Skip to main content

Technical Challenges of Biofuel Obtainment

  • Chapter
  • First Online:
Plant and Algae Biomass

Abstract

There is also an increasing concern regarding sustainability of biofuel generation/use that will influence on raw material preferences and consequently influence on biofuel’s obtainment chosen protocol. This chapter will explore main challenges related to biofuel obtainment presenting also interesting strategies to surpass some of these difficulties here addressed. Consortium-based bioconversion technologies, strategies involving synthetic biology/metabolic engineering and microfluidic platforms are examples of attempts to reduce cost and make the process of generating biofuel more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adegboye, M. F., Ojuederie, O. B., Talia, P. M., & Babalola, O. O. (2021). Bioprospecting of microbial strains for biofuel production: Metabolic engineering, applications, and challenges. Biotechnology for Biofuels, 14, 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adrio, J. L. (2017). Oleaginous yeasts: Promising platforms for the production of oleochemicals and biofuels. Biotechnology and Bioengineering, 114, 1915–1920.

    Article  CAS  PubMed  Google Scholar 

  • Alam, M. A., Wu, J., Xu, J., & Wang, Z. (2019). Enhanced isolation of lipids from microalgal biomass with high water content for biodiesel production. Bioresource Technology, 291, 121834.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez, H. M., Mayer, F., Fabritius, D., & Steinbuchel, A. (1996). Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Archives of Microbiology, 165, 377–386.

    Article  CAS  PubMed  Google Scholar 

  • Annamalai, N., Sivakumar, N., & Oleskowicz-Popiel, P. (2018). Enhanced production of microbial lipids from waste office paper by the oleaginous yeast, Cryptococcus curvatus. Fuel, 217, 420–426.

    Article  CAS  Google Scholar 

  • Baig, R. U., Malik, A., Ali, K., Arif, S., Hussain, S., Mehmood, M., Sami, K., Mengal, A. N., & Khan, M. N. (2018). Extraction of oil from algae for biodiesel production, from Quetta, Pakistan. IOP Conference Series: Materials Science and Engineering, 414, 012022.

    Article  Google Scholar 

  • Castellini, M., Ubertini, S., Barletta, D., Baffo, I., Buzzini, P., & Barbanera, M. (2021). Techno-economic analysis of biodiesel production from microbial oil using cardoon stalks as carbon source. Energies, 14, 1473.

    Article  CAS  Google Scholar 

  • Chaudry, S., Bahri, P. A., & Moheimani, N. R. (2018). Techno-economic analysis of milking of Botryococcus braunii for renewable hydrocarbon production. Algal Research, 31, 194–203.

    Article  Google Scholar 

  • Dash, A., & Banerjee, R. (2017). Enhanced biodiesel production through phyco-myco co-cultivation of Chlorella minutissima and Aspergillus awamori: An integrated approach. Bioresource Technology, 238, 502–509.

    Article  CAS  PubMed  Google Scholar 

  • De La Torre, M., Martín-Sampedro, R., Fillat, U., Eugenio, M. E., Blánquez, A., Hernández, M., Arias, M. E., & Ibarra, D. (2017). Comparison of the efficiency of bacterial and fungal laccases in delignification and detoxification of steam-pretreated lignocellulosic biomass for bioethanol production. Journal of Industrial Microbiology and Biotechnology, 44(11), 1561–1573.

    Article  Google Scholar 

  • Dong, T., Wychen, S. V., Nagle, N., Pienkos, P. T., & Laurens, L. M. L. (2016). Impact of biochemical composition on susceptibility of algal biomass to acid-catalyzed pretreatment for sugar and lipid recovery. Algal Research, 18, 69–77.

    Article  Google Scholar 

  • Dutta, K., Daverey, A., & Lin, J. G. (2014). Evolution retrospective for alternative fuels: First to fourth generation. Renewable Energy, 69, 114–122.

    Article  CAS  Google Scholar 

  • Ferreira, A., Ribeiro, B., Ferreira, A. F., Tavares, M. L., Vladic, J., Vidovi’c, S., Cvetkovic, D., Melkonyan, L., Avetisova, G., & Goginyan, V. (2019). Scenedesmus obliquus microalga-based biorefinery–from brewery effluent to bioactive compounds, biofuels and biofertilizers–aiming at a circular bioeconomy. Biofuels, Bioproducts and Biorefining, 13, 1169–1186.

    Article  CAS  Google Scholar 

  • Fu, S. F., Wang, F., Yuan, X. Z., Yang, Z. M., Luo, S. J., Wang, C. S., & Guo, R. B. (2015). The thermophilic (55°C) microaerobic pretreatment of corn straw for anaerobic digestion. Bioresource Technology, 175, 203–208.

    Article  CAS  PubMed  Google Scholar 

  • Gaurav, N., Sivasankari, S., Kiran, G. S., Ninawe, A., & Selvin, J. (2017). Utilization of bioresources for sustainable biofuels: A review. Renewable and Sustainable Energy Reviews, 73, 205–214.

    Article  CAS  Google Scholar 

  • Gerardo, M. L., Van Den Hende, S., Vervaeren, H., Coward, T., & Skill, S. C. (2015). Harvesting of microalgae within a biorefinery approach: A review of the developments and case studies from pilot-plants. Algal Research, 11, 248–262.

    Article  Google Scholar 

  • González-González, L. M., & de Bashan, L. E. (2021). Toward the enhancement of microalgal metabolite production through microalgae–bacteria consortia. Biology, 10, 282.

    Article  PubMed  PubMed Central  Google Scholar 

  • Halim, R., Danquah, M. K., & Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: A review. Biotechnology Advances, 30, 709–732.

    Article  CAS  PubMed  Google Scholar 

  • Hattab, M. A. (2015). Microalgae harvesting methods for industrial production of biodiesel: Critical review and comparative analysis. Journal of Fundamentals of Renewable Energy and Applications, 5(2), 1000154.

    Article  Google Scholar 

  • Hon, S., Olson, D. G., Holwerda, E. K., Lanahan, A. A., Murphy, J. L., Maloney, M. I., Zheng, T. Y., Papanek, B., Guss, A. M., & Lynd, L. R. (2017). The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum. Metabolic Engineering, 42, 175–184.

    Article  CAS  PubMed  Google Scholar 

  • Howlader, M. S., & French, W. T. (2020). Pretreatment and lipid extraction from wet microalgae: Challenges, potential, and application for industrial-scale application. In M. Alam, J. L. Xu, & Z. Wang (Eds.), Microalgae biotechnology for food, Health and High Value Products (pp. 469–483). Springer.

    Chapter  Google Scholar 

  • Howlader, M. S., Rai, N., & Todd French, W. (2018). Improving the lipid recovery from wet oleaginous microorganisms using different pretreatment techniques. Bioresource Technology, 267, 743–755.

    Article  CAS  PubMed  Google Scholar 

  • Ishika, T., Bahri, P. A., Laird, D. W., & Moheimani, N. R. (2018). The effect of gradual increase in salinity on the biomass productivity and biochemical composition of several marine, halotolerant, and halophilic microalgae. Journal of Applied Phycology, 30, 1453–1464.

    Article  CAS  Google Scholar 

  • Ishika, T., Moheimani, N. R., & Bahri, P. A. (2017). Sustainable saline microalgae co-cultivation for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 78, 356–368.

    Article  CAS  Google Scholar 

  • Jiang, Y., Dong, W., Xin, F., & Jiang, M. (2020). Designing synthetic microbial consortia for biofuel production. Trends in Biotechnology, 38(8), 828–831.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., Wu, R., Zhou, J., He, A., Xu, J., Xin, F., Zhang, W., Ma, J., Jiang, M., & Dong, W. (2019). Recent advances of biofuels and biochemicals production from sustainable resources using co-cultivation systems. Biotechnology for Biofuels, 12, 155.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang, Y. J., Chen, T. P., Dong, W. L., Zhang, M., Zhang, W. M., Wu, H., Ma, J. F., Jiang, M., & Xin, F. X. (2018). The draft genome sequence of Clostridium beijerinckii NJP7, a unique bacterium capable of producing isopropanol-butanol from hemicellulose through consolidated bioprocessing. Current Microbiology, 75(3), 305–308.

    Article  CAS  PubMed  Google Scholar 

  • Karamerou, E., Theodoropoulos, C., & Webb, C. (2017). Evaluating feeding strategies for microbial oil production from glycerol by Rhodotorula glutinis. Engineering in Life Sciences, 17, 314–324.

    Article  CAS  PubMed  Google Scholar 

  • Khanra, S., Mondal, M., Halder, G., Tiwari, O. N., Gayen, K., & Bhowmick, T. K. (2018). Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review. Food and Bioproducts Processing, 110, 60–84.

    Article  CAS  Google Scholar 

  • Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal Research, 6, 52–63.

    Article  Google Scholar 

  • Kumar, G., Shekh, A., Jakhu, S., Sharma, Y., Kapoor, R., & Sharma, T. R. (2020). Bioengineering of microalgae: Recent advances, perspectives, and regulatory challenges for industrial application. Frontiers in Bioengineering and Biotechnology, 8, 914.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, K., Ghosh, S., Angelidaki, I., Holdt, S. L., Karakashev, D. B., Morales, M. A., & Das, D. (2016). Recent developments on biofuels production from microalgae and macroalgae. Renewable and Sustainable Energy Reviews, 65, 235–249.

    Article  CAS  Google Scholar 

  • Kumar, R. R., Rao, P. H., & Arumugam, M. (2015). Lipid extraction methods from microalgae: A comprehensive review. Frontiers in Energy Research, 2, 61.

    Google Scholar 

  • Le, R. K., Wells, T., Jr., Das, P., Xianzhi, M., Stoklosa, R. J., Bhalla, A., Hodge, D. B., Yuan, J. S., & Ragauskas, A. J. (2017). Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci. RSC Advances, 7, 4108–4115.

    Article  CAS  Google Scholar 

  • Lee, J., Cho, D. H., Ramanan, R., Kim, B. H., Oh, H. M., & Kim, H. S. (2013). Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresource Technology, 131, 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Leong, W. H., Kiatkittipong, K., Kiatkittipong, W., Cheng, Y. W., Lam, M. K., Shamsuddin, R., Mohamad, M., & Lim, J. W. (2020). Comparative performances of microalgal-bacterial co-cultivation to bioremediate synthetic and municipal wastewaters whilst producing biodiesel sustainably. Processes, 8, 1427.

    Article  CAS  Google Scholar 

  • Li, Y., Han, D., Sommerfeld, M., & Hu, Q. (2011). Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresource Technology, 102(1), 123–129.

    Article  CAS  PubMed  Google Scholar 

  • Lo, J., Olson, D. G., Murphy, S. J. L., Tian, L., Hon, S., Lanahan, A., Guss, A. M., & Lynd, L. R. (2017). Engineering electron metabolism to increase ethanol production in Clostridium thermocellum. Metabolic Engineering, 39, 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Lu, W., Alam, M. A., Luo, W., & Asmatulu, E. (2019). Integrating Spirulina platensis cultivation and aerobic composting exhaust for carbon mitigation and biomass production. Bioresource Technology, 271, 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Marks, C., König, A., Mitsos, A., & Viell, J. (2020). Minimal viable sugar yield of biomass pretreatment. Biofuels Bioproducts and Biorefining, 14(2), 301–314.

    Article  CAS  Google Scholar 

  • Martinez-Guerra, E., Howlader, M. S., Shields-Menard, S., French, W. T., & Gude, V. G. (2018). Optimization of wet microalgal FAME production from Nannochloropsis sp. under the synergistic microwave and ultrasound effect. International Journal of Energy Research, 42, 1934–1949.

    Article  Google Scholar 

  • McCann, M. C., & Carpita, N. C. (2015). Biomass recalcitrance: A multi-scale, multi-factor, and conversion-specific property. Journal of Experimental Botany, 66, 4109–4118.

    Article  CAS  PubMed  Google Scholar 

  • Naghavi, N. S., & Sameipour, F. (2019). Phototrophic microbial consortium: A technology for enhanced biofuel production. In A. A. Rastegari, A. N. Yadav, & A. Gupta (Eds.), Prospects of renewable bioprocessing in future energy systems (pp. 185–200). Springer.

    Chapter  Google Scholar 

  • Østby, H., Hansen, L. D., Horn, S. J., Eijsink, V. G. H., & Várnai, A. (2020). Enzymatic processing of lignocellulosic biomass: Principles, recent advances and perspectives. Journal of Industrial Microbiology & Biotechnology, 47, 623–657.

    Article  Google Scholar 

  • Papanikolaou, S., Rontou, M., Belka, A., Athenaki, M., Gardeli, C., Mallouchos, A., Kalantzi, O., Koutinas, A. A., et al. (2017). Conversion of biodiesel-derived glycerol into biotechnological products of industrial significance by yeast and fungal strains. Engineering in Life Sciences, 17, 262–281.

    Article  CAS  PubMed  Google Scholar 

  • Phwan, C. K., Ong, H. C., Chen, W. H., Ling, T. C., Ng, E. P., & Show, P. L. (2018). Overview: Comparison of pretreatment technologies and fermentation processes of bioethanol from microalgae. Energy Conversion and Management, 173, 81–94.

    Article  CAS  Google Scholar 

  • Powell, R. J., & Hill, R. T. (2013). Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp. strain RP1137. Appl. Environ. Microbiology, 79, 6093–6101.

    CAS  Google Scholar 

  • Rocha-Meneses, L., Ferreira, J. A., Mushtaq, M., Karimi, S., Orupõld, K., & Kikas, T. (2020). Genetic modification of cereal plants: A strategy to enhance bioethanol yields from agricultural waste. Industrial Crops and Products, 150, 112408.

    Article  CAS  Google Scholar 

  • Saratale, R. G., Kumar, G., Banu, R., Xia, A., Periyasamy, S., & Saratale, G. D. (2018). A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. Bioresource Technology, 262, 319–332.

    Article  Google Scholar 

  • Satari, B., Karimi, K., & Kumar, R. (2019). Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: A review. Sustainable Energy & Fuels, 3(1), 11–62.

    Article  CAS  Google Scholar 

  • Sathish, A., & Sims, R. C. (2012). Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresource Technology, 118, 643–647.

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam, S., Sun, C., Zeng, X., & Wu, Y. R. (2018). High-efficient production of biobutanol by a novel Clostridium sp. strain WST with uncontrolled pH strategy. Bioresource Technology, 256, 543–547.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, K. K., Schuhmann, H., & Schenk, P. M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5, 1532–1553.

    Article  CAS  Google Scholar 

  • Shields-Menard, S. A., Amirsadeghi, M., French, W. T., & Boopathy, R. (2018). A review on microbial lipids as a potential biofuel. Bioresource Technology, 259, 451–460.

    Article  CAS  PubMed  Google Scholar 

  • Silambarasan, S., Logeswari, P., Sivaramakrishnan, R., Incharoensakdi, A., Cornejo, P., Kamaraj, B., & Chi, N. T. L. (2020). Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation. Chemosphere, 268, 129323.

    Article  PubMed  Google Scholar 

  • Singh, A., & Olsen, S. I. (2011). A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy, 88(10), 3548–3555.

    Article  CAS  Google Scholar 

  • Singh, P., Srivastava, A., Srivastava, N., Sharma, V., Ghildyal, D., Upadhyay, A., & Singh, P. (2020). Utilization of algal consortium to produce biofuels and byproducts for reducing pollution load. Pollution, 6(2), 353–366.

    CAS  Google Scholar 

  • Tchakouteu, S., Kopsahelis, N., Chatzifragkou, A., Kalantzi, O., Stoforos, N. G., Koutinas, A. A., Aggelis, G., & Papanikolaou, S. (2017). Rhodosporidium toruloides cultivated in NaCl-enriched glucose-based media: Adaptation dynamics and lipid production. Engineering in Life Sciences, 17, 237–248.

    Article  CAS  PubMed  Google Scholar 

  • Vasco-Correa, J., & Shah, A. (2019). Techno-economic bottlenecks of the fungal pretreatment of lignocellulosic biomass. Fermentation, 5(30), 1–23.

    Google Scholar 

  • Villarreal, J. V., Burgués, C., & Rösch, C. (2020). Acceptability of genetically engineered algae biofuels in Europe: Opinions of experts and stakeholders. Biotechnology for Biofuels, 13, 92.

    Article  Google Scholar 

  • Wang, A., Yan, K., Chu, D., Nazer, M., Lin, N. T., Samaranayake, E., & Chang, J. (2020). Microalgae as a mainstream food ingredient: Demand and supply perspective. In M. Alam, J. L. Xu, & Z. Wang (Eds.), Microalgae biotechnology for food (pp. 469–483). Health and High Value Products.

    Google Scholar 

  • Wang, Z., Cao, G., Zheng, J., Fu, D., Song, J., Zhang, J., Zhao, L., & Yang, Q. (2015). Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess. Biotechnology for Biofuels, 8, 84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward, A. J., Lewis, D. M., & Green, F. B. (2014). Anaerobic digestion of algae biomass: A review. Algal Research, 5, 204–214.

    Article  Google Scholar 

  • Xin, F., Dong, W., Zhang, W., Ma, J., & Jiang, M. (2018). Biobutanol production from crystalline cellulose through consolidated bioprocessing. Trends in Biotechnology, 37(2), 167–180.

    Article  PubMed  Google Scholar 

  • Xin, F. X., & He, J. Z. (2013). Characterization of a thermostable xylanase from a newly isolated Kluyvera species and its application for biobutanol production. Bioresource Technology, 135, 309–315.

    Article  CAS  PubMed  Google Scholar 

  • Yan, X., Wang, Z., Zhang, Z., Si, M., Liu, M., Chai, L., Liu, X., & Shi, Y. (2017). Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass. Bioresource Technology, 245(Pt A), 419–425.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y. T., & Wang, C. (2016). Review of microfluidic photobioreactor technology for metabolic engineering and synthetic biology of cyanobacteria and microalgae. Micromachines, 7, 185.

    Article  CAS  PubMed Central  Google Scholar 

  • Yen, H. W., Chen, P. W., & Chen, L. J. (2015). The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresource Technology, 184, 148–152.

    Article  CAS  PubMed  Google Scholar 

  • Yew, G. Y., Lee, S. Y., Show, P. L., Tao, Y., Law, C. L., Nguyen, T. T. C., & Chang, J. S. (2019). Recent advances in algae biodiesel production: From upstream cultivation to downstream processing. Bioresource Technology Reports, 7, 100227.

    Article  Google Scholar 

  • Zhuo, S., Yan, X., Liu, D., Si, M., Zhang, K., Liu, M., Peng, B., & Shi, Y. (2018). Use of bacteria for improving the lignocellulose biorefinery process: Importance of pre-erosion. Biotechnology for Biofuels, 11, 146.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhat, R.A., Singh, D.V., Tonelli, F.M.P., Hakeem, K.R. (2022). Technical Challenges of Biofuel Obtainment. In: Plant and Algae Biomass . Springer, Cham. https://doi.org/10.1007/978-3-030-94074-4_8

Download citation

Publish with us

Policies and ethics