Skip to main content

Local Hybrid Navigation System of Tethered High-Altitude Platform

  • Conference paper
  • First Online:
Distributed Computer and Communication Networks: Control, Computation, Communications (DCCN 2021)

Abstract

This paper describes the principles of constricting the local navigation system for a tethered high-altitude platform. In particular, the navigation system for the platform “Albatross” developed by the scientists of the Institute of Control Sciences of the Russian Academy of Sciences is considered here. The hybrid navigation system is proposed here. The system includes the millimeter and optical subsystems. The millimeter system effectively functions at altitudes above 5–10, and the optical system effectively functions at altitudes below 5–10. Moreover, each of them can be used as a backup in the corresponding range.

The reported study was funded by RFBR, project numbers 19-29-06043, 20-37-70059.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaktashov, V.M., Oleinikov, V.N., Sheiko, S.A., Babkin, S.I., Korytsev, I.V., Zubkov, O.V.: Features of detection and recognition of small unmanned aerial vehicles. Radioengineering. 195, 235–243 (2018). (in Russian)

    Google Scholar 

  2. Sadasivan, S., Gurubasavaraj, M., Sekar, S.R.: Acoustic signature of an unmanned air vehicle - exploitation for aircraft localisation and parameter estimation. Eronautical Def. Sci. J. 51(3), 279–283 (2001)

    Article  Google Scholar 

  3. Massey, K., Gaeta, R.: Noise measurements of tactical UAVs. In: 16th AIAA/CEAS Aeroacoustics Conference, pp. 1–16 (2010). Georgia Institute of Technology

    Google Scholar 

  4. Marino, L.: Experimental analysis of UAV-propellers noise. In: 16th AIAA/CEAS Aeroacoustics Conference, pp. 1–14. University “La Sapienza”, Rome, Italy (2010)

    Google Scholar 

  5. Pham, T., Srour, N.: TTCP AG-6: acousting detection and tracking of UAVs. Proc. SPIE 54, 24–29 (2004)

    Article  Google Scholar 

  6. Zelnio, A.M.: Detection of small aircraft using an acoustic array. Thesis, B.S. - Electrical Engineering, Wright State University (2007). 55p

    Google Scholar 

  7. Beel, J.J.: Anti-UAV Defense For Ground Forces and Hypervelocity Rocket Lethality Models. Monterey, California: Naval Postgraduate School, pp. 36–46 (1992)

    Google Scholar 

  8. Moses, A., Rutherford, M.J., Valavanis, K.P.: Radar-based detection and identification for miniature air vehicles. In: IEEE International Conference on Control Applications, Denver, CO, USA, pp. 933–940 (2011)

    Google Scholar 

  9. Kahmen, O., Rofallski, R., Luhmann, T.: Impact of stereo camera calibration to object accuracy in multimedia photogrammetry. Remote Sens. 12, 2057 (2020)

    Article  Google Scholar 

  10. Isobe, Y., Masuyama, G., Umeda, K.: Occlusion handling for a target-tracking robot with a stereo camera. ROBOMECH J. 5(1), 1–13 (2018). https://doi.org/10.1186/s40648-018-0101-2

    Article  Google Scholar 

  11. Mueggler, E., Rebecq, H., Scaramuzza, D.: The event-camera dataset and simulator: event-based data for pose estimation, visual odometry, and SLAM. Int. J. Robot. Res. 36(49), 142–149 (2016)

    Google Scholar 

  12. Chen, Q., Poullis, Ch.: Single-Shot Dense Reconstruction With Epic-Flow. 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (2018)

    Google Scholar 

  13. Vijayanarasimhan, S., Ricco, S., Schmid, C., Sukthankar, R., Fragkiadaki, K.: Learning of structure and motion from video (2017)

    Google Scholar 

  14. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  15. Mur-Artal, R., Montiel, J.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  16. Yamada, K., Kimura, A.A.: Performance evaluation of keypoints detection methods SIFT and AKAZE for 3D reconstruction. In: 2018 International Workshop on Advanced Image Technology, Chiang Mai, Thailand (2018)

    Google Scholar 

  17. Vishnevsky, V.M., Vytovtov, K.A., Barabanova, E.A.: Model of navigation and control system of an airborne mobile station. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2020. LNCS, vol. 12563, pp. 643–657. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66471-8_49

    Chapter  Google Scholar 

  18. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37, 583–596 (2014)

    Article  Google Scholar 

  19. Lukezic, A., Voj’ir, T., Zajc, L.C., Matas, J., Kristan, M.: Discriminative correlation filter tracker with channel and spatial reliability. Int. J. Comput. Vis. 126, 671–688 (2018)

    Article  MathSciNet  Google Scholar 

  20. Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 103–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vishnevsky, V., Vytovtov, K., Barabanova, E., Buzdin, V.E., Frolov, S.A. (2021). Local Hybrid Navigation System of Tethered High-Altitude Platform. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds) Distributed Computer and Communication Networks: Control, Computation, Communications. DCCN 2021. Lecture Notes in Computer Science(), vol 13144. Springer, Cham. https://doi.org/10.1007/978-3-030-92507-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92507-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92506-2

  • Online ISBN: 978-3-030-92507-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics