Skip to main content

The Immunogenetics of Vitiligo: An Approach Toward Revealing the Secret of Depigmentation

  • Chapter
  • First Online:
The Immunogenetics of Dermatologic Diseases

Abstract

Vitiligo is a hypomelanotic skin disease and considered to be of autoimmune origin due to breaching of immunological self-tolerance, resulting in inappropriate immune responses against melanocytes. The development of vitiligo includes a strong heritable component. Different strategies ranging from linkage studies to genome-wide association studies are used to explore the genetic factors responsible for the disease. Several vitiligo loci containing the respective genes have been identified which contribute to vitiligo and genetic variants for some of the genes are still unknown. These genes include mainly the proteins that play a role in immune regulation and a few other genes important for apoptosis and regulation of melanocyte functions. Despite the available data on genetic variants and risk alleles which influence the biological processes, only few immunological pathways have been found responsible for all ranges of severity and clinical manifestations of vitiligo. However, studies have concluded that vitiligo is of autoimmune origin and manifests due to complex interactions in immune components and their inappropriate response toward melanocytes. The genes involved in the immune regulation and processing the melanocytes antigen and its presentation can serve as effective immune-therapeutics that can target specific immunological pathways involved in vitiligo. This chapter highlights those immune-regulatory genes involved in vitiligo susceptibility and loci identified to date and their implications in vitiligo pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abanmi A, Al Harthi F, Al Baqami R, Al Assaf S, Zouman A et al (2006) Association of HLA loci alleles and antigens in Saudi patients with vitiligo. Arch Dermatol Res 7:347–352

    Google Scholar 

  • Abanmi A, Al Harthi F, Zouman A, Kudwah A, Jamal MA et al (2008) Association of interleukin-10 gene promoter polymorphisms in Saudi patients with vitiligo. Dis Markers 1:51–57

    Article  Google Scholar 

  • Abdullah GA, Yassin M, Alhamamy H, Mahdi BM (2015) The association between human leukocyte antigen-DRB1 and vitiligo

    Google Scholar 

  • Agarwal S, Changotra H (2017) Association of protein tyrosine phosphatase, non-receptor type 22 +1858C→T polymorphism and susceptibility to vitiligo: systematic review and meta-analysis. Indian J Dermatol Venereol Leprol 2:183–189

    Google Scholar 

  • Agarwal P, Rashighi M, Essien KI, Richmond JM, Randall L et al (2015) Simvastatin prevents and reverses depigmentation in a mouse model of vitiligo. J Invest Dermatol 4:1080–1088

    Article  Google Scholar 

  • Akay BN, Bozkir M, Anadolu Y, Gullu S (2010) Epidemiology of vitiligo, associated autoimmune diseases and audiological abnormalities: ankara study of 80 patients in Turkey. J Eur Acad Dermatol Venereol 10:1144–1150

    Google Scholar 

  • Akbas H, Dertlioglu SB, Dilmec F, Atay AE (2014) Lack of association between PTPN22 Gene +1858 C>T polymorphism and susceptibility to generalized vitiligo in a Turkish population. Ann Dermatol 1:88–91

    Google Scholar 

  • Akhtar S, Gavalas NG, Gawkrodger DJ, Watson PF, Weetman AP et al (2005) An insertion/deletion polymorphism in the gene encoding angiotensin converting enzyme is not associated with generalised vitiligo in an English population. Arch Dermatol Res 2:94–98

    Article  Google Scholar 

  • Al Badri AM, Foulis AK, Todd PM, Garioch JJ, Gudgeon JE et al (1993) Abnormal expression of MHC class II and ICAM-1 by melanocytes in vitiligo. J Pathol 2:203–206

    Google Scholar 

  • Ala Y, Pasha MK, Rao RN, Komaravalli PL, Jahan P (2015) Association of IFN-γ: IL-10 cytokine ratio with nonsegmental vitiligo pathogenesis. Zhou X-J, ed. Autoimmune Dis 423490

    Google Scholar 

  • AL‐Fouzan AA, Al‐Arbash M, Fouad F, Kaaba SA, Mousa MA et al (1995) Study of HLA class I/IL and T lymphocyte subsets in Kuwaiti vitiligo patients. Eur J Immunogenet 2:209–213

    Google Scholar 

  • Al-Harthi F, Zouman A, Arfin M, Tariq M, Al-Asmari A (2013) Tumor necrosis factor-α and -β genetic polymorphisms as a risk factor in Saudi patients with vitiligo. Genet Mol Res 3:2196–2204

    Google Scholar 

  • Alikhan A, Felsten LM, Daly M, Petronic-Rosic V (2011) Vitiligo: a comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J Am Acad Dermatol 3:473–491

    Article  Google Scholar 

  • Alkhateeb A, Qarqaz F (2010) Genetic association of NALP1 with generalized vitiligo in Jordanian Arabs. Arch Dermatol Res 8:631–634

    Article  Google Scholar 

  • Alkhateeb A, Stetler GL, Old W, Talbert J, Uhlhorn C et al (2002) Mapping of an autoimmunity susceptibility locus (AIS1) to chromosome 1p31.3-p32.2. Hum Mol Genet 6:661–667

    Article  Google Scholar 

  • Alkhateeb A, Fain PR, Thody A, Bennett DC, Spritz RA (2003) Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res 3:208–214

    Article  Google Scholar 

  • Alkhateeb A, Al-Dain Marzouka N, Qarqaz F (2010) SMOC2 gene variant and the risk of vitiligo in Jordanian Arabs. Eur J Dermatol 6:701–704

    Google Scholar 

  • Alkhateeb A, Marzouka NA, Tashtoush R (2013) Variants in PTPN22 and SMOC2 genes and the risk of thyroid disease in the Jordanian Arab population. Endocrine 3:702–709

    Google Scholar 

  • Almasi-Nasrabadi M, Amoli MM, Robati RM, Rajabi F, Ghalamkarpour F et al (2019) CDH1 and DDR1 common variants confer risk to vitiligo and autoimmune comorbidities. Gene 17–22

    Google Scholar 

  • Al-Shobaili H, Settin A, Alzolibani A, Al Robaee A, Salem T et al (2013) Interleukin-4 (-590 C>T) and interleukin-4 receptor (Q551R A>G) gene polymorphisms in Saudi patients with vitiligo. Eur J Dermatol 3:402–404

    Google Scholar 

  • Amos W, Driscoll E, Hoffman JI (2011) Candidate genes versus genome-wide associations: which are better for detecting genetic susceptibility to infectious disease? Proc Biol Sci 1709:1183–1188

    Google Scholar 

  • Ando I, Chi HI, Nakagawa H, Otsuka F (1993) Difference in clinical features and HLA antigens between familial and non-familial vitiligo of non-segmental type. Br J Dermatol 4:408–410

    Google Scholar 

  • Arcos-Burgos M, Parodi E, Salgar M, Bedoya E, Builes J et al (2002) Vitiligo: complex segregation and linkage disequilibrium analyses with respect to microsatellite loci spanning the HLA. Hum Genet 4:334–342

    Article  Google Scholar 

  • Babalghith A (2014) TAP1 and LMP7 gene polymorphisms associated with vitiligo in Saudi community. Int J Curr Microbiol App Sci 4:1–9

    Google Scholar 

  • Badran DI, Nada H, Hassan R (2015) Association of angiotensin-converting enzyme ACE gene polymorphism with ACE activity and susceptibility to vitiligo in Egyptian population. Genet Test Mol Biomarkers 5:258–263

    Article  Google Scholar 

  • Basak PY, Adiloglu AK, Koc IG, Tas T, Akkaya VB (2008) Evaluation of activatory and inhibitory natural killer cell receptors in non-segmental vitiligo: a flow cytometric study. J Eur Acad Dermatol Venereol 8:970–976

    Article  Google Scholar 

  • Basler M, Kirk CJ, Groettrup M (2013) The immunoproteasome in antigen processing and other immunological functions. Curr Opin Immunol 1:74–80

    Article  Google Scholar 

  • Behl PN (1955) Leucoderma and its treatment with Ammi majus. J Indian Med Assoc 16:615–618

    Google Scholar 

  • Ben S, Jin Y, Santorico SA, Spritz RA (2018) Genome-Wide Association of PVT1 with Vitiligo. J Invest Dermatol 8:1884–1886

    Article  Google Scholar 

  • Ben Ahmed M, Zaraa I, Rekik R, Elbeldi‐Ferchiou A, Kourda N et al (2012) Functional defects of peripheral regulatory T lymphocytes in patients with progressive vitiligo. Pigment Cell Melanoma Res 1:99–109

    Google Scholar 

  • Bhatia PS, Mohan L, Pandey ON, Singh KK, Arora SK et al (1992) Genetic nature of vitiligo. J Dermatol Sci 3:180–184

    Article  Google Scholar 

  • Birlea SA, Costin GE, Norris DA (2009a) New insights on therapy with vitamin D analogs targeting the intracellular pathways that control repigmentation in human vitiligo. Med Res Rev 3:514–546

    Article  Google Scholar 

  • Birlea SA, LaBerge GS, Procopciuc LM, Fain PR, Spritz RA (2009b) CTLA4 and generalized vitiligo: two genetic association studies and a meta-analysis of published data. Pigment Cell Melanoma Res 2:230–234

    Google Scholar 

  • Birlea SA, Gowan K, Fain PR, Spritz RA (2010) Genome-wide association study of generalized vitiligo in an isolated European founder population identifies SMOC2, in close proximity to IDDM8. J Invest Dermatol 3:798–803

    Article  Google Scholar 

  • Birlea SA, Jin Y, Bennett DC, Herbstman DM, Wallace MR B et al (2011) Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP. J Invest Dermatol 2:371–381

    Google Scholar 

  • Birlea SA, Ahmad FJ, Uddin RM, Ahmad S, Pal SS et al (2013) Association of generalized vitiligo with MHC class II loci in patients from the Indian subcontinent. J Invest Dermatol 5:1369–1372

    Article  Google Scholar 

  • Blomhoff A, Kemp EH, Gawkrodger DJ, Weetman AP, Husebye ES et al (2005) CTLA4 polymorphisms are associated with vitiligo, in patients with concomitant autoimmune diseases. Pigment Cell Res 1:55–58

    Article  Google Scholar 

  • Boissy RE, Spritz RA (2009) Frontiers and controversies in the pathobiology of vitiligo: separating the wheat from the chaff. Exp Dermatol 7:583–585

    Article  Google Scholar 

  • Boniface K, Jacquemin C, Darrigade A-S, Dessarthe B, Martins C et al (2018) Vitiligo skin is imprinted with resident memory CD8 T cells expressing CXCR3. J Invest Dermatol 2:355–364

    Article  Google Scholar 

  • Buc M, Busová B, Hegyi E, Kolibásová K (1996) Vitiligo is associated with HLA-A2 and HLA-Dw7 in the Slovak populations. Folia Biol (praha) 1–2:23–25

    Google Scholar 

  • Buc M, Fazekasová H, Cechová E, Hegyi E, Kolibásová K et al (1998) Occurrence rates of HLA-DRB1, HLA-DQB1, and HLA-DPB1 alleles in patients suffering from vitiligo. Eur J Dermatol 1:13–15

    Google Scholar 

  • Burn GL, Svensson L, Sanchez-Blanco C, Saini M, Cope AP (2011) Why is PTPN22 a good candidate susceptibility gene for autoimmune disease? FEBS Lett 23:3689–3698

    Article  Google Scholar 

  • Byrne KT, Zhang P, Steinberg SM, Turk MJ (2014) Autoimmune vitiligo does not require the ongoing priming of naive CD8 T cells for disease progression or associated protection against melanoma. J Immunol 4:1433–1439

    Article  Google Scholar 

  • Bystryn JC, Naughton GK (1985) The significance of vitiligo antibodies. J Dermatol 1:1–9

    Article  Google Scholar 

  • Cantón I, Akhtar S, Gavalas NG, Gawkrodger DJ, Blomhoff A et al (2005) A single-nucleotide polymorphism in the gene encoding lymphoid protein tyrosine phosphatase (PTPN22) confers susceptibility to generalised vitiligo. Genes Immun 7:584–587

    Article  Google Scholar 

  • Casp CB, She JX, McCormack WT (2003) Genes of the LMP/TAP cluster are associated with the human autoimmune disease vitiligo. Genes Immun 7:492–499

    Article  Google Scholar 

  • Cavalli G, Hayashi M, Jin Y, Yorgov D, Santorico SA et al (2016) MHC class II super-enhancer increases surface expression of HLA-DR and HLA-DQ and affects cytokine production in autoimmune vitiligo. Proc Natl Acad Sci USA 5:1363–1368

    Article  Google Scholar 

  • Chen W, Konkel JE (2010) TGF-beta and “adaptive” Foxp3(+) regulatory T cells. J Mol Cell Biol 1:30–36

    Article  Google Scholar 

  • Chen JJ, Huang W, Gui JP, Yang S, Zhou FS et al (2005) A novel linkage to generalized vitiligo on 4q13-q21 identified in a genomewide linkage analysis of Chinese families. Am J Hum Genet 6:1057–1065

    Article  Google Scholar 

  • Chen Z, Stockton J, Mathis D, Benoist C (2006) Modeling CTLA4-linked autoimmunity with RNA interference in mice. Proc Natl Acad Sci USA 44:16400–16405

    Article  Google Scholar 

  • Cheong KA, Chae SC, Kim YS, Kwon HB, Chung HT et al (2009) Association of thymic stromal lymphopoietin gene -847C>T polymorphism in generalized vitiligo. Exp Dermatol 12:1073–1075

    Article  Google Scholar 

  • Cheong KA, Kim NH, Noh M, Lee AY (2013) Three new single nucleotide polymorphisms identified by a genome-wide association study in Korean patients with vitiligo. J Korean Med Sci 5:775–779

    Article  Google Scholar 

  • Craddock N, Hurles ME, Cardin N, Pearson RD, Plagnol V et al (2010) Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 7289:713

    Google Scholar 

  • Dai X (1990) A study on the association of HLA antigens with vitiligo. Chin J Dermatol 31–33

    Google Scholar 

  • Dani P, Patnaik N, Singh A, Jaiswal A, Agrawal B et al (2018) Association and expression of the antigen-processing gene PSMB8, coding for low-molecular-mass protease 7, with vitiligo in North India: case-control study. Br J Dermatol 2:482–491

    Article  Google Scholar 

  • Das SK, Majumder PP, Majumdar TK, Haldar B (1985) Studies on vitiligo. II Familial aggregation and genetics. Genet Epidemiol 3:255–262

    Article  Google Scholar 

  • De Vijlder HC, Westerhof W, Schreuder GMT, De Lange P, Claas FH (2004) Difference in pathogenesis between vitiligo vulgaris and halo nevi associated with vitiligo is supported by an HLA association study. Pigment Cell Res 3:270–274

    Google Scholar 

  • Deb DK, Sassano A, Lekmine F, Majchrzak B, Verma A et al (2003) Activation of protein kinase C delta by IFN-gamma. J Immunol 1:267–273

    Article  Google Scholar 

  • Deeba F, Jamil K, Rabbani S, Waheed MA, Rao H (2009) Association of angiotensin converting enzyme gene I/D polymorphism with vitiligo in South Indian population. Int J Med Med Sci 1:9–12

    CAS  Google Scholar 

  • Deeba F, Syed R, Quareen J, Waheed MA, Jamil K et al (2010) CTLA-4 A49G gene polymorphism is not associated with vitiligo in South Indian population. Indian J Dermatol 1:29–32

    Google Scholar 

  • Devadas S, Das J, Liu C, Zhang L, Roberts AI et al (2006) Granzyme B is critical for T cell receptor-induced cell death of type 2 helper T cells. Immunity 2:237–247

    Article  Google Scholar 

  • Dey-Rao R, Sinha AA (2017) Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets. BMC Genomics 1:109

    Article  Google Scholar 

  • Douroudis K, Kingo K, Karelson M, Silm H, Reimann E et al (2011) The PRO2268 gene as a novel susceptibility locus for vitiligo. Acta Derm Venereol 2:189–191

    Article  Google Scholar 

  • Dunston GM, Halder RM (1990) Vitiligo is associated with HLA-DR4 in black patients. A preliminary report. Arch Dermatol 1:56–60

    Article  Google Scholar 

  • Dwivedi M, Laddha NC, Shajil EM, Shah BJ, Begum R (2008) The ACE gene I/ D polymorphism is not associated with generalized vitiligo susceptibility in Gujarat population. Pigment Cell Melanoma Res 3:407–408

    Article  Google Scholar 

  • Dwivedi M, Gupta K, Gulla KC, Laddha NC, Hajela K et al (2009) Lack of genetic association of promoter and structural variants of mannan-binding lectin (MBL2) gene with susceptibility to generalized vitiligo. Br J Dermatol 1:63–69

    Article  Google Scholar 

  • Dwivedi M, Laddha NC, Imran M, Shah BJ, Begum R (2011) Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) in isolated vitiligo: a genotype-phenotype correlation. Pigment Cell Melanoma Res 4:737–740

    Google Scholar 

  • Dwivedi M, Laddha NC, Arora P, Marfatia YS, Begum R (2013a) Decreased regulatory T-cells and CD4+/CD8+ ratio correlate with disease onset and progression in patients with generalized vitiligo. Pigment Cell Melanoma Res 4:586–591

    Article  Google Scholar 

  • Dwivedi M, Laddha NC, Imran M, Shah BJ, Begum R et al (2013b) Complete sequence and gene map of a human major histocompatibility complex. The MHC sequencing consortium. Pigment Cell Melanoma Res 1:921–923

    Google Scholar 

  • Dwivedi M, Laddha NC, Begum R (2013c) Correlation of increased MYG1 expression and its promoter polymorphism with disease progression and higher susceptibility in vitiligo patients. J Dermatol Sci 3:195–202

    Article  Google Scholar 

  • Dwivedi M, Laddha NC, Shah K, Shah BJ, Begum R (2013d) Involvement of interferon-gamma genetic variants and intercellular adhesion molecule-1 in onset and progression of generalized Vitiligo. J Interf Cytokine Res 11:646–659

    Article  Google Scholar 

  • Dwivedi M, Laddha NC, Shah K, Shah BJ, Begum R (2013e) Involvement of interferon-gamma genetic variants and intercellular adhesion molecule-1 in onset and progression of generalized vitiligo. J Interferon Cytokine Res 33(11):646–659

    Google Scholar 

  • Dwivedi M, Laddha NC, Mansuri MS, Marfatia YS, Begum R (2013f) Association of NLRP1 genetic variants and mRNA overexpression with generalized vitiligo and disease activity in a Gujarat population. Br J Dermatol 5:1114–1125

    Google Scholar 

  • Dwivedi M, Kemp EH, Laddha NC, Mansuri MS Weetman AP et al (2015) Regulatory T cells in vitiligo: implications for pathogenesis and therapeutics. Autoimmun Rev 1:49–56

    Google Scholar 

  • Dwivedi M, Laddha N, Begum R (2018) Viral causes of vitiligo: a new perspective for vitiligo pathogenesis. Viral Immunol 8:1–4

    Google Scholar 

  • Eldin N, Teama S, Amro K, Farag H, Eldin SMN et al (2006) Polymorphisms of TAP1/LMP7 loci in Egyptian patients with vitiligo. undefined

    Google Scholar 

  • Elgendy A, Alshawadfy E, Ali EA, Wadea N, Khalil K et al (2016) Association of HLA Class I and II antigens with vitiligo in Egyptian population

    Google Scholar 

  • Elhawary NA, Bogari N, Jiffri EH, Rashad M, Fatani A et al (2014) Transporter TAP1–637G and immunoproteasome PSMB9–60H variants influence the risk of developing vitiligo in the Saudi population. Dis Markers 260732

    Google Scholar 

  • Elmongy NN, Khalil REA (2013) PTPN22 gene polymorphism in Egyptian females with non-segmental vitiligo. Comp Clin Path 5:961–964

    Article  Google Scholar 

  • Eskdale J, Kube D, Tesch H, Gallagher G (1997) Mapping of the human IL10 gene and further characterization of the 5’ flanking sequence. Immunogenetics 2:120–128

    Article  Google Scholar 

  • Fain PR, Gowan K, LaBerge GS, Alkhateeb A, Stetler GL et al (2003) A genomewide screen for generalized vitiligo: confirmation of AIS1 on chromosome 1p31 and evidence for additional susceptibility loci. Am J Hum Genet 6:1560–1564

    Article  Google Scholar 

  • Fain PR, Babu SR, Bennett DC, Spritz RA (2006) HLA class II haplotype DRB1*04-DQB1*0301 contributes to risk of familial generalized vitiligo and early disease onset. Pigment Cell Res 1:51–57

    Article  Google Scholar 

  • Fan LC, Shiau CW, Tai WT, Hung MH, Chu PY et al (2015) SHP-1 is a negative regulator of epithelial-mesenchymal transition in hepatocellular carcinoma. Oncogene 41:5252–5263

    Article  Google Scholar 

  • Fatahi MJ, Pezeshki A, Emad M, Lohrasb MH, Shamseddin A et al (2005) Lack of association between CTLA-4 A49G polymorphism and vitiligo. Iran J Immunol 2:97–102

    Google Scholar 

  • Fernando MMA, Stevens CR, Walsh EC, De Jager PL, Goyette P et al (2008) Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet 4:e1000024

    Google Scholar 

  • Ferrara TM, Jin Y, Gowan K, Fain PR, Spritz RA (2013) Risk of generalized vitiligo is associated with the common 55R–94A-247H variant haplotype of GZMB (encoding granzyme B). J Invest Dermatol 6:1677–1679

    Google Scholar 

  • Finco O, Cuccia M, Martinetti M, Ruberto G, Orecchia G et al (1991) Age of onset in vitiligo: relationship with HLA supratypes. Clin Genet 1:48–54

    Google Scholar 

  • Föger N, Marhaba R, Zöller M (2000) CD44 supports T cell proliferation and apoptosis by apposition of protein kinases. Eur J Immunol 10:2888–2899

    Article  Google Scholar 

  • Foley LM, Lowe NJ, Misheloff E, Tiwari JL (1983) Association of HLA-DR4 with vitiligo. J Am Acad Dermatol 1:39–40

    Article  Google Scholar 

  • Fu S, Zhang N, Yopp AC, Chen D, Mao M et al (2004) TGF-β induces Foxp3 + T-regulatory cells from CD4 + CD25—precursors. Am J Transplant 10:1614–1627

    Article  Google Scholar 

  • Garcia-Melendez ME, Salinas-Santander M, Sanchez-Dominguez C, Gonzalez-Cardenas H, Cerda-Flores RM et al (2014) Protein tyrosine phosphatase PTPN22 +1858C/T polymorphism is associated with active vitiligo. Exp Ther Med 5:1433–1437

    Article  Google Scholar 

  • Gartside MG, Chen H, Ibrahimi OA, Byron SA, Curtis AV et al (2009) Loss-of-function fibroblast growth factor receptor-2 mutations in melanoma. Mol Cancer Res 1:41–54

    Article  Google Scholar 

  • Gauthier Y, Cario Andre M, Taïeb A (2003) A critical appraisal of vitiligo etiologic theories. Is melanocyte loss a melanocytorrhagy? Pigment Cell Res 4:322–332

    Article  Google Scholar 

  • Gavalas NG, Gottumukkala RV, Gawkrodger DJ, Watson PF, Weetman AP et al (2009) Mapping of melanin-concentrating hormone receptor 1 B cell epitopes predicts two major binding sites for vitiligo patient autoantibodies. Exp Dermatol 5:454–463

    Article  Google Scholar 

  • Giri PS, Begum R, Dwivedi M (2022) Meta-analysis for association of TNFA -308 G>A polymorphism with vitiligo susceptibility. Gene 809:146027. https://doi.org/10.1016/j.gene.2021.146027

  • Giri PS, Dwivedi M, Laddha NC, Begum R, Bharti AH (2020a) Altered expression of nuclear factor of activated T cells, forkhead box P3, and immune-suppressive genes in regulatory T cells of generalized vitiligo patients. Pigment Cell Melanoma Res 4:566–578

    Article  Google Scholar 

  • Giri PS, Dwivedi M, Begum R (2020b) Decreased suppression of CD8+ and CD4+ T cells by peripheral regulatory T cells in generalized vitiligo due to reduced NFATC1 and FOXP3 proteins. Exp Dermatol 8:759–775

    Article  Google Scholar 

  • Giri PS, Patel S, Begum R, Dwivedi M (2021) Association of FOXP3 and GAGE10 promoter polymorphisms and decreased FOXP3 expression in regulatory T cells with susceptibility to generalized vitiligo in Gujarat population. Gene 768:145295. https://doi.org/10.1016/j.gene.2020.145295

  • Glassman SJ (2011) Vitiligo, reactive oxygen species and T-cells. Clin Sci 3:99–120

    Article  Google Scholar 

  • Groettrup M, Khan S, Schwarz K, Schmidtke G (2001) Interferon-gamma inducible exchanges of 20S proteasome active site subunits: why? Biochimie 3–4:367–372

    Article  Google Scholar 

  • Guerra L, Dellambra E, Brescia S, Raskovic D (2010) Vitiligo: pathogenetic hypotheses and targets for current therapies. Curr Drug Metab 5:451–467

    Article  Google Scholar 

  • Hafez M, Sharaf L, Abd el-Nabi SM (1983) The genetics of vitiligo. Acta Derm Venereol 3:249–251

    Google Scholar 

  • Han J, Liu J, Bai Y (2016) Association of single nucleotide polymorphisms in the IL2RA-RBM17 region with vitiligo in the Chinese Mongolian population. Chinese J Dermatol 6:406–410

    Google Scholar 

  • Hayashi M, Jin Y, Yorgov D, Santorico SA, Hagman J et al (2016) Autoimmune vitiligo is associated with gain-of-function by a transcriptional regulator that elevates expression of HLA-A*02:01 in vivo. Proc Natl Acad Sci USA 5:1357–1362

    Article  Google Scholar 

  • Hegazy RA, Fawzy MM, Gawdat HI, Samir N, Rashed LA (2014) T helper 17 and Tregs: a novel proposed mechanism for NB-UVB in vitiligo. Exp Dermatol 4:283–286

    Article  Google Scholar 

  • Hirschhorn JN, Gajdos ZKZ (2011) Genome-wide association studies: results from the first few years and potential implications for clinical medicine. Annu Rev Med 11–24

    Google Scholar 

  • Honda Y, Okubo Y, Koga M (1997) Relationship between levels of soluble interleukin-2 receptors and the types and activity of vitiligo. J Dermatol 9:561–563

    Article  Google Scholar 

  • Huraib GB, Al Harthi F, Arfin M, Aljamal A, Alrawi AS et al (2020) Association of functional polymorphism in protein tyrosine phosphatase nonreceptor 22 (PTPN22) gene with vitiligo. Biomark Insights 1177271920903038

    Google Scholar 

  • Hutyrová B, Pantelidis P, Drábek J, Zůrková M, Kolek V et al (2002) Interleukin-1 gene cluster polymorphisms in sarcoidosis and idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2:148–151

    Article  Google Scholar 

  • Ie A, M K-Ö, A G, P V, S D-A, et al (2015) The combination of tumour necrosis factor-α -308A and interleukin-10-1082G gene polymorphisms and increased serum levels of related cytokines: susceptibility to vitiligo. Clin Exp Dermatol 1:71–77

    Google Scholar 

  • Imran M, Laddha NC, Dwivedi M, Mansuri MS, Singh J et al (2012) Interleukin-4 genetic variants correlate with its transcript and protein levels in patients with vitiligo. Br J Dermatol 2:314–323

    Google Scholar 

  • Itirli G, Pehlivan M, Alper S, Yüksel SE, Onay H et al (2005) Exon-3 polymorphism of CTLA-4 gene in Turkish patients with vitiligo. J Dermatol Sci 3:225–227

    Article  Google Scholar 

  • Jadeja SD, Mansuri MS, Singh M, Dwivedi M, Laddha NC et al (2017) A case-control study on association of proteasome subunit beta 8 (PSMB8) and transporter associated with antigen processing 1 (TAP1) polymorphisms and their transcript levels in vitiligo from Gujarat. PLoS One 7:e0180958

    Google Scholar 

  • Jahan P, Cheruvu R, Tippisetty S, Komaravalli PL, Valluri V et al (2013) Association of FOXP3 (rs3761548) promoter polymorphism with nondermatomal vitiligo: A study from India. J Am Acad Dermatol 2:262–266

    Google Scholar 

  • Jia S, Meng A (2007) Tob genes in development and homeostasis. Dev Dyn an off Publ Am Assoc Anat 4:913–921

    Google Scholar 

  • Jin SY, Park HH, Li GZ, Lee HJ, Hong MS et al (2004a) Association of angiotensin converting enzyme gene I/D polymorphism of vitiligo in Korean population. Pigment Cell Res 1:84–86

    Article  Google Scholar 

  • Jin SY, Park HH, Li GZ, Lee HJ, Hong MS et al (2004b) Association of estrogen receptor 1 intron 1 C/T polymorphism in Korean vitiligo patients. J Dermatol Sci 3:181–186

    Article  Google Scholar 

  • Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G et al (2007a) NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med 12:1216–1225

    Article  Google Scholar 

  • Jin Y, Bennett DC, Amadi-Myers A, Holland P, Riccardi SL et al (2007b) Vitiligo-associated multiple autoimmune disease is not associated with genetic variation in AIRE. Pigment Cell Res 5:402–404

    Google Scholar 

  • Jin Y, Birlea SA, Fain PR, Spritz RA (2007c) Genetic variations in NALP1 are associated with generalized vitiligo in a Romanian population. J Invest Dermatol 11:2558–2562

    Google Scholar 

  • Jin Y, Riccardi SL, Gowan K, Fain PR, Spritz RA (2010a) Fine-mapping of vitiligo susceptibility loci on chromosomes 7 and 9 and interactions with NLRP1 (NALP1). J Invest Dermatol 3:774–783

    Article  Google Scholar 

  • Jin Y, Birlea SA, Fain PR, Mailloux CM, Riccardi SL et al (2010b) Common variants in FOXP1 are associated with generalized vitiligo. Nat Genet 7:576–578

    Article  Google Scholar 

  • Jin Y, Birlea SA, Fain PR, Gowan K, Riccardi SL et al (2010c) Variant of TYR and autoimmunity susceptibility loci in generalized vitiligo. N Engl J Med 18:1686–1697

    Article  Google Scholar 

  • Jin Y, Xu A, Wang P, Song X, Liu X (2011a) Long-term follow-up and correlated factors of vitiligo following autologous epidermal transplantation. Cutis 3:137–141

    Google Scholar 

  • Jin Y, Birlea SA, Fain PR, Gowan K, Riccardi SL et al (2011b) Genome-wide analysis identifies a quantitative trait locus in the MHC class II region associated with generalized vitiligo age of onset. J Invest Dermatol 6:1308–1312

    Article  Google Scholar 

  • Jin Y, Ferrara T, Gowan K, Holcomb C, Rastrou M et al (2012a) Next-generation DNA re-sequencing identifies common variants of TYR and HLA-A that modulate the risk of generalized vitiligo via antigen presentation. J Invest Dermatol 6:1730–1733

    Article  Google Scholar 

  • Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S et al (2012b) Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet 6:676–680

    Article  Google Scholar 

  • Jin Y, Hayashi M, Fain PR, Suzuki T, Fukai K et al (2015) Major association of vitiligo with HLA-A*02:01 in Japanese. Pigment Cell Melanoma Res 3:360–362

    Article  Google Scholar 

  • Jin Y, Andersen G, Yorgov D, Ferrara TM, Ben S (2016) Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet 11:1418–1424

    Google Scholar 

  • Jin Y, Roberts GHL, Ferrara TM, Ben S, van Geel N et al (2019) Early-onset autoimmune vitiligo associated with an enhancer variant haplotype that upregulates class II HLA expression. Nat Commun 1:391

    Article  Google Scholar 

  • Joetham A, Takeda K, Taube C, Miyahara N, Matsubara S et al (2007) Naturally occurring lung CD4(+)CD25(+) T cell regulation of airway allergic responses depends on IL-10 induction of TGF-beta. J Immunol 3:1433–1442

    Article  Google Scholar 

  • Johnson P, Ruffell B (2009) CD44 and its role in inflammation and inflammatory diseases. Inflamm Allergy Drug Targets 3:208–220

    Article  Google Scholar 

  • Ka C, Sc C, Ys K, Hb K, Ht C et al (2009) Association of thymic stromal lymphopoietin gene -847C>T polymorphism in generalized vitiligo. Exp Dermatol 12:1073–1075

    Google Scholar 

  • Kachru RB, Telischi M, Mittal KK (1978) HLA antigens and vitiligo in an American black population. Tissue Antigens 5:396–397

    Article  Google Scholar 

  • Kakourou T (2009) Vitiligo in children. World J Pediatr 4:265–268

    Article  Google Scholar 

  • Kang X, Liang J, Chai L, Peng L, Yu S (2017) Association of HLA-DRB1* 1201/02, DRB1* 0701/02, DQA1* 0302 and DQB1* 0303 Alleles with population Uygur patients of vitiligo. Clon Transgen 157:2

    Google Scholar 

  • Karam RA, Zidan HE, Khater MH (2017) Genetic variants of interferon-gamma and its mRNA expression and inflammatory parameters in the pathogenesis of vitiligo. Biochem Cell Biol 4:474–481

    Article  Google Scholar 

  • Karkucak M, Solak B, Turan H, Uslu E, Yakut T et al (2015) MBL2 gene polymorphism and risk of vitiligo in Turkish patients. Int J Hum Genet 3:93–96

    Article  Google Scholar 

  • Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M et al (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 7089:101–105

    Article  Google Scholar 

  • Kavurma MM, Khachigian LM (2003) Signaling and transcriptional control of Fas ligand gene expression. Cell Death Differ 1:36–44

    Article  Google Scholar 

  • Kemp EH, Gawkrodger DJ, Watson PF, Weetman AP (1998) Autoantibodies to human melanocyte-specific protein Pmel17 in the sera of vitiligo patients: a sensitive and quantitative radioimmunoassay (RIA). Clin Exp Immunol 3:333–338

    Google Scholar 

  • Kent G, Al-Abadie M (1996) Psychologic effects of vitiligo: a critical incident analysis. J Am Acad Dermatol 6:895–898

    Article  Google Scholar 

  • Khan R, Gupta S, Sharma A (2012) Circulatory levels of T-cell cytokines (interleukin [IL]-2, IL-4, IL-17, and transforming growth factor-β) in patients with vitiligo. J Am Acad Dermatol 3:510–511

    Article  Google Scholar 

  • Kim NH, Lee AY (2010) Reduced aquaporin3 expression and survival of keratinocytes in the depigmented epidermis of vitiligo. J Invest Dermatol 9:2231–2239

    Article  Google Scholar 

  • Kim J, Lahl K, Hori S, Loddenkemper C, Chaudhry A et al (2009) Cutting edge: depletion of Foxp3 + cells leads to induction of autoimmunity by specific ablation of regulatory T cells in genetically targeted mice. J Immunol 12:7631–7634

    Article  Google Scholar 

  • Kingo K, Philips MA, Aunin E, Luuk H, Karelson M et al (2006) MYG1, novel melanocyte related gene, has elevated expression in vitiligo. J Dermatol Sci 2:119–122

    Article  Google Scholar 

  • Kouki T, Sawai Y, Gardine CA, Fisfalen ME, Alegre ML et al (2000) CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves’ disease. J Immunol 11:6606–6611

    Article  Google Scholar 

  • Kristiansen OP, Karlsen AE, Larsen ZM, Johannesen J, Pociot F et al (2004) Identification of a type 1 diabetes-associated CD4 promoter haplotype with high constitutive activity. Scand J Immunol 6:582–591

    Article  Google Scholar 

  • Krüger C, Schallreuter KU (2012) A review of the worldwide prevalence of vitiligo in children/adolescents and adults. Int J Dermatol 10:1206–1212

    Article  Google Scholar 

  • Kumeta H, Sakakibara H, Enokizono Y, Ogura K, Horiuchi M et al (2014) The N-terminal domain of TIR domain-containing adaptor molecule-1, TICAM-1. J Biomol NMR 3:227–230

    Article  Google Scholar 

  • Laberge G, Mailloux CM, Gowan K, Holland P, Bennett DC et al (2005) Early disease onset and increased risk of other autoimmune diseases in familial generalized vitiligo. Pigment Cell Res 4:300–305

    Article  Google Scholar 

  • Laberge GS, Birlea SA, Fain PR, Spritz RA (2008) The PTPN22-1858C>T (R620W) functional polymorphism is associated with generalized vitiligo in the Romanian population. Pigment Cell Melanoma Res 2:206–208

    Article  Google Scholar 

  • LaBerge GS, Bennett DC, Fain PR, Spritz RA (2008) PTPN22 is genetically associated with risk of generalized vitiligo, but CTLA4 is not. J Invest Dermatol 7:1757–1762

    Article  Google Scholar 

  • Laddha NC, Dwivedi M, Begum R (2002) Vitiligo: a manifestation of apoptosis? Am J Clin Dermatol 5:301–308

    Google Scholar 

  • Laddha NC, Dwivedi M, Shajil EM, Prajapati H, Marfatia YS et al (2008) Association of PTPN22 1858C/T polymorphism with vitiligo susceptibility in Gujarat population. J Dermatol Sci 3:260–262

    Article  Google Scholar 

  • Laddha NC, Dwivedi M, Begum R, Shahbaz ANS, Namazi RSM et al (2012) Tumor necrosis factor a promotor polymorphism and nonsegmental vitiligo: a molecular susceptibility marker in Egyptian women. PLoS One 1–17

    Google Scholar 

  • Laddha NC, Dwivedi M, Mansuri MS, Gani AR, Ansarullah M et al (2013) Vitiligo: Interplay between oxidative stress and immune system. Exp Dermatol 4:245–250

    Article  Google Scholar 

  • Laddha NC, Dwivedi M, Mansuri MS, Singh M, Patel HH et al (2014) Association of neuropeptide Y (NPY), interleukin-1B (IL1B) genetic variants and correlation of IL1B transcript levels with vitiligo susceptibility. PLoS One 9

    Google Scholar 

  • Lamkanfi M, Kanneganti T-D (2010) Caspase-7: a protease involved in apoptosis and inflammation. Int J Biochem Cell Biol 1:21–24

    Article  Google Scholar 

  • Le Borgne M, Etchart N, Goubier A, Lira SA, Sirard JC et al (2006) Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 2:191–201

    Article  Google Scholar 

  • Le Poole IC, Luiten RM (2008) Autoimmune etiology of generalized vitiligo. Curr Dir Autoimmun 227–243

    Google Scholar 

  • Le Poole IC, Sarangarajan R, Zhao Y, Stennett LS, Brown TL et al (2001) “VIT1”, a novel gene associated with vitiligo. Pigment Cell Res 6:475–484

    Google Scholar 

  • Lee YH, Bae SC (2015) Associations between TNF-α polymorphisms and susceptibility to rheumatoid arthritis and vitiligo: a meta-analysis. Genet Mol Res 2:5548–5559

    Article  Google Scholar 

  • Lernerab AB (1959) Vitiligo. J Invest Dermatol 2. Part 2:285–310

    Google Scholar 

  • Levai M (1958) A study of certain contributory factors in the development of vitiligo in South Indian patients. AMA Arch Derm 3:364–371

    Article  Google Scholar 

  • Levandowski CB, Mailloux CM, Ferrara TM, Gowan K, Ben S et al (2013) NLRP1 haplotypes associated with vitiligo and autoimmunity increase interleukin-1β processing via the NLRP1 inflammasome. Proc Natl Acad Sci USA 8:2952–2956

    Article  Google Scholar 

  • Li M, Sun D, Li C, Zhang Z, Gao L et al (2008) Functional polymorphisms of the FAS gene associated with risk of vitiligo in Chinese populations: a case-control analysis. J Invest Dermatol 12:2820–2824

    Article  Google Scholar 

  • Li Z, Ren J, Niu X, Xu Q, Wang X et al (2016) Meta-analysis of the association between vitiligo and human leukocyte antigen-A. Biomed Res Int 5412806

    Google Scholar 

  • Liang Y, Yang S, Zhou Y, Gui J, Ren Y et al (2007) Evidence for two susceptibility loci on chromosomes 22q12 and 6p21-p22 in Chinese generalized vitiligo families. J Invest Dermatol 11:2552–2557

    Article  Google Scholar 

  • Liou H-C, Boothby MR, Finn PW, Davidon R, Nabavi N et al (1990) A new member of the leucine zipper class of proteins that binds to the HLA DR alpha promoter. Science (80–) 4950:1581–1584

    Google Scholar 

  • Lili Y, Yi W, Ji Y, Yue S, Weimin S (2012) Global activation of CD8+ cytotoxic T lymphocytes correlates with an impairment in regulatory T cells in patients with generalized vitiligo. PLoS One 5

    Google Scholar 

  • Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC (2003) Aire regulates negative selection of organ-specific T cells. Nat Immunol 4:350–354

    Article  CAS  PubMed  Google Scholar 

  • Liu JB, Li M, Chen H, Zhong SQ, Yang S et al (2007) Association of vitiligo with HLA-A2: a meta-analysis. J Eur Acad Dermatol Venereol 2:205–213

    Google Scholar 

  • Liu J, Tang H, Zuo X, Liang B, Wang P et al (2012) A single nucleotide polymorphism rs9468925 of MHC region is associated with clinical features of generalized vitiligo in Chinese Han population. J Eur Acad Dermatol Venereol 9:1137–1141

    Article  Google Scholar 

  • Lorini R, Orecchia G, Martinetti M, Dugoujon JM, Cuccia M (1992) Autoimmunity in vitiligo: relationship with HLA, Gm and Km polymorphisms. Autoimmunity 4:255–260

    Article  Google Scholar 

  • Lv Y, Lv Y, Li Q, Lei W, Luan Q et al (2013) Association of ACE gene I/D polymorphism with vitiligo: a meta-analysis. Arch Dermatol Res 5:365–370

    Article  Google Scholar 

  • Macaron C, Winter RJ, Traisman HS, Kahan BD, Lasser AE et al (1977) Vitiligo and juvenile diabetes mellitus. Arch Dermatol 11:1515–1517

    Article  Google Scholar 

  • Maier S, Paulsson M, Hartmann U (2008) The widely expressed extracellular matrix protein SMOC-2 promotes keratinocyte attachment and migration. Exp Cell Res 13:2477–2487

    Article  Google Scholar 

  • Majumder PP, Nordlund JJ, Nath SK (1993) Pattern of familial aggregation of vitiligo. Arch Dermatol 8:994–998

    Article  Google Scholar 

  • Martínez‐Esparza M, Jiménez‐Cervantes C, Solano F, Lozano JA, García‐Borrón JC (1998) Mechanisms of melanogenesis inhibition by tumor necrosis factor-alpha in B16/F10 mouse melanoma cells. Eur J Biochem 1:139–146

    Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 2:417–426

    Article  Google Scholar 

  • Metzker A, Zamir R, Gazit E, David M, Feuerman EJ (1980) Vitiligo and the HLA system. Dermatologica 2:100–105

    Article  Google Scholar 

  • Minev M, Tonkin N, Martinova F (1985) Association of the HLA system with vitiligo. Vestn Dermatol Venerol 5:41–42

    Google Scholar 

  • Miyake K, Nakashima H, Akahoshi M, Inoue Y, Nagano S et al (2002) Genetically determined interferon-gamma production influences the histological phenotype of lupus nephritis. Rheumatol 5:518–524

    Article  Google Scholar 

  • Moellmann G, Klein-Angerer S, Scollay DA, Nordlund JJ, Lerner AB (1982) Extracellular granular material and degeneration of keratinocytes in the normally pigmented epidermis of patients with vitiligo. J Invest Dermatol 5:321–330

    Article  Google Scholar 

  • Mohr J (1951) Vitiligo in a pair of monovular twins. Acta Genet Stat Med 3:252–255

    Google Scholar 

  • Molho-Pessach V, Lerer I, Abeliovich D, Agha Z, Libdeh AA et al (2008) The H syndrome is caused by mutations in the nucleoside transporter hENT3. Am J Hum Genet 4:529–534

    Article  Google Scholar 

  • Moretti S, Spallanzani A, Amato L, Hautmann G, Gallerani I et al (2002) Vitiligo and epidermal microenvironment: Possible involvement of keratinocyte-derived cytokines. Arch Dermatol 2:273–274

    Article  Google Scholar 

  • Mosenson JA, Zloza A, Klarquist J, Barfuss AJ, Guevara-Patino JA et al (2012) HSP70i is a critical component of the immune response leading to vitiligo. Pigment Cell Melanoma Res 1:88–98

    Article  Google Scholar 

  • Nakagawa H, Otuka F, Kukita A, Mizoguchi M, Ito H et al (1980) Histocompatible antigens in vitiligo vulgaris II (author’s transl). Nihon Hifuka Gakkai Zasshi 10:939–941

    Google Scholar 

  • Nakashima H, Miyake K, Inoue Y, Shimizu S, Akahoshi M et al (2002) Association between IL-4 genotype and IL-4 production in the Japanese population. Genes Immun 2:107–109

    Google Scholar 

  • Namian AM, Shahbaz S, Salmanpoor R, Namazi MR, Dehghani F et al (2009) Association of interferon-gamma and tumor necrosis factor alpha polymorphisms with susceptibility to vitiligo in Iranian patients. Arch Dermatol Res 1:21–25

    Google Scholar 

  • Nath SK, Majumder PP, Nordlund JJ (1994) Genetic epidemiology of vitiligo: multilocus recessivity cross-validated. Am J Hum Genet 5:981–990

    Google Scholar 

  • Nath SK, Kelly JA, Namjou B, Lam T, Bruner GR et al (2001) Evidence for a susceptibility gene, SLEV1, on chromosome 17p13 in families with vitiligo-related systemic lupus erythematosus. Am J Hum Genet 6:1401–1406

    Article  Google Scholar 

  • Naughton GK, Reggiardo D, Bystryn JC (1986) Correlation between vitiligo antibodies and extent of depigmentation in vitiligo. J Am Acad Dermatol 5(Pt 1):978–981

    Google Scholar 

  • Naylor SL, Sakaguchi AY, Shows TB, Law ML, Goeddel DV et al (1983) Human immune interferon gene is located on chromosome 12. J Exp Med 3:1020–1027

    Article  Google Scholar 

  • Nejad SB, Qadim HH, Nazeman L, Fadaii R, Goldust M (2013) Frequency of autoimmune diseases in those suffering from vitiligo in comparison with normal population. Pak J Biol Sci 12:570–574

    Article  Google Scholar 

  • Nie G, Qi JH, Huang CW, Yang T, Shi N et al (2015) Meta-analysis of the TNF-α-308G/A polymorphism and vitiligo risk. Genet Mol Res 4:17296–17304

    Article  Google Scholar 

  • Nordlund JJ, Lerner AB (1982) Vitiligo. It is important. Arch Dermatol 1:5–8

    Article  Google Scholar 

  • Nordlund JJ, Boissy RE, Hearing VJ, King RA, Oetting WS et al (2007) The pigmentary system: physiology and pathophysiology, 2nd edn. Pigment Syst Physiol Pathophysiol Second Ed 1–1229

    Google Scholar 

  • Norris DA, Horikawa T, Morelli JG (1994) Melanocyte destruction and repopulation in vitiligo. Pigment Cell Res 4:193–203

    Article  Google Scholar 

  • O’Garra A, Vieira PL, Vieira P, Goldfeld AE (2004) IL-10-producing and naturally occurring CD4+ Tregs: limiting collateral damage. J Clin Invest 10:1372–1378

    Google Scholar 

  • Ochi Y, DeGroot LJ (1969) Vitiligo in Graves’ disease. Ann Intern Med 5:935–940

    Article  Google Scholar 

  • Odeh AMA, Bulatova NR, Yousef AF (2019) Genetic Association of TNF-alpha polymorphisms with generalized vitiligo in Jordanian population. J Genet Disord Genet Med 1:1–4

    Google Scholar 

  • Onay H, Pehlivan M, Alper S, Ozkinay F, Pehlivan S (2007) Might there be a link between mannose binding lectin and vitiligo? Eur J Dermatol 2:146–148

    Google Scholar 

  • Ongenae K, Dierckxsens L, Brochez L, van Geel N, Naeyaert JM (2005) Quality of life and stigmatization profile in a cohort of vitiligo patients and effect of the use of camouflage. Dermatology 4:279–285

    Article  Google Scholar 

  • Orecchia G, Perfetti L, Malagoli P, Borghini F, Kipervarg Y (1992) Vitiligo is associated with a significant increase in HLA-A30, Cw6 and DQw3 and a decrease in C4AQ0 in northern Italian patients. Dermatology 2:123–127

    Article  Google Scholar 

  • Ortonne JP, Bose SK (1993) Vitiligo: where do we stand? Pigment Cell Res 2:61–72

    Article  Google Scholar 

  • Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T (2003) TICAM-1, an adaptor molecule that participates in Toll-like receptor 3–mediated interferon-β induction. Nat Immunol 2:161–167

    Article  Google Scholar 

  • Pan JY, Theng C, Lee J, Goh BK (2009) Vitiligo as an adverse reaction to topical diphencyprone. Ann Acad Med Singap 3:276–277

    Article  Google Scholar 

  • Papadopoulos KI, Melander O, Orho-Melander M, Groop LC, Carlsson M et al (2000) Angiotensin converting enzyme (ACE) gene polymorphism in sarcoidosis in relation to associated autoimmune diseases. J Intern Med 1:71–77

    Article  Google Scholar 

  • Patwardhan M, Pradhan V, Taylor LH, Thakkar V, Kharkar V et al (2013) The angiotensin-converting enzyme gene insertion/deletion polymorphism in Indian patients with vitiligo: a case-control study and meta-analysis. Br J Dermatol 6:1195–1204

    Article  Google Scholar 

  • Pawelek J, Körner A, Bergstrom A, Bologna J (1980) New regulators of melanin biosynthesis and the autodestruction of melanoma cells. Nature 5773:617–619

    Article  Google Scholar 

  • Peach RJ, Bajorath J, Naemura J, Leytze G, Greene J et al (1995) Both extracellular immunoglobin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28. J Biol Chem 36:21181–21187

    Article  Google Scholar 

  • Pehlivan S, Ozkinay F, Alper S, Onay H, Yuksel E et al (2009) Association between IL4 (-590), ACE (I)/(D), CCR5 (Delta32), CTLA4 (+49) and IL1-RN (VNTR in intron 2) gene polymorphisms and vitiligo. Eur J Dermatol 2:126–128

    Google Scholar 

  • Peterson P, Org T, Rebane A (2008) Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat Rev Immunol 12:948–957

    Article  Google Scholar 

  • Philips MA, Kingo K, Karelson M, Rätsep R, Aunin E et al (2010) Promoter polymorphism-119C/G in MYG1 (C12orf10) gene is related to vitiligo susceptibility and Arg4Gln affects mitochondrial entrance of Myg1. BMC Med Genet 11:56

    Google Scholar 

  • Poloy A, Tibor L, Kramer J, Anh-Tuan N, Kraszits E et al (1991) HLA-DR1 is associated with vitiligo. Immunol Lett 1:59–62

    Google Scholar 

  • Pravica V, Asderakis A, Perrey C, Hajeer A, Sinnott PJ et al (1999) In vitro production of IFN-gamma correlates with CA repeat polymorphism in the human IFN-gamma gene. Eur J Immunogenet 1:1–3

    Article  Google Scholar 

  • Pravica V, Perrey C, Stevens A, Lee JH, Hutchinson IV (2000) A single nucleotide polymorphism in the first intron of the human IFN-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-gamma production. Hum Immunol 9:863–866

    Article  Google Scholar 

  • Qi Z, Xie S, Chen R, Aisa HA, Hon GC et al (2018) Tissue-specific gene expression prediction associates vitiligo with SUOX through an active enhancer. bioRxiv: 337196

    Google Scholar 

  • Quan C, Ren YQ, Xiang LH, Sun LD, Xu AE et al (2010) Genome-wide association study for vitiligo identifies susceptibility loci at 6q27 and the MHC. Nat Genet 7:614–618

    Article  Google Scholar 

  • Rajendiran KS, Rajappa M, Chandrashekar L, Thappa DM (2018) Association of PTPN22 gene polymorphism with non-segmental vitiligo in South Indian Tamils. Postep Dermatol Alergol 3:280–285

    Article  Google Scholar 

  • Rajendiran KS, Rajappa M, Chandrashekar L, Thappa DM, Devaraju P (2020) Association analysis of tumor necrosis factor alpha promoter polymorphisms and vitiligo susceptibility in South Indian Tamils. Dermatology 6:554–564

    Article  Google Scholar 

  • Ramire LD, Marcos EV, Godoy DA, de Souza-Santana FC (2016) Association of class I and II HLA alleles and haplotypes with susceptibility to vitiligo: a study of patients with vitiligo from southeast Brazil. Int J Dermatol 6:e347–e355

    Article  Google Scholar 

  • Rashed L, Abdel Hay R, Mahmoud R, Hasan N, Zahra A et al (2015) Association of angiotensin-converting enzyme (ACE) gene polymorphism with inflammation and cellular cytotoxicity in vitiligo patients. PLoS One 7:e0132915

    Google Scholar 

  • Ren Y, Yang S, Xu S, Gao M, Huang W et al (2009) Genetic variation of promoter sequence modulates XBP1 expression and genetic risk for vitiligo. PLoS Genet 6:e1000523

    Google Scholar 

  • Retornaz G, Betuel H, Ortonne JP, Thivolet J (1976) HL-A antigens and vitiligo. Br J Dermatol 2:173–175

    Article  Google Scholar 

  • Ricard AS, Pain C, Daubos A, Ezzedine K, Lamrissi-Garcia I et al (2012) Study of CCN3 (NOV) and DDR1 in normal melanocytes and vitiligo skin. Exp Dermatol 6:411–416

    Article  Google Scholar 

  • Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P et al (1990) An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 4:1343–1346

    Article  Google Scholar 

  • Rina W (2016) Association of single nucleotide polymorphisms in the IL2RA-RBM17 region with vitiligo in the Chinese Mongolian population. Chiense J Dermatol 6:406–410

    Google Scholar 

  • Rocnik EF, Liu P, Sato K, Walsh K, Vaziri C (2006) The novel SPARC family member SMOC-2 potentiates angiogenic growth factor activity. J Biol Chem 32:22855–22864

    Article  Google Scholar 

  • Rodriguez-Castro KI, Franceschi M, Miraglia C, Russo M, Nouvenne A et al (2018) Autoimmune diseases in autoimmune atrophic gastritis. Acta Biomed 8-s:100–103

    Google Scholar 

  • Saleh NF, Nabil N, Bassiouny DA, Khorshied MM (2014) Tumor necrosis factor α promotor polymorphism and nonsegmental vitiligo: a molecular susceptibility marker in Egyptian women. J Egypt Women’s Dermatol Soc 2:109–112

    Article  Google Scholar 

  • Salinas-Santander M, Díaz-García D, Rojas-Martínez A, Cantú-Salinas C, Sánchez-Domínguez C et al (2012) Tumor necrosis factor-α-308G/A polymorphism is associated with active vitiligo vulgaris in a northeastern Mexican population. Exp Ther Med 5:893–897

    Article  Google Scholar 

  • Sasaki S, Ito E, Toki T, Maekawa T, Kanezaki R et al (2000) Cloning and expression of human B cell-specific transcription factor BACH2 mapped to chromosome 6q15. Oncogene 33:3739–3749

    Article  Google Scholar 

  • Schallreuter KU, Wood JM, Berger J (1991) Low catalase levels in the epidermis of patients with vitiligo. J Invest Dermatol 6:1081–1085

    Article  Google Scholar 

  • Schallreuter KU, Levenig C, Kühnl P, Löliger C, Hohl-Tehari M et al (1993) Histocompatibility antigens in vitiligo: Hamburg study on 102 patients from northern Germany. Dermatology 3:186–192

    Article  Google Scholar 

  • Schallreuter KU, Lemke R, Brandt O, Schwartz R, Westhofen M et al (1994) Vitiligo and other diseases: coexistence or true association? Hamburg study on 321 patients. Dermatology 4:269–275

    Article  Google Scholar 

  • Scholzen TE, Ständer S, Riemann H, Brzoska T, Luger TA (2003) Modulation of cutaneous inflammation by angiotensin-converting enzyme. J Immunol 7:3866–3873

    Article  Google Scholar 

  • Schutyser E, Struyf S, Van Damme J (2003) The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev 5:409–426

    Article  Google Scholar 

  • Shah F, Patel S, Begum R, Dwivedi M (2021) Emerging role of tissue resident memory T cells in vitiligo: from pathogenesis to therapeutics. Autoimmun Rev 8

    Google Scholar 

  • Shajil EM, Chatterjee S, Agrawal D, Bagchi T, Begum R (2006) Vitiligo: pathomechanisms and genetic polymorphism of susceptible genes. Indian J Exp Biol 7:526–539

    Google Scholar 

  • Sharma K, Wang RX, Zhang LY, Yin DL, Luo XY et al (2000) Death the Fas way: regulation and pathophysiology of CD95 and its ligand. Pharmacol Ther 3:333–347

    Article  Google Scholar 

  • Shin HD, Winkler C, Stephens JC, Bream J, Young H et al (2000) Genetic restriction of HIV-1 pathogenesis to AIDS by promoter alleles of IL10. Proc Natl Acad Sci USA 26:14467–14472

    Article  Google Scholar 

  • Shin MK, Im SH, Park HJ, Kim SK, Yim SV et al (2011) Association study between polymorphisms of CD28, CTLA4 and ICOS and non-segmental vitiligo in a Korean population. Exp Ther Med 6:1145–1149

    Article  Google Scholar 

  • Sidi E, Bourgeois-Gavardin J (1953) Treatment of vitiligo with Ammi majus. Press Med 21:436–440

    Google Scholar 

  • Siemens HW (1953) Heredity problem in vitiligo. Ned Tijdschr Geneeskd 38:2449–2450

    Google Scholar 

  • Siminovitch KA (2004) PTPN22 and autoimmune disease. Nat Genet 12:1248–1249

    Article  Google Scholar 

  • Singh A, Sharma P, Kar HK, Sharma VK, Tembhre MK et al (2012) HLA alleles and amino-acid signatures of the peptide-binding pockets of HLA molecules in vitiligo. J Invest Dermatol 1:124–134

    Article  Google Scholar 

  • Singh M, Mansuri MS, Jadeja SD, Marfatia YS, Begum R (2018) Association of interleukin 1 receptor antagonist intron 2 variable number of tandem repeats polymorphism with vitiligo susceptibility in Gujarat population. Indian J Dermatol Venereol Leprol 3:285–291

    Google Scholar 

  • Song Q-H, Shen Z, Xing X-J, Yin R, Wu Y-Z et al (2012) An association study of single nucleotide polymorphisms of the FOXP3 intron-1 and the risk of Psoriasis vulgaris. Indian J Biochem Biophys 1:25–35

    Google Scholar 

  • Song P, Wang XW, Li HX, Li K, Liu L et al (2013) Association between FOXP3 polymorphisms and vitiligo in a Han Chinese population. Br J Dermatol 3:571–578

    Article  Google Scholar 

  • Song GG, Bae SC, Kim JH, Lee YH (2015) The angiotensin-converting enzyme insertion/deletion polymorphism and susceptibility to rheumatoid arthritis, vitiligo and psoriasis: a meta-analysis. J Renin Angiotensin Aldosterone Syst 1:195–202

    Article  Google Scholar 

  • Spits H, de Waal MR (1992) Functional characterization of human IL-10. Int Arch Allergy Immunol 1:8–15

    Article  Google Scholar 

  • Spritz RA (2007) The genetics of generalized vitiligo and associated autoimmune diseases. Pigment Cell Res 4:271–278

    Article  Google Scholar 

  • Spritz RA (2008) The genetics of generalized vitiligo. Curr Dir Autoimmun 244–257

    Google Scholar 

  • Spritz RA (2010a) Shared genetic relationships underlying generalized vitiligo and autoimmune thyroid disease. Thyroid 7:745–754

    Article  Google Scholar 

  • Spritz RA (2010b) The genetics of generalized vitiligo: autoimmune pathways and an inverse relationship with malignant melanoma. Genome Med 10.

    Google Scholar 

  • Spritz RA (2011) Recent progress in the genetics of generalized vitiligo. J Genet Genomics 7:271–278

    Article  Google Scholar 

  • Spritz RA (2012) Six decades of vitiligo genetics: genome-wide studies provide insights into autoimmune pathogenesis. J Invest Dermatol 2:268–273

    Article  Google Scholar 

  • Spritz RA, Andersen GHL (2017) Genetics of Vitiligo. Dermatol Clin 2:245–255

    Article  Google Scholar 

  • Spritz RA, Gowan K, Bennett DC, Fain PR (2004) Novel vitiligo susceptibility loci on chromosomes 7 (AIS2) and 8 (AIS3), confirmation of SLEV1 on chromosome 17, and their roles in an autoimmune diathesis. Am J Hum Genet 1:188–191

    Article  Google Scholar 

  • Strömberg S, Björklund MG, Asplund A, Rimini R, Lundeberg J et al (2008) Transcriptional profiling of melanocytes from patients with vitiligo vulgaris. Pigment Cell Melanoma Res 2:162–171

    Google Scholar 

  • Stuttgen G (1950) Hereditary aspects of vitiligo. Z Haut Geschlechtskr 11:451–457

    Google Scholar 

  • Sun Y, Zuo X, Zheng X, Zhou F, Liang B et al (2014) A comprehensive association analysis confirms ZMIZ1 to be a susceptibility gene for vitiligo in Chinese population. J Med Genet 5:345–353

    Article  Google Scholar 

  • Taher ZA, Lauzon G, Maguiness S, Dytoc MT (2009) Analysis of interleukin-10 levels in lesions of vitiligo following treatment with topical tacrolimus. Br J Dermatol 3:654–659

    Article  Google Scholar 

  • Taïeb A, Picardo M (2007) The definition and assessment of vitiligo: a consensus report of the Vitiligo European Task Force. Pigment Cell Res 1:27–35

    Article  Google Scholar 

  • Taïeb A, Picardo M (2009) Clinical practice. Vitiligo. N Engl J Med 2:160–169

    Article  Google Scholar 

  • Tang XF, Zhang Z, Hu DY, Xu AE, Zhou HS et al (2013) Association analyses identify three susceptibility Loci for vitiligo in the Chinese Han population. J Invest Dermatol 2:403–410

    Article  Google Scholar 

  • Tang L, Li J, Fu W, Wu W, Xu J (2019) Suppression of FADS1 induces ROS generation, cell cycle arrest, and apoptosis in melanocytes: implications for vitiligo. Aging (albany NY) 24:11829–11843

    Article  Google Scholar 

  • Tarlow JK, Blakemore AI, Lennard A, Solari R, Hughes HN et al (1993) Polymorphism in human IL-1 receptor antagonist gene intron 2 is caused by variable numbers of an 86-bp tandem repeat. Hum Genet 4:403–404

    Google Scholar 

  • Taştan HB, Akar A, Orkunoğlu FE, Arca E, Inal A (2004) Association of HLA class I antigens and HLA class II alleles with vitiligo in a Turkish population. Pigment Cell Res 2:181–184

    Article  Google Scholar 

  • Taştan HB, Akar A, Orkunoğlu FE, Arca E, İnal A (2004) Association of HLA class I antigens and HLA class II alleles with vitiligo in a Turkish population. Pigment Cell Res 2:181–184

    Google Scholar 

  • Tazi-Ahnini R, McDonagh AJ, Wengraf DA, Lovewell TR, Vasilopoulos Y et al (2008) The autoimmune regulator gene (AIRE) is strongly associated with vitiligo. Br J Dermatol 3:591–596

    Google Scholar 

  • Teindel H (1950) Familial vitiligo. Z Haut Geschlechtskr 11:457–462

    Google Scholar 

  • Tembhre MK, Sharma VK, Sharma A, Chattopadhyay P, Gupta S (2013) T helper and regulatory T cell cytokine profile in active, stable and narrow band ultraviolet B treated generalized vitiligo. Clin Chim Acta 27–32

    Google Scholar 

  • The MHC Sequencing Consortium (1999) Complete sequence and gene map of a human major histocompatibility complex. Nature 6756:921–923

    Google Scholar 

  • Theos AC, Truschel ST, Raposo G, Marks MS (2005) The Silver locus product Pmel17/gp100/Silv/ME20: controversial in name and in function. Pigment Cell Res 5:322–336

    Article  Google Scholar 

  • Tippisetty S, Ishaq M, Komaravalli PL, Jahan P (2011) Angiotensin converting enzyme (ACE) gene polymorphism in vitiligo: protective and predisposing effects of genotypes in disease susceptibility and progression. Eur J Dermatol 2:173–177

    Google Scholar 

  • Toama MAK, Khattab FM, Marei A (2019) Association of human leukocyte antigen-DRB1 with the response in patients with vitiligo. Egypt J Dermatol Venerol 2:71

    Google Scholar 

  • Trapani JA, Sutton VR (2003) Granzyme B: pro-apoptotic, antiviral and antitumor functions. Curr Opin Immunol 5:533–543

    Article  Google Scholar 

  • Tripathi RK, Giebel LB, Strunk KM, Spritz RA (1991) A polymorphism of the human tyrosinase gene is associated with temperature-sensitive enzymatic activity. Gene Expr J Liver Res 2:103–110

    Google Scholar 

  • Trowsdale J (2011) The MHC, disease and selection. Immunol Lett 1–2:1–8

    Article  Google Scholar 

  • Tschopp J, Martinon F, Burns K (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 2:95–104

    Article  Google Scholar 

  • Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ et al (1997) An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 1:1–8

    Article  Google Scholar 

  • Türsen Ü, Kaya Tİ, Bulut B, Erdal ME, Ay Öİ et al (2014) Association of FAS gene promoter functional polymorphisms and the risk of vitiligo in Turkish populations. J Turkish Acad Dermatol 3

    Google Scholar 

  • Valia AK, Dutta PK (1996) IADVL text book and atlas of dermatology, vol-II, and 2

    Google Scholar 

  • Valsecchi R, Bontempelli M, Cainelli T, Leghissa P, Di Landro A (1995) Vitiligo is associated with a significant increase in HLA-DR6 and a decrease in DQw2 antigens in Northern Italian patients. J Eur Acad Dermatol Venereol 1:9–14

    Google Scholar 

  • van den Boorn JG, Konijnenberg D, Dellemijn TAM, van der Veen JPW, Bos JD et al (2009) Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J Invest Dermatol 9:2220–2232

    Article  Google Scholar 

  • Veiga-Castelli L, Oliveira ML, Pereira A, Debortoli G, Marcorin L et al (2019) HLA-G polymorphisms are associated with non-segmental vitiligo among Brazilians. Biomolecules 9

    Google Scholar 

  • Venkataram MN, White AG, Leeny WA, Al Suwaid AR, Daar AS (1995) HLA antigens in Omani patients with vitiligo. Clin Exp Dermatol 1:35–37

    Article  Google Scholar 

  • Venneker GT, Westerhof W, de Vries IJ, Drayer NM, Wolthers BG et al (1992) Molecular heterogeneity of the fourth component of complement (C4) and its genes in vitiligo. J Invest Dermatol 6:853–858

    Article  Google Scholar 

  • Vogel F (1956) Dermatological observations on uniovular twins: vitiligo, ichthyosis simplex, psoriasis. Z Haut Geschlechtskr 1:1–4

    Google Scholar 

  • Wang L, Tsai C-C (2008) Atrophin proteins: an overview of a new class of nuclear receptor corepressors. Nucl Recept Signal 1:nrs. 06009

    Google Scholar 

  • Wang HN, Qi YM, Gao YF et al. Frequencies of HLA-A2 among patients with tumors, chronic hepatitis C and vitiligo in Henan Province. J Zhengzhou Univ Med Sci 3:349–351

    Google Scholar 

  • Wańkowicz-Kalińska A, van den Wijngaard RMJGJ, Tigges BJ, Westerhof W, Ogg GS et al (2003) Immunopolarization of CD4+ and CD8+ T cells to Type-1–like is associated with melanocyte loss in human vitiligo. Lab Investig 5:683–695

    Article  Google Scholar 

  • Westerhof W, d’Ischia M (2007) Vitiligo puzzle: the pieces fall in place. Pigment Cell Res 5:345–359

    Google Scholar 

  • Weston A, Sommerville J (2006) Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation. Nucleic Acids Res 10:3082–3094

    Article  Google Scholar 

  • Wu CS, Yu CL, Wu CS, Lan CC, Yu HS (2004) Narrow-band ultraviolet-B stimulates proliferation and migration of cultured melanocytes. Exp Dermatol 12:755–763

    Article  Google Scholar 

  • Wu J, Zhou M, Wan Y, Xu A (2013) CD8+ T cells from vitiligo perilesional margins induce autologous melanocyte apoptosis. Mol Med Rep 1:237–241

    Article  Google Scholar 

  • Wu D, Shi D, Zhu X (2015) The association between tumor necrosis factor-α-308 G/A polymorphism and risk for vitiligo: a meta-analysis. Int J Dermatol 9:1045–1053

    Article  Google Scholar 

  • Xiao S, Jin H, Korn T, Liu SM, Oukka M et al (2008) Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol 4:2277–2284

    Article  Google Scholar 

  • Xu W, Lin FQ, Liu JF, Fu LF, Hong WS et al (2013) Impact on tyrosinase expression and export from endoplasmic reticulum by inhibition of 26S proteasome. Zhonghua Yi Xue Za Zhi 2:123–127

    Google Scholar 

  • Xu M, Liu Y, Liu Y, Li X, Chen G et al (2018) Genetic polymorphisms of GZMB and vitiligo: a genetic association study based on Chinese Han population. Sci Rep 1:13001

    Article  Google Scholar 

  • Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T et al (2004) Crucial role of FOXP3 in the development and function of human CD25+ CD4+ regulatory T cells. Int Immunol 11:1643–1656

    Article  Google Scholar 

  • Yang S, Wang J-Y, Gao M, Liu H-S, Sun L-D et al (2005) Association of HLA-DQA1 and DQB1 genes with vitiligo in Chinese Hans. Int J Dermatol 12:1022–1027

    Article  Google Scholar 

  • Yazici AC, Erdal ME, Kaya TI, Ikizoglu G, Savasoglu K et al (2006) Lack of association with TNF-alpha-308 promoter polymorphism in patients with vitiligo. Arch Dermatol Res 1:46–49

    Google Scholar 

  • Yildiz SH, Yildirim A, Özuğuz P, Erdoğan MÖ, Kaçar SD et al (2016) 119C/G in MYG1 gene and 49A/G in CTLA4 gene polymorphisms in Turkish patients with vitiligo. J Adv Intern Med 1:1–5

    Google Scholar 

  • Yohn JJ, Critelli M, Lyons MB, Norris DA (1990) Modulation of melanocyte intercellular adhesion molecule-1 by immune cytokines. J Invest Dermatol 2:233–237

    Google Scholar 

  • Yun JY, Uhm YK, Kim HJ, Lim SH, Chung JH et al (2010) Transforming growth factor beta receptor II (TGFBR2) polymorphisms and the association with nonsegmental vitiligo in the Korean population. Int J Immunogenet 4:289–291

    Google Scholar 

  • Zamani M, Spaepen S, Sghar SS, Huang C, Westerhof W et al (2001) Linkage and association of HLA class II genes with vitiligo in a Dutch population. Br J Dermatol 1:90–94

    Google Scholar 

  • Zamani M, Tabatabaiefar MA, Mosayyebi S, Mashaghi A, Mansouri P (2010) Possible association of the CD4 gene polymorphism with vitiligo in an Iranian population. Clin Exp Dermatol 5:521–524

    Google Scholar 

  • Zhai Z, Liu W, Kaur M, Luo Y, Domenico J et al (2017) NLRP1 promotes tumor growth by enhancing inflammasome activation and suppressing apoptosis in metastatic melanoma. Oncogene 27:3820–3830

    Article  Google Scholar 

  • Zhang XJ, Liu HS, Liang YH, Sun LD, Wang JY et al (2004) Association of HLA class I alleles with vitiligo in Chinese Hans. J Dermatol Sci 2:165–168

    Article  Google Scholar 

  • Zhang XJ, Chen JJ, Liu JB (2005) The genetic concept of vitiligo. J Dermatol Sci 3:137–146

    Article  Google Scholar 

  • Zheng Y, Rudensky AY (2007) Foxp3 in control of the regulatory T cell lineage. Nat Immunol 5:457–462

    Article  Google Scholar 

  • Zhu KJ, Lv YM, Yin XY, Wang ZX, Sun LD et al (2011) Psoriasis regression analysis of MHC loci identifies shared genetic variants with vitiligo. PLoS One 11:e23089

    Google Scholar 

Download references

Acknowledgements

We are grateful to Uka Tarsadia University, Maliba Campus, Tarsadi, Gujarat, India for providing the facilities needed for the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Funding Sources

This work was supported by grant to Dr. Mitesh Dwivedi {ECR/2017/000858} from Science and Engineering Research Board, Department of Science & Technology (SERB-DST), New Delhi.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dwivedi, M., Laddha, N.C., Begum, R. (2022). The Immunogenetics of Vitiligo: An Approach Toward Revealing the Secret of Depigmentation. In: Rezaei, N., Rajabi, F. (eds) The Immunogenetics of Dermatologic Diseases. Advances in Experimental Medicine and Biology, vol 1367. Springer, Cham. https://doi.org/10.1007/978-3-030-92616-8_3

Download citation

Publish with us

Policies and ethics