Skip to main content
Log in

Amorphous calcium phosphate in casein micelles of bovine milk

  • Rapid Communication
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The calcium phosphate remaining after hydrazine deproteination of casein micelles isolated from bulk skim milk exhibits under the electron microscope a very fine and uniform granularity being formed by small subunits with a true diameter of approximately 2.5 nm. This material, which is about 10 percent by weight citrate, termed calcium phosphate citrate (CPC) complex, also contains Mg and Zn at molar ratios of 0.03 and 0.003 respectively. Radial distribution function (RDF) and infrared analyses show that CPC is a Mg-containing amorphous calcium phosphate (ACP) similar to synthetic and cytoplasmic ACP. Presence of CPC in casein micelles as an amorphous colloid bonded with phosphoproteins provides the means for storing in milk large amounts of Ca (16 mM) and Pi (10 mM) in a readily utilizable form but at a higher ion concentration than found in biological solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pyne, G.T., McGann, T.C.A.: The colloidal phosphate of milk. II. Influence of citrate. J. Dairy Res. 27: 9–17, 1960.

    CAS  Google Scholar 

  2. McGann, T.C.A., Pyne, G.T.: The colloidal phosphate of milk. III. Nature of its association with casein.

  3. Richardson, T., McGann, T.C.A., Kearney, R.D.: Levels and location of adenosine 5′-triphosphate in bovine milk. J. Dairy Res.47: 91–96, 1980.

    CAS  PubMed  Google Scholar 

  4. Lehninger, A.L.: Mitochondria and biological mineralization processes: An exploration. Horizons Biochem. Biophys.4: 1–30, 1977.

    CAS  Google Scholar 

  5. Betts, F., Posner, A.S.: A structural model for ACP. Trans. Amer. Cryst. Assoc.10: 73–84, (1974).

    CAS  Google Scholar 

  6. Termine, J.D., Eanes, E.D., Greenfield, D.J., Nylen, M.U.: Hydrazine-deproteinated bone mineral. Calc. Tiss. Res.12: 73–90, (1973).

    Article  CAS  Google Scholar 

  7. Buchheim, W.: A comparison of the microstructure of dried milk products by freeze-fracturing powder suspensions in non-aqueous media. Scanning Electron Microsc. 111: 493–502, 1981.

    Google Scholar 

  8. Thomas, R.S., Greenwalt, J.W.: Micorincineration, electron microscopy, and electron diffraction of calcium phosphate-loaded mitochondria. J. Cell Biol.39: 55–57, 1968.

    Article  CAS  PubMed  Google Scholar 

  9. Hurley, L.S., Lonnerdal, B.: Zinc Binding in human milk: citrate versus Picolinate. Ntr. Revs.40: 65–71, 1982.

    Article  CAS  Google Scholar 

  10. Brudevold, F., Steadman, L.T., Spinelli, M.A., Amdur, B.H., Gron, P.: A study of zinc in human teeth. Arch. Oral Biol.8:135–144, 1963.

    Article  CAS  PubMed  Google Scholar 

  11. Calhoun, N.R., Smith, Jr., J.C., Becker, K.L.: The role of zinc in bone metabolism. Clin. Orthop.103: 212–233, 1974.

    PubMed  Google Scholar 

  12. Blumenthal, N.C., Betts, F., Posner, A.S.: Stabilization of amorphous calcium phosphate by Mg and ATP. Calcif. Tiss. Res.23:245–250, 1977.

    Article  CAS  Google Scholar 

  13. Meyer, J.L., Angino, E.E.: The role of trace metals in calcium urolithiasis. Invest. Urol.14: 347–350, 1977.

    CAS  PubMed  Google Scholar 

  14. Knoop, A.M., Frede, E., Precht, D.: Die submikroskopische struktur naturlicher und kunstlicher casein micellen. Milchwissenschaft.34: 129–131, 1979.

    CAS  Google Scholar 

  15. Brecevic, L.J. Furedi-Milhofer, H.: Precipitation of calcium phosphates from electrolyte solutions. V. The influence of citrate ions. Calcif. Tissue Int.28: 131–136, 1979.

    CAS  PubMed  Google Scholar 

  16. Schmidt, D.G., Buchheim, W.: On the size of small protein particles determined by electron microscopy of unidirectionally shadowed freeze-etched preparations. J. Microsc.126: 347–351, 1982.

    CAS  PubMed  Google Scholar 

  17. Robinson, R.A., Watson, M.L.: Crystal-collagen relationships in bone as observed in the electron microscope. III. Crystal and collagen morphology as a function of age. Ann. N.Y. Acad. Sci.60: 596–628, 1955.

    CAS  PubMed  Google Scholar 

  18. Bonnuci, E.: Fine structure and histochemistry of "calcifying globules" in epiphyseal cartilage. Z. Zellforsch103: 192–217, 1970.

    Article  Google Scholar 

  19. Knoop, A.M., Knoop, E., Wiechen, A.: Substructure of synthetic casein micelles. J. Dairy Res.46: 347–350, 1979.

    CAS  PubMed  Google Scholar 

  20. Betts, F., Blumenthal, N.C., Posner, A.S., Becker, G.L., Lehninger, A.L.: Atomic structure of intracellular amorphous calcium deposits. Proc. Nat Acad. Sci.72: 2088–2090, 1975.

    CAS  PubMed  Google Scholar 

  21. Posner, A.S.: Intramitochondrial storage of stable amorphous calcium phosphate. Ann. N.Y. Acad. Sci.307: 248–249, 1978.

    CAS  PubMed  Google Scholar 

  22. Pyne, G.T.: Some aspects of the physical chemistry of the salts in milk. J. Dairy Res.29: 101–130, 1962.

    Article  CAS  Google Scholar 

  23. Blumenthal, N.C., Betts, F., Posner, A.S.: Effect of carbonate and biological macromolecules on formation and properties of hydroxyapatite. Calcif. Tiss. Res. 18: 18–90, 1975.

    Google Scholar 

  24. Holt, C., Hasnain, S.S., Hukins, D.W.L. Structure of bovine milk calcium phosphate determined by x-ray absorption spectroscopy. Biochimica et Biophysica Acta,719: 299–303, 1982.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGann, T.C.A., Kearney, R.D., Buchheim, W. et al. Amorphous calcium phosphate in casein micelles of bovine milk. Calcif Tissue Int 35, 821–823 (1983). https://doi.org/10.1007/BF02405131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02405131

Key Words

Navigation