Skip to main content

Pretreatment and Lipid Extraction from Wet Microalgae: Challenges, Potential, and Application for Industrial-Scale Application

  • Chapter
  • First Online:
Microalgae Biotechnology for Food, Health and High Value Products

Abstract

The production of oil from microalgae has tremendous potential for reducing environmental problems generated using conventional fossil fuels. The present barrier for industrial-scale lipid production from algal biomass for biofuel application comes from the high extraction cost which is usually performed after drying the biomass. The lipid extraction cost can be significantly reduced if the extraction is performed directly on wet biomass. The lipid recovery from the wet biomass at the present state is very low to be competitive at large-scale application. Due to the high moisture content, a pretreatment of wet biomass is needed prior to the lipid extraction to increase the overall oil recovery. There are different pretreatments (e.g., high-pressure homogenization, ultrasound sonication, microwave irradiation, etc.) that can be used to disrupt the robust cell wall of microalgae prior to the oil extraction. Sometimes, both the pretreatment and lipid extraction can be performed using the same apparatus to reduce the overall production cost. The process economy and the cost of lipid extraction of different pretreatment methods need to be assessed carefully before considering its commercial-scale application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam, F., Abert-Vian, M., Peltier, G., & Chemat, F. (2012). “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresource Technology, 114, 457–465.

    Article  CAS  PubMed  Google Scholar 

  • Adrio, J. L. (2017). Oleaginous yeasts: Promising platforms for the production of oleochemicals and biofuels. Biotechnology and Bioengineering, 114, 1915–1920.

    Article  CAS  PubMed  Google Scholar 

  • Alam, M. A., Wu, J., Xu, J., & Wang, Z. (2019). Enhanced isolation of lipids from microalgal biomass with high water content for biodiesel production. Bioresource Technology, 291, 121834.

    Article  PubMed  CAS  Google Scholar 

  • Alfenore, S., & Molina-Jouve, C. (2016). Current status and future prospects of conversion of lignocellulosic resources to biofuels using yeasts and bacteria. Process Biochemistry, 51, 1747–1756.

    Article  CAS  Google Scholar 

  • Ali, M., & Watson, I. A. (2015). Microwave treatment of wet algal paste for enhanced solvent extraction of lipids for biodiesel production. Renewable Energy, 76, 470–477.

    Article  CAS  Google Scholar 

  • Balasubramanian, S., Allen, J. D., Kanitkar, A., & Boldor, D. (2011). Oil extraction from Scenedesmus obliquus using a continuous microwave system – Design, optimization, and quality characterization. Bioresource Technology, 102, 3396–3403.

    Article  CAS  PubMed  Google Scholar 

  • Cano-Ruiz, M. E., & Richter, R. L. (1997). Effect of homogenization pressure on the milk fat globule membrane proteins. Journal of Dairy Science, 80, 2732–2739.

    Article  CAS  Google Scholar 

  • Cheng, J., Huang, R., Li, T., Zhou, J., & Cen, K. (2015). Physicochemical characterization of wet microalgal cells disrupted with instant catapult steam explosion for lipid extraction. Bioresource Technology, 191, 66–72.

    Article  CAS  PubMed  Google Scholar 

  • Cho, S.-C., Choi, W.-Y., Oh, S.-H., et al. (2012). Enhancement of lipid extraction from marine microalga, Scenedesmus associated with high-pressure homogenization process. Journal of Biomedicine & Biotechnology, 2012, 1–6.

    Article  CAS  Google Scholar 

  • Choi, S.-A., Lee, J.-S., Oh, Y.-K., Jeong, M.-J., Kim, S. W., & Park, J.-Y. (2014). Lipid extraction from Chlorella vulgaris by molten-salt/ionic-liquid mixtures. Algal Research, 3, 44–48.

    Article  Google Scholar 

  • de Moura, R. R., Etges, B. J., dos Santos, E. O., Martins, T. G., Roselet, F., Abreu, P. C., Primel, E. G., & D’Oca, M. G. M. (2018). Microwave-assisted extraction of lipids from wet microalgae paste: A quick and efficient method. European Journal of Lipid Science and Technology, 120, 1700419.

    Article  CAS  Google Scholar 

  • Desai, R. K. (2016). Ionic liquid pre-treatment of microalgae and extraction of biomolecules. Wageningen: Wageningen University.

    Book  Google Scholar 

  • Dong, T., Knoshaug, E. P., Pienkos, P. T., & Laurens, L. M. L. (2016). Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review. Applied Energy, 177, 879–895.

    Article  CAS  Google Scholar 

  • Drira, N., Piras, A., Rosa, A., Porcedda, S., & Dhaouadi, H. (2016). Microalgae from domestic wastewater facility’s high rate algal pond: Lipids extraction, characterization and biodiesel production. Bioresource Technology, 206, 239–244.

    Article  CAS  PubMed  Google Scholar 

  • Ellison, C. R., Overa, S., & Boldor, D. (2019). Central composite design parameterization of microalgae/cyanobacteria co-culture pretreatment for enhanced lipid extraction using an external clamp-on ultrasonic transducer. Ultrasonics Sonochemistry, 51, 496–503.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gonzalez, L., Geeraerd, A. H., Spilimbergo, S., Elst, K., Van Ginneken, L., Debevere, J., Van Impe, J. F., & Devlieghere, F. (2007). High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. International Journal of Food Microbiology, 117, 1–28.

    Article  CAS  PubMed  Google Scholar 

  • Garoma, T., & Janda, D. (2016). Investigation of the effects of microalgal cell concentration and electroporation, microwave and ultrasonication on lipid extraction efficiency. Renewable Energy, 86, 117–123.

    Article  CAS  Google Scholar 

  • Garoma, T., & Yazdi, R. E. (2019). Investigation of the disruption of algal biomass with chlorine. BMC Plant Biology, 19, 18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffiths, M. J., & Harrison, S. T. L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21, 493–507.

    Article  CAS  Google Scholar 

  • Günerken, E., D’Hondt, E., Eppink, M. H. M., Garcia-Gonzalez, L., Elst, K., & Wijffels, R. H. (2015). Cell disruption for microalgae biorefineries. Biotechnology Advances, 33, 243–260.

    Article  PubMed  CAS  Google Scholar 

  • Heo, Y. M., Lee, H., Lee, C., Kang, J., Ahn, J.-W., Lee, Y. M., Kang, K.-Y., Choi, Y.-E., & Kim, J.-J. (2017). An integrative process for obtaining lipids and glucose from Chlorella vulgaris biomass with a single treatment of cell disruption. Algal Research, 27, 286–294.

    Google Scholar 

  • Howlader, M. S., DuBien, J., Hassan, E. B., Rai, N., & French, W. T. (2019). Optimization of microbial cell disruption using pressurized CO2 for improving lipid recovery from wet biomass. Bioprocess and Biosystems Engineering, 42, 763–776.

    Article  CAS  PubMed  Google Scholar 

  • Howlader, M. S., French, W. T., Shields-Menard, S. A., Amirsadeghi, M., Green, M., & Rai, N. (2017a). Microbial cell disruption for improving lipid recovery using pressurized CO2: Role of CO2 solubility in cell suspension, sugar broth, and spent media. Biotechnology Progress, 33, 737–748.

    Google Scholar 

  • Howlader, M. S., French, W. T., Toghiani, H., Hartenbower, B., Pearson, L., DuBien, J., & Rai, N. (2017b). Measurement and correlation of solubility of carbon dioxide in triglycerides. The Journal of Chemical Thermodynamics, 104, 252–260.

    Article  CAS  Google Scholar 

  • Howlader, M. S., Rai, N., & Todd French, W. (2018a). Improving the lipid recovery from wet oleaginous microorganisms using different pretreatment techniques. Bioresource Technology, 267, 743–755.

    Article  CAS  PubMed  Google Scholar 

  • Howlader, M. S., Venkatesan, S., Goel, H., Huda, M. M., French, W. T., & Rai, N. (2018b). Solubility of CO2 in triglycerides using Monte Carlo simulations. Fluid Phase Equilibria, 476, 39–47.

    Article  CAS  Google Scholar 

  • Kim, Y.-H., Choi, Y.-K., Park, J., Lee, S., Yang, Y.-H., Kim, H. J., Park, T.-J., Hwan Kim, Y., & Lee, S. H. (2012). Ionic liquid-mediated extraction of lipids from algal biomass. Bioresource Technology, 109, 312–315.

    Article  CAS  PubMed  Google Scholar 

  • Lai, Y. S., De Francesco, F., Aguinaga, A., Parameswaran, P., & Rittmann, B. E. (2016). Improving lipid recovery from Scenedesmus wet biomass by surfactant-assisted disruption. Green Chemistry, 18, 1319–1326.

    Article  CAS  Google Scholar 

  • Lee, A. K., Lewis, D. M., & Ashman, P. J. (2012). Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass and Bioenergy, 46, 89–101.

    Article  CAS  Google Scholar 

  • Lee, S. Y., Show, P. L., Ling, T. C., & Chang, J.-S. (2017). Single-step disruption and protein recovery from Chlorella vulgaris using ultrasonication and ionic liquid buffer aqueous solutions as extractive solvents. Biochemical Engineering Journal, 124, 26–35.

    Article  CAS  Google Scholar 

  • Liang, K., Zhang, Q., & Cong, W. (2012). Enzyme-assisted aqueous extraction of lipid from microalgae. Journal of Agricultural and Food Chemistry, 60, 11771–11776.

    Article  CAS  PubMed  Google Scholar 

  • Lorente, E., Farriol, X., & Salvadó, J. (2015). Steam explosion as a fractionation step in biofuel production from microalgae. Fuel Processing Technology, 131, 93–98.

    Article  CAS  Google Scholar 

  • Lorente, E., Hapońska, M., Clavero, E., Torras, C., & Salvadó, J. (2017). Microalgae fractionation using steam explosion, dynamic and tangential cross-flow membrane filtration. Bioresource Technology, 237, 3–10.

    Article  CAS  PubMed  Google Scholar 

  • Lorente, E., Hapońska, M., Clavero, E., Torras, C., & Salvadó, J. (2018). Steam explosion and vibrating membrane filtration to improve the processing cost of microalgae cell disruption and fractionation. PRO, 6, 28.

    Google Scholar 

  • Lu, W., Alam, M. A., Luo, W., & Asmatulu, E. (2019). Integrating Spirulina platensis cultivation and aerobic composting exhaust for carbon mitigation and biomass production. Bioresource Technology, 271, 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Lupatini, A. L., de Oliveira Bispo, L., Colla, L. M., Costa, J. A. V., Canan, C., & Colla, E. (2017). Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation. Food Research International, 99, 1028–1035.

    Google Scholar 

  • Martinez-Guerra, E., Howlader, M. S., Shields-Menard, S., French, W. T., & Gude, V. G. (2018). Optimization of wet microalgal FAME production from Nannochloropsis sp. under the synergistic microwave and ultrasound effect. International Journal of Energy Research, 42, 1934–1949.

    Article  Google Scholar 

  • Mazanov, S. V., Gabitova, A. R., Usmanov, R. A., Gumerov, F. M., Labidi, S., Ben, A. M., Passarello, J.-P., Kanaev, A., Volle, F., & Le Neindre, B. (2016). Continuous production of biodiesel from rapeseed oil by ultrasonic assist transesterification in supercritical ethanol. Journal of Supercritical Fluids, 118, 107–118.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, A. (2015). Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends in Microbiology, 23, 498–508.

    Article  CAS  PubMed  Google Scholar 

  • Orr, V. C. A., Plechkova, N. V., Seddon, K. R., & Rehmann, L. (2016). Disruption and wet extraction of the microalgae Chlorella vulgaris using room-temperature ionic liquids. ACS Sustainable Chemistry & Engineering, 4, 591–600.

    Article  CAS  Google Scholar 

  • Park, Y.-M., Lee, D.-W., Kim, D.-K., Lee, J.-S., & Lee, K.-Y. (2008). The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel. Catalysis Today, 131, 238–243.

    Article  CAS  Google Scholar 

  • Patel, A., Arora, N., Mehtani, J., Pruthi, V., & Pruthi, P. A. (2017). Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production. Renewable and Sustainable Energy Reviews, 77, 604–616.

    Article  CAS  Google Scholar 

  • Phong, W. N., Show, P. L., Le, C. F., Tao, Y., Chang, J.-S., & Ling, T. C. (2018). Improving cell disruption efficiency to facilitate protein release from microalgae using chemical and mechanical integrated method. Biochemical Engineering Journal, 135, 83–90.

    Article  CAS  Google Scholar 

  • Portillo, H. A., Howlader, M. S., Campbell, Y. L., French, T., Kim, T., Goddard, J., Hassan, E. B., & Schilling, M. W. (2018). Incorporating fermented by-products of Lactobacillus diolivorans in food grade coatings designed for inhibition of Tyrophagus putrescentiae on dry-cured hams. Journal of Stored Products Research, 77, 77–83.

    Article  Google Scholar 

  • Ramakrishnan, A. M. (2015). Biofuel: A scope for reducing global warming. Journal of Petroleum & Environmental Biotechnology, 7, 1.

    Google Scholar 

  • Ren, H.-Y., Xiao, R.-N., Kong, F., Zhao, L., Xing, D., Ma, J., Ren, N.-Q., & Liu, B.-F. (2019). Enhanced biomass and lipid accumulation of mixotrophic microalgae by using low-strength ultrasonic stimulation. Bioresource Technology, 272, 606–610.

    Article  CAS  PubMed  Google Scholar 

  • Safi, C., Cabas Rodriguez, L., Mulder, W. J., Engelen-Smit, N., Spekking, W., van den Broek, L. A. M., Olivieri, G., & Sijtsma, L. (2017a). Energy consumption and water-soluble protein release by cell wall disruption of Nannochloropsis gaditana. Bioresource Technology, 239, 204–210.

    Article  CAS  PubMed  Google Scholar 

  • Safi, C., Olivieri, G., Campos, R. P., Engelen-Smit, N., Mulder, W. J., van den Broek, L. A. M., & Sijtsma, L. (2017b). Biorefinery of microalgal soluble proteins by sequential processing and membrane filtration. Bioresource Technology, 225, 151–158.

    Article  CAS  PubMed  Google Scholar 

  • Safi, C., Ursu, A. V., Laroche, C., Zebib, B., Merah, O., Pontalier, P.-Y., & Vaca-Garcia, C. (2014). Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Research, 3, 61–65.

    Article  Google Scholar 

  • Samarasinghe, N., Fernando, S., Lacey, R., & Faulkner, W. B. (2012). Algal cell rupture using high pressure homogenization as a prelude to oil extraction. Renewable Energy, 48, 300–308.

    Article  CAS  Google Scholar 

  • Sathish, A., & Sims, R. C. (2012). Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresource Technology, 118, 643–647.

    Article  CAS  PubMed  Google Scholar 

  • Shields-Menard, S. A., Amirsadeghi, M., French, W. T., & Boopathy, R. (2018). A review on microbial lipids as a potential biofuel. Bioresource Technology, 259, 451–460.

    Article  CAS  PubMed  Google Scholar 

  • Singh, J., & Gu, S. (2010). Commercialization potential of microalgae for biofuels production. Renewable and Sustainable Energy Reviews, 14, 2596–2610.

    Article  CAS  Google Scholar 

  • To, T. Q., Procter, K., Simmons, B. A., Subashchandrabose, S., & Atkin, R. (2018). Low cost ionic liquid–water mixtures for effective extraction of carbohydrate and lipid from algae. Faraday Discussions, 206, 93–112.

    Article  CAS  Google Scholar 

  • Wan, C., Alam, M. A., Zhao, X.-Q., Zhang, X.-Y., Guo, S.-L., Ho, S.-H., & Bai, F.-W. (2015). Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresource Technology, 184, 251–257.

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., Li, Y., Hu, X., Su, W., Zhong, M., Wang, D., Li, Y., Hu, X., Su, W., & Zhong, M. (2015). Combined enzymatic and mechanical cell disruption and lipid extraction of green alga Neochloris oleoabundans. International Journal of Molecular Sciences, 16, 7707–7722.

    Google Scholar 

  • Xu, Z., Wu, J., Zhang, Y., Hu, X., Liao, X., & Wang, Z. (2010). Extraction of anthocyanins from red cabbage using high pressure CO2. Bioresource Technology, 101, 7151–7157.

    Google Scholar 

  • Yao, S., Mettu, S., Law, S. Q. K., Ashokkumar, M., & Martin, G. J. O. (2018). The effect of high-intensity ultrasound on cell disruption and lipid extraction from high-solids viscous slurries of Nannochloropsis sp. biomass. Algal Research, 35, 341–348.

    Article  Google Scholar 

  • Yap, B. H. J., Crawford, S. A., Dumsday, G. J., Scales, P. J., & Martin, G. J. O. (2014). A mechanistic study of algal cell disruption and its effect on lipid recovery by solvent extraction. Algal Research, 5, 112–120.

    Article  Google Scholar 

  • Yap, B. H. J., Dumsday, G. J., Scales, P. J., & Martin, G. J. O. (2015). Energy evaluation of algal cell disruption by high pressure homogenisation. Bioresource Technology, 184, 280–285.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Shamim Howlader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Howlader, M.S., French, W.T. (2020). Pretreatment and Lipid Extraction from Wet Microalgae: Challenges, Potential, and Application for Industrial-Scale Application. In: Alam, M., Xu, JL., Wang, Z. (eds) Microalgae Biotechnology for Food, Health and High Value Products. Springer, Singapore. https://doi.org/10.1007/978-981-15-0169-2_15

Download citation

Publish with us

Policies and ethics