Skip to main content

Geometric Model of Ball-End Micro Milling

  • Conference paper
  • First Online:
Mechatronics—Trending Future Industries (MECHATRONICS 2020)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 377))

Included in the following conference series:

  • 170 Accesses

Abstract

Freeform surface machining is one of the most advanced issue of micro milling. Presented research is an introduction to a development of a model including the tool path, uncut surface roughness, static and dynamic tool deflection. This work is an attempt to model ball-end groove micro machining. The thickness of the cutting layer at any time can be determined. Geometric structure of the surface after machining can be formed with the influence of the inclination angle of the tool. The work considers the conditions of entry into the material, as well as modelling the fully developed cutting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klauer, K., Eifler, M., Kirsch, B., Seewig, J., Aurich, J.C.: Correlation between different cutting conditions, surface roughness and dimensional accuracy when ball end micro milling material measures with freeform surfaces. Mach. Sci. Technol. 24, 446–464 (2020)

    Article  Google Scholar 

  2. Bouaziz, Z., Ben Younes, J., Zghal, A.: Cost estimation system of dies manufacturing based on the complex machining features. Int. J. Adv. Manuf. Technol. 28, 262–271 (2006)

    Article  Google Scholar 

  3. Sonawane, H.A., Joshi, S.S.: Modeling of machined surface quality in high-speed ball-end milling of Inconel-718 thin cantilevers. Int. J. Adv. Manuf. Technol. 78, 1751–1768 (2015)

    Article  Google Scholar 

  4. Whiteside, B.R., Martyn, M.T., Coates, P.D., Allan, P.S., Hornsby, P.R., Greenway, G.: Micromoulding: process characteristics and product properties. Plast. Rubber Compos. 32, 231–239 (2003)

    Article  Google Scholar 

  5. Koklu, U., Basmaci, G.: Evaluation of tool path strategy and cooling condition effects on the cutting force and surface quality in micromilling operations. Metals 7, 426 (2017)

    Article  Google Scholar 

  6. Sun, Z., To, S.: Effect of machining parameters and tool wear on surface uniformity in micro-milling. Micromachines 9, 268 (2018)

    Article  Google Scholar 

  7. Câmara, M.A., Rubio, J.C.C., Abrão, A.M., Davim, J.P.: State of the art on micromilling of materials, a review. J. Mater. Sci. Technol. 28, 673–685 (2012)

    Article  Google Scholar 

  8. Adams, D.P., Vasile, M.J., Benavides, G., Campbell, A.N.: Micromilling of metal alloys with focused ion beam—Fabricated tools. Precis. Eng. 25, 107–113 (2001)

    Article  Google Scholar 

  9. Dunaj, P., Marchelek, K., Chodźko, M.: Application of the finite element method in the milling process stability diagnosis. J. Theor. Appl. Mech. (2019). https://doi.org/10.15632/jtam-pl/104589

  10. Zhu, R., Kapoor, S.G., DeVor, R.E.: Mechanistic modeling of the ball end milling process for multi-axis machining of free-form surfaces. J. Manuf. Sci. Eng. 123, 369–379 (2000)

    Article  Google Scholar 

  11. Pratap, T., Patra, K.: Micro ball-end milling—An emerging manufacturing technology for micro-feature patterns. Int. J. Adv. Manuf. Technol. 94, 2821–2845 (2018)

    Article  Google Scholar 

  12. Thepsonthi, T., Özel, T.: Multi-objective process optimization for micro-end milling of Ti-6Al-4V titanium alloy. Int. J. Adv. Manuf. Technol. 63, 903–914 (2012)

    Article  Google Scholar 

  13. Chen, W., Zheng, L., Teng, X., Yang, K., Huo, D.: Finite element simulation and experimental investigation on cutting mechanism in vibration-assisted micro-milling. Int. J. Adv. Manuf. Technol. 105, 4539–4549 (2019)

    Article  Google Scholar 

  14. Özel, T., Olleak, A., Thepsonthi, T.: Micro milling of titanium alloy Ti-6Al-4V: 3-D finite element modeling for prediction of chip flow and burr formation. Prod. Eng. Res. Dev. 11, 435–444 (2017)

    Article  Google Scholar 

  15. Evdokimov, D.V., Skuratov, D.L.: Improved calculation of the cutting force in end milling. Russ. Eng. Res. 37, 642–646 (2017)

    Article  Google Scholar 

  16. Wojciechowski, S.: Methods of minimum uncut chip thickness estimation during cutting with defined geometry tools. Mechanik 91, 664–666 (2018)

    Article  Google Scholar 

  17. Dib, M.H.M., Duduch, J.G., Jasinevicius, R.G.: Minimum chip thickness determination by means of cutting force signal in micro endmilling. Precis. Eng. 51, 244–262 (2018)

    Article  Google Scholar 

  18. Yun, H.T., Heo, S., Lee, M.K., Min, B.-K., Lee, S.J.: Ploughing detection in micromilling processes using the cutting force signal. Int. J. Mach. Tools Manuf 51, 377–382 (2011)

    Article  Google Scholar 

  19. Malekian, M., Mostofa, M.G., Park, S.S., Jun, M.B.G.: Modeling of minimum uncut chip thickness in micro machining of aluminum. J. Mater. Process. Technol. 212, 553–559 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Gołaszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gołaszewski, M., Powałka, B. (2022). Geometric Model of Ball-End Micro Milling. In: Powałka, B., Parus, A., Chodźko, M., Szewczyk, R. (eds) Mechatronics—Trending Future Industries. MECHATRONICS 2020. Lecture Notes in Networks and Systems, vol 377. Springer, Cham. https://doi.org/10.1007/978-3-030-93377-7_11

Download citation

Publish with us

Policies and ethics