Skip to main content

Milk Salts: Technological Significance

  • Chapter
  • First Online:
Advanced Dairy Chemistry

Abstract

Mammalian milk contains all the essential components to sustain the growth and development of the newborn suckling. Usually, this is taken to mean the protein, fat, and carbohydrate, but it also applies to the mineral components, the milk salts, including the citrate, phosphate, and chloride salts of H+, K+, Na+, Mg2+, and Ca2+, whether as ions in solution or as colloidal species complexed with the caseins. These minerals are essential for bone growth and development, for efficient cellular function or for maintaining osmolality with increasing carbohydrate (lactose) synthesis. Like the other components, all these mineral species are there for a purpose, and, until weaning, milk may often be the only source of these essential elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali, A. E., Andrews, A. T., & Cheeseman, G. C. (1980). Influence of storage of milk on casein distribution between the micellar and soluble phases and its relationship to cheesemaking parameters. The Journal of Dairy Research, 47, 371–382.

    Article  CAS  Google Scholar 

  • Allen, L. A. (1931). The mineral constituents and citric acid content of milk. The Journal of Dairy Research, 3, 1–52.

    Article  CAS  Google Scholar 

  • Ardeshirpour, L., Dann, P., Pollak, M., Wysolmerski, J., & VanHouten, J. (2006). The calcium-sensing receptor regulates PTHrP production and calcium transport in the lactating mammary gland. Bone, 38, 787–793.

    Article  CAS  PubMed  Google Scholar 

  • Augustin, M.-A. (2000). Mineral salts and their effect on milk functionality. Australian Journal of Dairy Technology, 55, 61–64.

    CAS  Google Scholar 

  • Augustin, M.-A., & Clarke, P. T. (1990). Effects of added salts on the heat stability of recombined concentrated milk. The Journal of Dairy Research, 57, 213–226.

    Article  CAS  Google Scholar 

  • Augustin, M.-A., & Clarke, P. T. (1991). Calcium ion activities of cooled and aged reconstituted and recombined milks. The Journal of Dairy Research, 58, 219–229.

    Article  Google Scholar 

  • Banks, W., Clapperton, J. L., Girdler, A. K., & Steele, W. (1984). Effect of inclusion of different forms of dietary fatty acid on the yield and composition of cow’s milk. The Journal of Dairy Research, 51, 387–395.

    Article  CAS  PubMed  Google Scholar 

  • Barbut, S., & Foegeding, E. A. (1993). Calcium-induced gelation of preheated whey protein isolate. Journal of Food Science, 58, 867–871.

    Article  CAS  Google Scholar 

  • Bijl, E., Huppertz, T., van Valenberg, H., & Holt, C. (2019). A quantitative model of the bovine casein micelle: Ion equilibria and calcium phosphate sequestration by individual caseins in bovine milk. European Biophysics Journal, 48, 45–59.

    Article  CAS  PubMed  Google Scholar 

  • Bingham, E. W., McGranaghan, M. B., Wickham, E. D., Leung, C. T., & Farrell, H. M. (1993). Properties of [Ca2++ Mg2+]-adenosine triphosphatases in the Golgi apparatus and microsomes of the lactating mammary glands of cows. Journal of Dairy Science, 76, 393–400.

    Article  CAS  PubMed  Google Scholar 

  • Blackwood, J. H., & Stirling, J. D. (1932). The absorption of milk precursors by the mammary gland. Physico-chemical aspects of milk secretion. Biochemical Journal, 26, 1127–1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolder, S. G., Hendrickx, H., Sagis, L. M. C., & van der Linden, E. (2006). Ca2+-induced cold-set gelation of whey protein isolate fibrils. Applied Rheology, 16, 258–264.

    Article  CAS  Google Scholar 

  • Braunschweig, M., & Puhan, Z. (1999). Correlation between κ-casein variants and citrate content in milk quantified by capillary electrophoresis. International Dairy Journal, 9, 709–713.

    Article  CAS  Google Scholar 

  • Breslau, B. R., Goulet, J., & Cross, R. A. (1975). Production of crystal clear bland tasting protein solution from cheese whey. Cultured Dairy Products Journal, 10, 13–14.

    Google Scholar 

  • Britten, M., & Giroux, H. J. (2001). Acid-induced gelation of whey protein polymers: Effects of pH and calcium concentration during polymerization. Food Hydrocolloids, 15, 609–617.

    Article  CAS  Google Scholar 

  • Brule, G., Maubois, J.-L., & Fauquant, J. (1974). Etude de la teneur en elements mineraux des produits obtenus lors de l’ultrafiltration du lait sur membrane. Le Lait, 54, 600–615.

    Article  CAS  Google Scholar 

  • Cadesky, L., Walkling-Ribeiro, M., Kriner, K. T., Karwe, M. V., & Moraru, C. I. (2017). Structural changes induced by high-pressure processing in micellar casein and milk protein concentrates. Journal of Dairy Science, 100, 7055–7070.

    Article  CAS  PubMed  Google Scholar 

  • Canabady-Rochelle, L. S., Sanchez, C., Mellema, M., Bot, A., Desobry, S., & Banon, S. (2007). Influence of calcium salt supplementation on calcium equilibrium in skim milk during pH cycle. Journal of Dairy Science, 90, 2155–2162.

    Article  CAS  PubMed  Google Scholar 

  • Caussin, F., Famelart, M. H., Maubois, J.-L., & Bouhallab, S. (2003). Mineral modulation of thermal aggregation and gelation of whey proteins: From β-lactoglobulin model system to whey protein isolate. Le Lait, 83, 1–12.

    Article  Google Scholar 

  • Chavez, M. S., Negri, L. M., Taverna, M. A., & Cuatrin, A. (2004). Bovine milk composition parameters affecting the ethanol stability. The Journal of Dairy Research, 71, 201–206.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J., Horne, D. S., & Lucey, J. A. (2007). Effect of insoluble calcium concentration on rennet coagulation properties of milk. Journal of Dairy Science, 90, 2612–2623.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J., Horne, D. S., & Lucey, J. A. (2011). Determination of molecular weight of a purified fraction of colloidal calcium phosphate derived from the casein micelles of bovine milk. Journal of Dairy Science, 94, 3250–3261.

    Article  CAS  PubMed  Google Scholar 

  • Cooke, D. R., & McSweeney, P. L. H. (2014). The influence of alkali earth metal equilibria on the rheological properties of rennet-induced skim milk gels. Dairy Science & Technology, 94, 341–357.

    Article  CAS  Google Scholar 

  • Creamer, L. K., Berry, G. P., & Mills, O. E. (1977). A study of the dissociation of β-casein from bovine casein micelles at low temperatures. New Zealand Journal of Dairy Science and Technology, 12, 58–66.

    CAS  Google Scholar 

  • Crowley, S. V., Megemont, M., Gazi, I., Kelly, A. L., Huppertz, T., & O’Mahony, J. A. (2014). Heat stability of reconstituted milk protein concentrate powders. International Dairy Journal, 37, 104–110.

    Article  CAS  Google Scholar 

  • Crowley, S. V., Molitor, M. S., Kalscheuer, R., Lu, Y., Kelly, A. L., O’Mahony, J. A., & Lucey, J. A. (2019). Size-classification of precipitated calcium phosphate using hydrocyclone technology for the recovery of minerals from deproteinised acid whey. International Journal of Dairy Technology, 72, 142–151.

    CAS  Google Scholar 

  • Dalgleish, D. G. (1987). Caseins and casein micelles at interfaces. In J. L. Brash & T. A. Horbett (Eds.), Proteins at interfaces: Physicochemical and biochemical studies. ACS Symposium Series (Vol. 343, pp. 665–676). Washington, DC: American Chemical Society.

    Google Scholar 

  • Dalgleish, D. G. (1989). The behaviour of minerals in heated milks. In Bulletin of IDF (Vol. 238, pp. 31–34). Schaerbeek: International Dairy Federation.

    Google Scholar 

  • Dalgleish, D. G. (1998). Casein micelles as colloids: Surface structures and stabilities. Journal of Dairy Science, 81, 3013–3018.

    Article  CAS  Google Scholar 

  • Dalgleish, D. G., & Law, A. J. R. (1989). pH induced dissociation of bovine casein micelles. II. Mineral solubilization and its relation to casein release. The Journal of Dairy Research, 56, 727–735.

    Article  Google Scholar 

  • Davies, D. T., & White, J. C. D. (1958). The relation between the chemical composition of milk and the stability of the casein complex. II. Coagulation by ethanol. The Journal of Dairy Research, 25, 256–266.

    Article  Google Scholar 

  • Davies, D. T., & White, J. C. D. (1960). The use of ultrafiltration and dialysis in isolating the aqueous phase of milk and in determining the partition of milk constituents between the aqueous and dispersed. The Journal of Dairy Research, 27, 171–196.

    Article  CAS  Google Scholar 

  • De Kruif, C. G., & Holt, C. (2003). Casein micelle structure, functions and interactions. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry. 1. Proteins (3rd ed., pp. 213–276). New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • de la Fuente, M. A. (1998). Changes in the mineral balance of milk submitted to technological treatments. Trends in Food Science and Technology, 9, 281–288.

    Article  Google Scholar 

  • de la Fuente, M. A., Fontecha, J., & Juarez, M. (1996). Partition of main and trace minerals in milk: Effect of ultracentrifugation, rennet coagulation, and dialysis on soluble phase separation. Journal of Agricultural and Food Chemistry, 44, 1988–1992.

    Article  Google Scholar 

  • de la Fuente, M. A., Requena, T., & Juarez, M. (1997). Salt balance in ewe’s and goat’s milk during storage at chilling and freezing temperatures. Journal of Agricultural and Food Chemistry, 45, 82–88.

    Article  Google Scholar 

  • Dickinson, E. (1997). Properties of emulsions stabilized with milk proteins: Overview of some recent developments. Journal of Dairy Science, 80, 2607–2619.

    Article  CAS  Google Scholar 

  • Downey, W. K., & Murphy, R. F. (1970). The temperature-dependent dissociation of β-casein from bovine casein micelles and complexes. The Journal of Dairy Research, 37, 361–372.

    Article  CAS  Google Scholar 

  • Dumpler, J., Huppertz, T., & Kulozik, U. (2020). Heat stability of milk and concentrated milk: Past, present, and future research objectives. Journal of Dairy Science, 103, 10986–11007.

    Article  CAS  PubMed  Google Scholar 

  • Dunshea, F. R., Walker, G. P., Williams, R., & Doyle, P. T. (2019). Mineral and citrate concentrations in milk are affected by seasons, stage of lactation and management practices. Agriculture, 9, 25.

    Article  CAS  Google Scholar 

  • Fahmi, A. H., & Shahara, H. A. (1950). Studies on Egyptian Domiati cheese. The Journal of Dairy Research, 17, 312–328.

    Article  CAS  Google Scholar 

  • Farrell, H. M. (1973). Models for casein micelle formation. Journal of Dairy Science, 56, 1195–1206.

    Article  CAS  PubMed  Google Scholar 

  • Farrell, H. M., Cooke, P. H., King, G., Hoagland, P. D., Groves, M. L., Kumosinski, T. F., & Chu, B. (1996). Particle sizes and casein submicelles and purified κ-casein. Comparisons of dynamic light scattering and electron microscopy with predictive three-dimensional molecular models. In N. Parris, A. Kato, L. K. Creamer, & J. Pearce (Eds.), Macromolecular interactions in food technology (pp. 61–79). Washington, DC: American Chemical Society.

    Google Scholar 

  • Farrell, H. M., Malin, E. L., Brown, E. M., & Qi, P. X. (2006). Casein micelle structure: What can be learned from milk synthesis and structural biology? Current Opinion in Colloid & Interface Science, 11, 135–147.

    Article  CAS  Google Scholar 

  • Faulkner, A., & Peaker, M. (1982). Reviews of the Progress of Dairy Science: Secretion of citrate into milk. The Journal of Dairy Research, 49, 159–169.

    Article  CAS  PubMed  Google Scholar 

  • Fox, P. F. (1981). Heat-induced changes in milk preceding coagulation. Journal of Dairy Science, 64, 2127–2137.

    Article  CAS  Google Scholar 

  • Fox, P. F., & Brodkorb, A. (2008). The casein micelle: Historical aspects, current concepts and significance. International Dairy Journal, 18, 677–684.

    Article  CAS  Google Scholar 

  • Fox, P. F., & Morrissey, P. A. (1977). Reviews of the progress of dairy science: The heat stability of milk. The Journal of Dairy Research, 44, 627–646.

    Article  CAS  Google Scholar 

  • Fox, K. K., Harper, M. K., Holsinger, V. H., & Pallansch, M. J. (1965). Gelation of milk solids by orthophosphate. Journal of Dairy Science, 48, 179–185.

    Article  CAS  PubMed  Google Scholar 

  • Fox, P. F., Uniacke-Lowe, T., McSweeney, P. L. H., & O’Mahony, J. A. (2015). Dairy chemistry and biochemistry (2nd ed.). Heidelberg: Springer.

    Google Scholar 

  • Furia, T. E. (1972). Sequestrants in food. In T. E. Furia (Ed.), CRC handbook of food additives (2nd ed., pp. 271–294). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Garcıa-Risco, M. R., Recio, I., Molina, E., & Lopez-Fandino, R. (2003). Plasmin activity in pressurized milk. Journal of Dairy Science, 86, 728–734.

    Article  PubMed  Google Scholar 

  • Garnsworthy, P. C., Masson, L. L., Lock, A. L., & Mottram, T. T. (2006). Variation of milk citrate with stage of lactation and de novo fatty acid synthesis in dairy cows. Journal of Dairy Science, 89, 1604–1612.

    Article  CAS  PubMed  Google Scholar 

  • Gaucheron, F. (2005). The minerals of milk. Reproduction, Nutrition, Development, 45, 473–483.

    Article  CAS  PubMed  Google Scholar 

  • Gaucheron, F. (2010). Analyzing and improving the mineral content of milk. In M. W. Griffiths (Ed.), Improving the safety and quality of milk (pp. 207–228). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Gaucheron, F., Famelart, M. H., Mariette, F., Raulot, K., Michel, F., & Le Graet, Y. (1997). Combined effects of temperature and high-pressure treatments on physicochemical characteristics of skim milk. Food Chemistry, 59, 439–447.

    Article  CAS  Google Scholar 

  • Geerts, J. P., Bekhof, J. J., & Scherjon, J. W. (1983). Determination of calcium ion activities in milk with an ion selective electrode. A linear relationship between the logarithm of time and the recovery of the calcium ion activity after heat treatment. Netherlands Milk and Dairy Journal, 37, 197–211.

    CAS  Google Scholar 

  • Gevaudan, S., Lagaude, A., Tarodo de la Fuente, B., & Cuq, J. L. (1996). Effect of treatment by gaseous carbon dioxide on the colloidal phase of skim milk. Journal of Dairy Science, 79, 1713–1721.

    Article  CAS  Google Scholar 

  • Goddard, S. J., & Augustin, M. A. (1995). Formation of acid-heat induced skim milk gels in the pH range 5.0-5.7: Effect of the addition of salts and calcium chelating agents. The Journal of Dairy Research, 62, 491–500.

    Article  CAS  Google Scholar 

  • Griffin, M. C. A., Lyster, R. L., & Price, J. C. (1988). The disaggregation of calcium-depleted micelles. European Journal of Biochemistry, 174, 339–343.

    Article  CAS  PubMed  Google Scholar 

  • Guinee, T. P., Feeney, E. P., Auty, M. A. E., & Fox, P. F. (2002). Effect of pH and calcium concentration on some textural and functional properties of Mozzarella cheese. Journal of Dairy Science, 85, 1655–1669.

    Article  CAS  PubMed  Google Scholar 

  • Guo, M. R., & Kindstedt, P. S. (1995). Age-related changes in the water phase of Mozzarella cheese. Journal of Dairy Science, 78, 2099–2107.

    Article  CAS  Google Scholar 

  • Hammarsten, O. (1879). Bied. Centr. 147 (cited by Pyne, G.T. (1934). The colloidal phosphate of milk. Biochemical Journal, 28, 940–948.

    Google Scholar 

  • Harte, F. M., Montes, C., Adams, M., & Martin-Gonzalez, M. F. S. (2007). Solubilized micellar calcium induced low methoxyl-pectin aggregation during milk acidification. Journal of Dairy Science, 90, 2705–2709.

    Article  CAS  PubMed  Google Scholar 

  • Hassan, A., Johnson, M. E., & Lucey, J. A. (2004). Changes in the proportion of soluble and insoluble calcium during ripening of Cheddar cheese. Journal of Dairy Science, 87, 845–862.

    Article  Google Scholar 

  • Havea, P., Singh, H., & Creamer, L. K. (2001). Characterization of heat-induced aggregates of β-lactoglobulin, α-lactalbumin and bovine serum albumin in a whey protein concentrate environment. The Journal of Dairy Research, 68, 483–497.

    Article  CAS  PubMed  Google Scholar 

  • Holt, C. (1981). Some principles determining salt composition and portioning of ions in milk. Journal of Dairy Science, 64, 1958–1964.

    Article  CAS  Google Scholar 

  • Holt, C. (1985). The milk salts: Their secretion, concentrations and physical chemistry. In P. F. Fox (Ed.), Developments in dairy chemistry, Vol. 3: Lactose and minor constituents (pp. 143–181). London: Applied Science.

    Google Scholar 

  • Holt, C. (1992). Structure and stability of casein micelles. Advances in Protein Chemistry, 43, 63–151.

    Article  CAS  PubMed  Google Scholar 

  • Holt, C. (1995). Effect of heat and cooling on the milk salts and their interaction with casein. In P. F. Fox (Ed.), Heat-induced changes in milk (2nd ed., pp. 105–133). Brussels: International Dairy Federation. Special Issue 9501.

    Google Scholar 

  • Holt, C. (1997). The milk salts and their interaction with casein. In P. F. Fox (Ed.), Advanced dairy chemistry, Vol. 3: Lactose, water, salts and vitamins (2nd ed., pp. 233–256). London: Chapman & Hall.

    Google Scholar 

  • Holt, C., & Muir, D. D. (1979). Inorganic constituents of milk: I. Correlation of soluble calcium with citrate in bovine milk. The Journal of Dairy Research, 46, 433–439.

    Article  CAS  PubMed  Google Scholar 

  • Holt, C., Dalgleish, D. G., & Jenness, R. (1981). Calculation of the ion equilibria in milk diffusate and comparison with experiment. Analytical Biochemistry, 113, 154–163.

    Article  CAS  PubMed  Google Scholar 

  • Holt, C., Hasnain, S. S., & Hukins, D. W. L. (1982). Structure of bovine milk calcium phosphate determined by X-ray absorption spectroscopy. Biochimica et Biophysica Acta, 719, 299–303.

    Article  CAS  PubMed  Google Scholar 

  • Horne, D. S. (1979). The kinetics of precipitation of chemically-modified αs1-casein by calcium. The Journal of Dairy Research, 46, 256–259.

    Article  Google Scholar 

  • Horne, D. S. (1982). Calcium-induced precipitation of αS1-casein: Effect of inclusion of citrate or phosphate. The Journal of Dairy Research, 49, 107–118.

    Article  CAS  Google Scholar 

  • Horne, D. S. (1983). The calcium-induced precipitation of αs1-casein: Effect of modification of lysine residues. International Journal of Biological Macromolecules, 5, 296–300.

    Article  CAS  Google Scholar 

  • Horne, D. S. (1987). Ethanol stability of casein micelles—A hypothesis concerning the role of calcium phosphate. The Journal of Dairy Research, 54, 389–395.

    Article  CAS  Google Scholar 

  • Horne, D. S. (1998). Casein interactions: Casting light on the black boxes, the structure in dairy products. International Dairy Journal, 8, 171–177.

    Article  CAS  Google Scholar 

  • Horne, D. S. (2002). Caseins–molecular properties, casein micelle formation and structure. In H. Roginski, J. W. Fuquay, & P. F. Fox (Eds.), Encyclopaedia of dairy science (pp. 1902–1909). London: Academic Press.

    Google Scholar 

  • Horne, D. S. (2003). Ethanol stability. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry, 1. Proteins (3rd ed., pp. 975–999). New York: Kluwer Academic-Plenum Publishers.

    Google Scholar 

  • Horne, D. S. (2006). Casein micelle structure: Models and muddles. Current Opinion in Colloid & Interface Science, 11, 148–153.

    Article  CAS  Google Scholar 

  • Horne, D. S. (2009). Casein micelle structure and stability. In A. Thompson, M. Boland, & H. Singh (Eds.), Milk proteins: From expression to food (1st ed., pp. 133–162). New York: Elsevier.

    Google Scholar 

  • Horne, D. S. (2014). Casein micelle structure and stability. In A. Thompson, M. Boland, & H. Singh (Eds.), Milk proteins: From expression to food (2nd ed., pp. 169–160). New York: Elsevier.

    Google Scholar 

  • Horne, D. S. (2020). Casein micelle structure and stability. In M. Boland & H. Singh (Eds.), Milk proteins: From expression to food (3rd ed., pp. 213–250). New York: Elsevier.

    Google Scholar 

  • Horne, D. S., & Dalgleish, D. G. (1980). Electrostatic interactions and the kinetics of protein aggregation: αs1-casein. International Journal of Biological Macromolecules, 2, 154–160.

    Article  Google Scholar 

  • Horne, D. S., & Lucey, J. A. (2014). Revisiting the temperature dependence of the coagulation of renneted bovine casein micelles. Food Hydrocolloids, 42, 75–80.

    Article  CAS  Google Scholar 

  • Horne, D. S., & Moir, P. D. (1984). The iodination of αS1-casein and its effect on the calcium-induced aggregation reaction of the modified protein. International Journal of Biological Macromolecules, 6, 316–320.

    Article  CAS  Google Scholar 

  • Horne, D. S., & Muir, D. D. (1990). Alcohol and heat stability of milk protein. Journal of Dairy Science, 73, 3613–3626.

    Article  CAS  Google Scholar 

  • Horne, D. S., & Parker, T. G. (1981). Factors affecting the ethanol stability of bovine milk. I. Effect of serum phase components. II. The origin of the pH transition. The Journal of Dairy Research, 48, 273–291.

    Article  CAS  Google Scholar 

  • Horne, D. S., & Parker, T. G. (1983). Factors affecting the ethanol stability of bovine skim-milk. VI. Effect of concentration. The Journal of Dairy Research, 50, 425–432.

    Article  CAS  Google Scholar 

  • Horne, D. S., Lucey, J. A., & Choi, J.-W. (2007). Casein interactions: Does the chemistry really matter? In E. Dickinson & M. Leser (Eds.), Food colloids: Self-assembly and material science (pp. 155–166). London: Royal Society of Chemistry.

    Google Scholar 

  • Huppertz, T. (2007). Reversibility of NaCl-induced changes in physicochemical properties of bovine milk. Milchwissenschaft, 62, 135–139.

    CAS  Google Scholar 

  • Huppertz, T., & de Kruif, C. G. (2006). Disruption and reassociation of casein micelles under high pressure: Influence of milk serum composition and casein micelle concentration. Journal of Agricultural and Food Chemistry, 54, 5903–5909.

    Article  CAS  PubMed  Google Scholar 

  • Huppertz, T., Kelly, A. L., & Fox, P. F. (2002). Effects of high-pressure on constituents and properties of milk. International Dairy Journal, 12, 561–572.

    Article  CAS  Google Scholar 

  • Huppertz, T., Fox, P. F., & Kelly, A. L. (2004). High pressure treatment of bovine milk: Effects on casein micelles and whey proteins. The Journal of Dairy Research, 71, 97–106.

    Article  CAS  PubMed  Google Scholar 

  • Huppertz, T., Fox, P. F., & Kelly, A. L. (2006). High pressure-induced changes in ovine milk. 1. Effects on the mineral balance and pH. Milchwissenschaft, 61, 285–288.

    CAS  Google Scholar 

  • Irlam, J. C., Holt, C., Hasnain, S., & Hukins, D. W. L. (1985). Comparison of the structure of micellar calcium phosphate in milk from six species by extended X-ray absorption fine structure spectroscopy. The Journal of Dairy Research, 52, 267–273.

    Article  CAS  Google Scholar 

  • Jenness, R. (1973). Caseins and caseinates micelles of various species. Netherlands Milk and Dairy Journal, 27, 251–257.

    CAS  Google Scholar 

  • Jenness, R. (1979). Comparative aspects of proteins. The Journal of Dairy Research, 46, 197–210.

    Article  CAS  PubMed  Google Scholar 

  • Jenness, R., & Koops, J. (1962). Preparation and properties of a salt solution which simulates milk ultrafiltrate. Netherlands Milk and Dairy Journal, 16, 153–164.

    CAS  Google Scholar 

  • Jenness, R., & Patton, S. (1976). Principles of dairy chemistry. New York: Kreiger Publishing Company.

    Google Scholar 

  • Johnson, M. E., & Lucey, J. A. (2006). Calcium: A key factor in controlling cheese functionality. Australian Journal of Dairy Technology, 61, 147–153.

    CAS  Google Scholar 

  • Johnston, D. E., & Murphy, R. J. (1992). Effects of some calcium chelating agents on the physical properties of acid-set milk gels. The Journal of Dairy Research, 59, 197–208.

    Article  CAS  Google Scholar 

  • Joshi, N. S., Muthukumarappan, K., & Dave, R. I. (2002). Role of soluble and colloidal calcium contents on functionality of salted and unsalted part-skim Mozzarella cheese. Australian Journal of Dairy Technology, 57, 203–210.

    CAS  Google Scholar 

  • Kamal, M., Foukani, M., & Karoui, R. (2017). Rheological and physical properties of camel and cow milk gels enriched with phosphate and calcium during acid-induced gelation. Journal of Food Science and Technology, 54, 439–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamath, S., Webb, R. E., & Deeth, H. C. (2011). The composition of interfacial material from skim milk foams. Journal of Dairy Science, 94, 2707–2718.

    Article  CAS  PubMed  Google Scholar 

  • Kamigaki, T., Ito, Y., Nishino, Y., & Miyazawa, A. (2018). Microstructural observation of casein micelles by cryo-electron microscopy of vitreous sections (CEMOVIS). Microscopy, 67, 1–7.

    Article  Google Scholar 

  • Kawasaki, K., & Weiss, K. M. (2003). Mineralized tissue and vertebrate evolution: The secretory calcium-binding phosphoprotein gene cluster. Proceedings of the National Academy of Sciences of the United States of America, 100, 4060–4065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly, P. M., O’Keeffe, A. M., Keogh, M. K., & Phelan, J. A. (1982). Studies of milk composition and its relationship to some processing criteria. III. Seasonal variation in heat stability of milk. Irish Journal of Food Science and Technology, 6, 29–38.

    Google Scholar 

  • Kitts, D. D. (2006). Calcium binding peptides. Nutraceutical Science and Technology, 4, 11–27.

    CAS  Google Scholar 

  • Knoop, A.-M., Knoop, E., & Wiechen, A. (1979). Sub-structure of synthetic casein micelles. The Journal of Dairy Research, 46, 347–350.

    Article  CAS  PubMed  Google Scholar 

  • Koestler, G. (1920). The detection of milk altered by secretion disturbances. Mitteilungen aus dem Gebiete der Lebensmittel-untersuchung un Hygiene, 11, 154–169.

    CAS  Google Scholar 

  • Kuhn, P. R., & Foegeding, E. A. (1991). Mineral salt effects on whey protein gelation. Journal of Agricultural and Food Chemistry, 39, 1013–1016.

    Article  CAS  Google Scholar 

  • Kuhn, N. J., & White, A. (1977). The role of nucleoside diphosphatase in a uridine nucleotide cycle associated with lactose synthesis in rat mammary-gland Golgi apparatus. Biochemical Journal, 168, 423–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson, B. L. (1985). Lactation. Ames, IA: Iowa State University Press.

    Google Scholar 

  • Law, A. J. R. (1996). Effects of heat treatment and acidification on the dissociation of bovine casein micelles. The Journal of Dairy Research, 63, 35–48.

    Article  CAS  Google Scholar 

  • Law, A. J. R., Leaver, J., Felipe, X., Ferragut, V., Pla, R., & Guamis, B. (1998). Comparison of the effects of high pressure and thermal treatments on the casein micelles in goat’s milk. Journal of Agricultural and Food Chemistry, 46, 2523–2530.

    Article  CAS  Google Scholar 

  • Lawrence, R. C., Gilles, J., & Creamer, L. K. (1983). The relationship between cheese texture and flavour. New Zealand Journal of Dairy Science and Technology, 18, 175–190.

    CAS  Google Scholar 

  • Lazzaro, F., Bouchoux, A., Raynes, J., Williams, R., Ong, L., Hanssen, E., Lechevalier, V., Pezennec, S., Cho, H.-J., Logan, A., Gras, A., & Gaucheron, F. (2020). Tailoring the structure of casein micelles through a multifactorial approach to manipulate rennet coagulation properties. Food Hydrocolloids, 101, 105414.

    Article  CAS  Google Scholar 

  • Le Great, Y., & Brulé, G. (1993). Les équilibres minéraux du lait: Influence du pH et de la force ionique. Le Lait, 73, 51–60.

    Article  Google Scholar 

  • Lelievre, J., & Lawrence, R. C. (1988). Manufacture of cheese from milk concentrated by ultrafiltration. The Journal of Dairy Research, 55, 465–478.

    Article  Google Scholar 

  • Lenton, S., Nylander, T., Holt, C., Sawyer, L., Hartlein, M., Muller, H., & Teixeira, S. C. M. (2016). Structural studies of hydrated samples of amorphous calcium phosphate and phosphoprotein nanoclusters. European Biophysics Journal, 45, 405–412.

    Article  CAS  PubMed  Google Scholar 

  • Lenton, S., Wang, Q., Nylander, T., Teixeira, S., & Holt, C. (2020). Structural biology of calcium phosphate nanoclusters sequestered by phosphoproteins. Crystals, 10, 755.

    Article  CAS  Google Scholar 

  • Lin, S. H. C., Leong, S. L., Dewan, R. K., Bloomfield, V. A., & Morr, C. V. (1972). Effect of calcium ion on the structure of native bovine casein micelles. The Biochemist, 11, 1818–1821.

    Article  CAS  Google Scholar 

  • Lin, M.-J., Grandison, A., Chryssanthou, X., Goodwin, C., Tsioulpas, A., Koliandris, A., & Lewis, M. (2006). Calcium removal from milk by ion exchange. Milchwissenschaft, 61, 370–374.

    CAS  Google Scholar 

  • Linzell, J. L., & Peaker, M. (1971). Mechanism of milk secretion. Physiological Reviews, 51, 564–597.

    Article  CAS  PubMed  Google Scholar 

  • Linzell, J. L., Mepham, T. B., & Peaker, M. (1976). The secretion of citrate into milk. Journal of Physiology (London), 260, 739–750.

    Article  CAS  Google Scholar 

  • Lönnerdal, B. (2004). Human milk proteins. Key components for the biological activity of human milk. In L. K. Pickering, A. L. Morrow, G. M. Ruiz-Palacios, & R. J. Schanler (Eds.), Protecting Infants through human milk. Advancing the scientific evidence. Advances in experimental medicine and biology (Vol. 554, pp. 11–25). New York: Kluwer Academic-Plenum Publishers.

    Google Scholar 

  • López-Fandiño, R. (2006). High pressure-induced changes in milk proteins and possible applications in dairy technology. International Dairy Journal, 16, 1119–1131.

    Article  Google Scholar 

  • López-Fandiño, R., De la Fuente, M. A., Ramos, M., & Olano, A. (1998). Distribution of minerals and proteins between the soluble and colloidal phases of pressurized milks from different species. The Journal of Dairy Research, 65, 69–78.

    Article  Google Scholar 

  • Lu, B.-Q., Garcia, N. A., Chevrier, D. M., Zhang, P., Raiteri, P., Gale, J. D., & Gebauer, D. (2019). Short-range structure of amorphous calcium hydrogen phosphate. Crystal Growth & Design, 19, 3030–3038.

    Article  CAS  Google Scholar 

  • Lucey, J. A., & Fox, P. F. (1993). Importance of calcium and phosphate in cheese manufacture: A review. Journal of Dairy Science, 76, 1714–1724.

    Article  CAS  Google Scholar 

  • Lucey, J. A., & Horne, D. S. (2009). Milk salts: Technological significance. In P. L. H. McSweeney & P. F. Fox (Eds.), Advanced dairy chemistry-3. Lactose, water, salts and minor constituents (3rd ed., pp. 351–389). New York: Springer.

    Google Scholar 

  • Lucey, J. A., & Horne, D. S. (2018). Perspectives on casein interactions. International Dairy Journal, 85, 56–65.

    Article  CAS  Google Scholar 

  • Lucey, J. A., Gorry, C., & Fox, P. F. (1993a). Acid base buffering properties of heated milk. Milchwissenschaft, 48, 438–441.

    CAS  Google Scholar 

  • Lucey, J. A., Hauth, B., Gorry, C., & Fox, P. F. (1993b). Acid base buffering of milk. Milchwissenschaft, 48, 268–272.

    CAS  Google Scholar 

  • Lucey, J. A., Gorry, C., O’Kennedy, B., Kalab, M., Tan-Kinita, R., & Fox, P. F. (1996). Effect of acidification and neutralization of milk on some properties of casein micelles. International Dairy Journal, 6, 257–272.

    Article  CAS  Google Scholar 

  • Lucey, J. A., van Vliet, T., Grolle, K., Geurts, T., & Walstra, P. (1997). Properties of acid gels made by acidification with glucono-δ-lactone. 1. Rheological properties. International Dairy Journal, 7, 381–388.

    Article  CAS  Google Scholar 

  • Lucey, J. A., Johnson, M. E., & Horne, D. S. (2003). Perspectives on the basis of the rheology and texture properties of cheese. Journal of Dairy Science, 86, 2725–2743.

    Article  CAS  PubMed  Google Scholar 

  • Lucey, J. A., Mishra, R., Hassan, A., & Johnson, M. E. (2005). Rheological and calcium equilibrium changes during ripening of Cheddar cheese. International Dairy Journal, 15, 645–653.

    Article  CAS  Google Scholar 

  • Lyster, R. L. J. (1979). The equilibria of calcium and phosphate ions with the micellar calcium phosphate in cow’s milk. The Journal of Dairy Research, 46, 343–346.

    Article  CAS  PubMed  Google Scholar 

  • Lyster, R. L. J., Mann, S., Parker, S. B., & Williams, R. J. P. (1984). Nature of micellar calcium phosphate in cows’ milk as studied by high-resolution electron microscopy. Biochimica et Biophysica Acta, 801, 315–317.

    Article  CAS  PubMed  Google Scholar 

  • Mangino, M. E. (1992). Gelation of whey-protein concentrates. Food Technology, 46, 114–117.

    CAS  Google Scholar 

  • Marchin, S., Putaux, J.-L., Pignon, F., & Leonil, J. (2007). Effects of the environmental factors on the casein micelle structure studied by cryo-transmission electron microscopy and small-angle X-ray scattering/ultrasmall-angle X-ray scattering. The Journal of Chemical Physics, 126, 045101.

    Article  PubMed  Google Scholar 

  • Mariette, F., Tellier, C., Brule, G., & Marchal, P. (1993). Multinuclear NMR study of the pH dependent water state in skim milk and caseinate solutions. The Journal of Dairy Research, 60, 175–188.

    Article  Google Scholar 

  • Matia-Merino, L., Lau, K., & Dickinson, E. (2004). Effects of low-methoxyl amidated pectin and ionic calcium on rheology and microstructure of acid-induced sodium caseinate gels. Food Hydrocolloids, 18, 271–281.

    Article  CAS  Google Scholar 

  • McGann, T. C. A., & Pyne, G. T. (1960). The colloidal phosphate of milk. III. Nature of its association with casein. The Journal of Dairy Research, 27, 403–417.

    Article  Google Scholar 

  • McGann, T. C. A., Buchheim, W., Kearney, R. D., & Richardson, T. (1983a). Composition and ultrastructure of calcium phosphate citrate complex in bovine milk systems. Biochimica et Biophysica Acta, 760, 415–420.

    Article  CAS  PubMed  Google Scholar 

  • McGann, T. C. A., Kearney, R. D., Buchheim, W., Posner, A. S., Betts, F., & Blumental, N. C. (1983b). Amorphous calcium phosphate in casein micelles of bovine milk. Calcified Tissue International, 35, 821–823.

    Article  CAS  PubMed  Google Scholar 

  • McMahon, D. J., & McManus, W. R. (1998). Rethinking casein micelle structure using electron microscopy. Journal of Dairy Science, 81, 2985–2993.

    Article  CAS  Google Scholar 

  • McMahon, D. J., & Oberg, C. J. (1998). Role of calcium and sodium in functionality of Mozzarella cheese. In Proc. 35th Ann. Marschall Italian & Specialty Cheese Sem (pp. 1–9).

    Google Scholar 

  • McManaman, J. L., & Neville, M. C. (2003). Mammary physiology and milk secretion. Advanced Drug Delivery Reviews, 55, 629–641.

    Article  CAS  PubMed  Google Scholar 

  • McPhail, D., & Holt, C. (1999). Effect of anions on the denaturation and aggregation of β-lactoglobulin as measured by differential scanning microcalorimetry. International Journal of Food Science and Technology, 34, 477–481.

    Article  CAS  Google Scholar 

  • Mekmene, O., & Gaucheron, F. (2011). Determination of calcium-binding constants of caseins, phosphoserine, citrate and pyrophosphate: A modelling approach using free calcium measurement. Food Chemistry, 127, 676–682.

    Article  CAS  PubMed  Google Scholar 

  • Mekmene, O., Le Graët, Y., & Gaucheron, F. (2009). A model for predicting salt equilibria in milk and mineral-enriched milks. Food Chemistry, 116, 233–239.

    Article  CAS  Google Scholar 

  • Metzger, L. E., Barbano, D. M., & Kindstedt, P. S. (2001). Effect of milk preacidification on low fat Mozzarella cheese: III. Post-melt chewiness and whiteness. Journal of Dairy Science, 84, 1357–1366.

    Article  CAS  PubMed  Google Scholar 

  • Miller, P. G., & Sommer, H. H. (1940). The coagulation temperature of milk as affected by pH, salts, evaporation and previous heat treatment. Journal of Dairy Science, 23, 405–421.

    Article  CAS  Google Scholar 

  • Mizuno, R., & Lucey, J. A. (2005). Effects of emulsifying salts on the turbidity and calcium-phosphate protein interactions in casein micelles. Journal of Dairy Science, 88, 3070–3078.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno, R., & Lucey, J. A. (2007). Properties of milk protein gels formed by phosphates. Journal of Dairy Science, 90, 4524–4531.

    Article  CAS  PubMed  Google Scholar 

  • Monib, A. M. M. F. (1962). The calcium-paracaseinate-phosphate-complex under conditions similar to those in cheese. PhD thesis, Med. Landbouwhogese school, Wageningen.

    Google Scholar 

  • Morr, C. V. (1967). Some effects of pyrophosphate and citrate ions upon the colloidal caseinate-phosphate micelles and ultrafiltrate of raw and heated skim milk. Journal of Dairy Science, 50, 1038–1044.

    Article  CAS  Google Scholar 

  • Morris, H. A., Holt, C., Brooker, B. E., Banks, J. M., & Manson, W. (1988). Inorganic constituents of cheese: Analysis of juice from one-month old Cheddar cheese and the use of light and electron microscopy to characterize the crystalline phases. The Journal of Dairy Research, 55, 255–268.

    Article  CAS  Google Scholar 

  • Mulvihill, D. M., & Murphy, P. C. (1991). Surface active and emulsifying properties of caseins/caseinates as influenced by state of aggregation. International Dairy Journal, 1, 13–37.

    Article  CAS  Google Scholar 

  • Munir, M., Nadeem, M., Qureshi, T. M., Leong, T. S. H., Gamlath, C. J., Martin, G. J. O., & Ashokkumar, M. (2019). Effects of high pressure, microwave and ultrasound processing on proteins and enzyme activity in dairy systems—A review. Innovative Food Science and Emerging Technologies, 57, 102192.

    Article  CAS  Google Scholar 

  • Munyua, J. K., & Larsson-Raznikiewicz, M. (1980). The influence of Ca2+ on the size and light scattering properties of casein micelles. 1. Ca2+ removal. Milchwissenschaft, 35, 604–606.

    CAS  Google Scholar 

  • Needs, E. C., Stenning, R. A., Gill, A. L., Ferragut, V., & Rich, G. T. (2000). High-pressure treatment of milk: Effects on casein micelle structure and on enzymic coagulation. The Journal of Dairy Research, 67, 31–42.

    Article  CAS  PubMed  Google Scholar 

  • Neville, M. C. (2005). Calcium secretion into milk. Journal of Mammary Gland Biology and Neoplasia, 10, 119–128.

    Article  PubMed  Google Scholar 

  • Neville, M. C., Kamikawa, A., Webb, P., & Ramanathan, P. (2020). Transporters in the lactating mammary epithelium. In K. L. Hamilton & D. C. Devor (Eds.), Ion transport across epithelial tissues and disease (pp. 177–239). New York: American Physiology Society, Springer.

    Google Scholar 

  • O’Brien, B., Mehra, R., Connolly, J. F., & Harrington, D. (1999). Seasonal variation in the composition of Irish manufacturing and retail milks 4. Minerals and trace elements. Irish Journal of Agricultural and Food Research, 38, 87–99.

    Google Scholar 

  • O’Connell, J. E., & Fox, P. F. (2001). Effect of β-lactoglobulin and precipitation of calcium phosphate on the thermal coagulation of milk. The Journal of Dairy Research, 68, 81–94.

    Article  PubMed  Google Scholar 

  • O’Connell, J. E., & Fox, P. F. (2003). Heat-induced coagulation of milk. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry, 1. Proteins (3rd ed., pp. 879–945). New York: Kluwer Academic – Plenum Publishers.

    Google Scholar 

  • O’Kennedy, B. T., Cribbin, M., & Kelly, P. M. (2001). Stability of sodium caseinate to ethanol. Milchwissenschaft, 56, 680–684.

    Google Scholar 

  • O’Mahony, J. A., Lucey, J. A., & McSweeney, P. L. H. (2005). Chymosin-mediated proteolysis, calcium solubilization, and texture development during the ripening of Cheddar cheese. Journal of Dairy Science, 88, 3101–3114.

    Article  PubMed  Google Scholar 

  • Osorio, J. S., Lohakare, J., & Bionaz, M. (2016). Biosynthesis of milk fat, protein, and lactose: Roles of transcriptional and posttranscriptional regulation. Physiological Genomics, 48, 231–256.

    Article  CAS  PubMed  Google Scholar 

  • Ozcan, T., Horne, D. S., & Lucey, J. A. (2011). Effect of increasing the colloidal calcium phosphate of milk on the texture and microstructure of yogurt. Journal of Dairy Science, 94, 5278–5288.

    Article  CAS  PubMed  Google Scholar 

  • Ozcan-Yilsay, T., Lee, W.-J., Horne, D. S., & Lucey, J. A. (2007). Effect of trisodium citrate on rheological, physical properties and microstructure of yogurt. Journal of Dairy Science, 90, 1644–1652.

    Article  CAS  PubMed  Google Scholar 

  • Panouillé, M., Nicolai, T., & Durand, D. (2004). Heat induced aggregation and gelation of casein submicelles. International Dairy Journal, 14, 297–303.

    Article  Google Scholar 

  • Petersen, W. E. (1944). Lactation. Physiological Reviews, 24, 340–371.

    Article  CAS  Google Scholar 

  • Philippe, M., Gaucheron, F., Le Graet, Y., Michel, F., & Garem, A. (2003). Physicochemical characterization of calcium-supplemented skim milk. Le Lait, 83, 45–59.

    Article  CAS  Google Scholar 

  • Philippe, M., Gaucheron, F., & Le Graet, Y. (2004). Physicochemical characteristics of calcium supplemented skim milk: Comparison of three soluble calcium salts. Milchwissenschaft, 59, 498–502.

    CAS  Google Scholar 

  • Piazza, R. (2004). Protein interactions and association: An open challenge for colloid science. Current Opinion in Colloid & Interface Science, 8, 515–522.

    Article  CAS  Google Scholar 

  • Pierre, A. (1985). Milk coagulation by ethanol. Studies on the solubility of the milk calcium and phosphate in alcoholic solutions. Le Lait, 65, 201–212.

    Article  CAS  Google Scholar 

  • Pierre, A., Brule, G., & Fauquant, J. (1983). Study of calcium exchangeability in milk with 45Ca. Le Lait, 63, 473–489.

    Article  CAS  Google Scholar 

  • Politis, I., Lachance, E., Block, E., & Turner, J. D. (1989). Plasmin and plasminogen in bovine milk: A relationship with involution? Journal of Dairy Science, 72, 900–906.

    Article  CAS  PubMed  Google Scholar 

  • Pyne, G. T. (1934). The colloidal phosphate of milk. Biochemical Journal, 28, 940–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyne, G. T. (1962). Some aspects of the physical chemistry of the salts in milk. The Journal of Dairy Research, 29, 101–130.

    Article  CAS  Google Scholar 

  • Pyne, G. T., & McGann, T. C. A. (1960). The colloidal calcium phosphate of milk. 2. Influence of citrate. The Journal of Dairy Research, 27, 9–17.

    Article  CAS  Google Scholar 

  • Pyne, G. T., & Ryan, J. J. (1950). The colloidal phosphate of milk. 1. Composition and titrimetric estimation. The Journal of Dairy Research, 17, 200–205.

    Article  CAS  Google Scholar 

  • Qi, P. X. (2007). Studies of casein micelle structure: The past and the present. Le Lait, 87, 363–383.

    Article  CAS  Google Scholar 

  • Qvist, K. B. (1979). Reestablishment of the original rennetability of milk after cooling. 1. The effect of cooling and LTST pasteurization of milk and renneting. Milchwissenschaft, 34, 467–470.

    Google Scholar 

  • Ramasubramanian, L., Restuccia, C., & Deeth, H. C. (2008). Effect of calcium on the physical properties of stirred probiotic yogurt. Journal of Dairy Science, 91, 4164–4175.

    Article  CAS  PubMed  Google Scholar 

  • Raouche, S., Dobenesque, M., Bot, A., Lagaude, A., Cuq, J.-L., & Marchesseau, S. (2007). Stability of casein micelles subjected to reversible CO2 acidification: Impact of holding time and chilled storage. International Dairy Journal, 17, 873–880.

    Article  CAS  Google Scholar 

  • Reynolds, E. C. (1999). Anticariogenic casein phosphopeptides. Protein and Peptide Letters, 6, 295–303.

    CAS  Google Scholar 

  • Roefs, S. P. F. M., & van Vliet, T. (1990). Structure of acid casein gels. 2. Dynamic measurements and type of interaction forces. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 50, 161–175.

    Article  CAS  Google Scholar 

  • Rollema, H. S. (1992). Casein association and micelle formation. In P. F. Fox (Ed.), Advanced dairy chemistry 1. Proteins (2nd ed., pp. 111–140). London: Elsevier Applied Science.

    Google Scholar 

  • Sadeghinezhad, E., Kazi, S. N., Badarudin, A., Zubair, M. N., Dehkordi, B. L., & Oon, C. S. (2013). A review of milk fouling on heat exchanger surfaces. Reviews in Chemical Engineering, 29, 169–188.

    Article  CAS  Google Scholar 

  • Salaün, F., Mietton, B., & Gaucheron, F. (2005). Buffering capacity of dairy products. International Dairy Journal, 15, 95–109.

    Article  Google Scholar 

  • Schmidt, D. G. (1980). Colloidal aspects of casein. Netherlands Milk and Dairy Journal, 34, 42–64.

    CAS  Google Scholar 

  • Schmidt, D. G. (1982). Association of casein and casein micelle structure. In P. F. Fox (Ed.), Developments in dairy chemistry (pp. 61–86). London: Elsevier Applied Science.

    Google Scholar 

  • Schmidt, D. G., & Buchheim, W. (1970). Elektronenmikroskopische undersuchung der feinstruktur von caseinmicellen in kuhmilch. Milchwissenschaft, 25, 596–600.

    CAS  Google Scholar 

  • Schmidt, R. H., Illingworth, B. L., Deng, J. C., & Cornell, J. A. (1979). Multiple regression and response surface analysis of the effects of calcium chloride and cysteine on heat-induced whey protein gelation. Journal of Agricultural and Food Chemistry, 27, 529–532.

    Article  CAS  Google Scholar 

  • Schrader, K., Buchheim, W., & Morr, C. V. (1997). High pressure effects on the colloidal calcium phosphate and the structural integrity of micellar casein in milk. Part 1. High pressure disolution of colloidal calcium phosphate in heated milk systems. Nahrung, 41, 133–138.

    Article  CAS  PubMed  Google Scholar 

  • Schuck, P., Davenel, A., Mariette, F., Briard, V., Mejean, S., & Piot, M. (2002). Rehydration of casein powders: Effects of added mineral salts and salt addition methods on water transfer. International Dairy Journal, 12, 51–57.

    Article  CAS  Google Scholar 

  • Schulz, M. E. (1952). Klassifizierung von Kase. Milchwissenschaft, 9, 292–299.

    Google Scholar 

  • Shalabi, S. I., & Fox, P. F. (1982). Influence of pH on the rennet coagulation of milk. The Journal of Dairy Research, 49, 153–157.

    Article  Google Scholar 

  • Shamay, A., Shapiro, F., Mabjeesh, S. J., & Silanikove, N. (2002). Casein-derived phosphopeptides disrupt tight junction integrity, and precipitously dry up milk secretion in goats. Life Sciences, 70, 2707–2719.

    Article  CAS  PubMed  Google Scholar 

  • Shekar, P. C., Goel, S., Rani, S. D. S., Sarathi, D. P., Alex, J. L., Singh, S., & Kumar, S. (2006). κ-Casein-deficient mice fail to lactate. Proceedings of the National Academy of Sciences of the United States of America, 103, 8000–8005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shennan, D. B., & Peaker, M. (2000). Transport of milk constituents by the mammary gland. Physiological Reviews, 80, 925–951.

    Article  CAS  PubMed  Google Scholar 

  • Singh, H. (2004). Heat stability of milk. International Journal of Dairy Technology, 57, 111–119.

    Article  CAS  Google Scholar 

  • Singh, H., & Creamer, L. K. (1992). Heat stability of milk. In P. F. Fox (Ed.), Advanced dairy chemistry, Vol. 1: Proteins (pp. 624–656). London: Elsevier.

    Google Scholar 

  • Singh, H., Roberts, M. S., Munro, P. A., & Teo, C. T. (1996). Acid-induced dissociation of casein micelles in milk: Effects of heat treatment. Journal of Dairy Science, 79, 1340–1346.

    Article  CAS  Google Scholar 

  • Singh, H., McCarthy, O. J., & Lucey, J. A. (1997). Physico-chemical properties of milk. In P. F. Fox (Ed.), Advanced dairy chemistry, 3. Lactose, water, salts and vitamins (2nd ed., pp. 469–518). London: Chapman & Hall.

    Google Scholar 

  • Slattery, C. W. (1976). Casein micelle structure: An examination of models. Journal of Dairy Science, 59, 1547–1556.

    Article  CAS  PubMed  Google Scholar 

  • Solanki, G., & Rizvi, S. S. H. (2001). Physico-chemical properties of skim milk retentates from microfiltration. Journal of Dairy Science, 84, 2381–2391.

    Article  CAS  PubMed  Google Scholar 

  • Sommer, H. H., & Binney, T. H. (1923). A study of the factors that influence the coagulation of milk in the alcohol test. Journal of Dairy Science, 6, 176–197.

    Article  CAS  Google Scholar 

  • Sommer, H. H., & Hart, E. B. (1919). The heat coagulation of milk. The Journal of Biological Chemistry, 40, 137–151.

    Article  CAS  Google Scholar 

  • Srilaorkul, S., Ozimek, L., Wolfe, F., & Dziuba, J. (1989). The effect of ultrafiltration on physicochemical properties of retentate. Canadian Institute of Food Science & Technology, 5, 56–62.

    Article  Google Scholar 

  • Srinivasan, M., & Lucey, J. A. (2002). Effects of added plasmin on the formation and rheological properties of rennet-induced skim milk gels. Journal of Dairy Science, 85, 1070–1078.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, W., & Husband, A. D. (1922). The effect on the percentage composition of the milk of (a) variations in the daily volume and (b) variations in the nature of the diet. Journal of the Agricultural Society, University College of Wales, 12, 111–124.

    CAS  Google Scholar 

  • Tsioulpas, A., Lewis, M. J., & Grandison, A. S. (2007). Effect of minerals on casein micelle stability of cows’ milk. The Journal of Dairy Research, 74, 167–173.

    Article  CAS  PubMed  Google Scholar 

  • Tsuchita, H., Suzuki, T., & Kuwata, T. (2001). The effect of casein phosphopeptides on calcium absorption from calcium-fortified milk in growing rats. British Journal of Nutrition, 85, 5–10.

    Article  CAS  PubMed  Google Scholar 

  • Udabage, U., McKinnon, I. R., & Augustin, M. A. (2000). Mineral and casein equilibria in milk: Effect of added salts and calcium-chelating agents. The Journal of Dairy Research, 67, 361–370.

    Article  CAS  PubMed  Google Scholar 

  • Udabage, U., McKinnon, I. R., & Augustin, M. A. (2001). Effects of mineral salts and calcium chelating agents on the gelation of renneted skim milk. Journal of Dairy Science, 84, 1569–1575.

    Article  CAS  PubMed  Google Scholar 

  • Umeda, T. (2005). Micellar calcium phosphate-cross-linkage in porcine casein micelles. Miruku Saiensu, 54, 23–28.

    CAS  Google Scholar 

  • Umeda, T., & Aoki, T. (2005). Formation of micelles and micellar calcium phosphate-cross-linkage in artificial porcine casein micelles. Milchwissenschaft, 60, 372–375.

    CAS  Google Scholar 

  • Umeda, T., Li, C.-P., & Aoki, T. (2005). Micellar calcium phosphate-cross-linkage in ovine casein micelles. Miruku Saiensu, 54, 63–68.

    CAS  Google Scholar 

  • van der Laan, F. H. (1915). Osmotic equilibrium between blood, milk and bile. Biochemische Zeitschrift, 71, 289–305.

    Google Scholar 

  • van Dijk, H. J. M. (1990). The properties of casein micelles. 1. The nature of the micellar calcium phosphate. Netherlands Milk and Dairy Journal, 44, 65–81.

    Google Scholar 

  • van Hooydonk, A. C. M., Hagedoorn, H. G., & Boerrigter, I. J. (1986). pH-induced physico-chemical changes of casein micelles in milk and their effect on renneting. 1. Effects of acidification on physico-chemical properties. Netherlands Milk and Dairy Journal, 40, 281–296.

    Google Scholar 

  • Van Slyke, D. D. (1922). On the measurement of buffer values and the relationship of buffer value to the dissociation constant and the concentration and reaction of the buffer solution. The Journal of Biological Chemistry, 52(525), 571.

    Google Scholar 

  • Van Wazer, J. R., & Callis, C. F. (1958). Metal complexing by phosphates. Chemical Reviews, 58, 1011–1046.

    Article  Google Scholar 

  • VanHouten, J. N. (2005). Calcium-sensing by the mammary gland. Journal of Mammary Gland Biology and Neoplasia, 10, 129–139.

    Article  PubMed  Google Scholar 

  • VanHouten, J., Dann, P., McGeoch, G., Brown, E. M., Krapcho, K., Neville, M., & Wysolmerski, J. J. (2004). The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. The Journal of Clinical Investigation, 113, 598–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veith, P. D., & Reynolds, E. C. (2004). Production of a high gel strength whey protein concentrate from cheese whey. Journal of Dairy Science, 87, 831–840.

    Article  CAS  PubMed  Google Scholar 

  • Vessely, C. R., Carpenter, J. F., & Schwartz, D. K. (2005). Calcium-induced changes to the molecular conformation and aggregate structure of β-casein at the air-water interface. Biomacromolecules, 6, 3334–3344.

    Article  CAS  PubMed  Google Scholar 

  • Visser, S. A. (1962). Occurrence of calcium phosphates in the presence of organic substances, especially proteins. Journal of Dairy Science, 45, 710–716.

    Article  CAS  Google Scholar 

  • Visser, J., Minihan, A., Smits, P., Tyan, S. B., & Heertje, I. (1986). Effect of pH and temperature on the milk salt system. Netherlands Milk and Dairy Journal, 40, 351–368.

    CAS  Google Scholar 

  • Walstra, P., & Jenness, R. (1984). Dairy chemistry and physics. New York: Wiley.

    Google Scholar 

  • Wang, Q., Holt, C., Nylander, T., & Ma, M. (2020). Salt partition, ion equilibria, and the structure, composition, and solubility of micellar calcium phosphate in bovine milk with added calcium salts. Journal of Dairy Science, 103, 9893–9905.

    Article  CAS  PubMed  Google Scholar 

  • Ward, B. R., Goddard, S. J., Augustin, M. A., & McKinnon, I. R. (1997). EDTA-induced dissociation of casein micelles and its effects on foaming properties of milk. The Journal of Dairy Research, 64, 495–504.

    Article  CAS  Google Scholar 

  • Wendorff, W. L. (2001). Freezing qualities of raw ovine milk for further processing. Journal of Dairy Science, 84(E Suppl), E74–E78.

    Article  CAS  Google Scholar 

  • Williams, R. P. W., D’Ath, L., & Augustin, M. A. (2005). Production of calcium-fortified milk powders using soluble calcium salts. Le Lait, 85, 369–381.

    Article  CAS  Google Scholar 

  • Wright, N. C. (1928). The mechanism of secretion of calcium and phosphorus in milk. Journal of the Agricultural Society, University College of Wales, 18, 478–485.

    CAS  Google Scholar 

  • Ye, A., & Singh, H. (2001). Interfacial composition and stability of sodium caseinate emulsions as influenced by calcium ions. Food Hydrocolloids, 15, 195–207.

    Article  CAS  Google Scholar 

  • Yun, J. J., Kiely, L. J., Barbano, D. M., & Kindstedt, P. S. (1993). Mozzarella cheese: Impact of milling pH on functional properties. Journal of Dairy Science, 76, 3639–3647.

    Article  CAS  Google Scholar 

  • Zhang, Z., Dalgleish, D. G., & Goff, H. D. (2004). Effect of pH and ionic strength on competitive protein adsorption to air/water interfaces in aqueous foams made with mixed milk proteins. Colloids and Surfaces, B: Biointerfaces, 34, 113–121.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Lucey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lucey, J.A., Horne, D.S. (2022). Milk Salts: Technological Significance. In: McSweeney, P.L.H., O'Mahony, J.A., Kelly, A.L. (eds) Advanced Dairy Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-92585-7_8

Download citation

Publish with us

Policies and ethics