3 \left( -\frac{0.19875 \eta ^{0.75}}{(1-w_{s})^{0.25}}-\frac{0.265 \sqrt{\gamma } \eta }{\sqrt{1-w_{s}}}\right) }{(-1+w_{s})^4}\right. \nonumber \\&\left. \quad -\frac{4 \left( 1\!+\!0.265 (1\!-\!w_{s})^{0.75} \eta ^{0.75}\!+\!0.53 \sqrt{1\!-\!w_{s}} \sqrt{\gamma } \eta \right) }{(-1+w_{s})^{5}}\right) \phi _{1}^{4} dx,\nonumber \\ \end{aligned}$$
(64)
$$\begin{aligned}&f_{0}(t)=-\alpha _2\left( 2 V_{dc} v_{ac}\cos \varOmega t\right. \nonumber \\&\quad \left. +\left( v_{ac}\cos \varOmega t \right) ^{2} \right) \int _{0}^{1}\nonumber \\&\quad \frac{ \left( 1 +0.265 (1-w_{s})^{0.75} \eta ^{0.75}+0.53 \sqrt{1-w_{s}} \sqrt{\gamma } \eta \right) }{(1-w_{s})^2} \phi _{1} dx,\nonumber \\ \end{aligned}$$
(65)
$$\begin{aligned}&{f_{T}}_{m}(t)=-\gamma \beta m^{2} \pi ^{2} \int _{0}^{1}\sin m\pi x \phi _{1} dx,\end{aligned}$$
(66)
$$\begin{aligned}&g_{0}=-\fancyscript{C}\left( t_{0}+t_{2}\right) /2 \quad {g_{1}}=-\fancyscript{C}/2,\nonumber \\&{g_{2}}_{m}=-k\pi ^{2}\left( \fancyscript{L}^{2} m^{2}+1 \right) /2,\end{aligned}$$
(67)
$$\begin{aligned}&{g_{3}}_{m}=\left( \dfrac{\fancyscript{L}^{2}}{12 \gamma } \right) \int _{0}^{1}\phi _{1}^{\prime \prime }\sin m\pi x dx \quad {g_{4}}_{m}=t_{0} {g_{3}}_{m}. \end{aligned}$$
(68)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belardinelli, P., Lenci, S. & Demeio, L. Vibration frequency analysis of an electrically-actuated microbeam resonator accounting for thermoelastic coupling effects. Int. J. Dynam. Control 3, 157–172 (2015). https://doi.org/10.1007/s40435-014-0132-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-014-0132-3

Keywords

Navigation