Skip to main content
Log in

Discriminative Correlation Filter Tracker with Channel and Spatial Reliability

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Short-term tracking is an open and challenging problem for which discriminative correlation filters (DCF) have shown excellent performance. We introduce the channel and spatial reliability concepts to DCF tracking and provide a learning algorithm for its efficient and seamless integration in the filter update and the tracking process. The spatial reliability map adjusts the filter support to the part of the object suitable for tracking. This both allows to enlarge the search region and improves tracking of non-rectangular objects. Reliability scores reflect channel-wise quality of the learned filters and are used as feature weighting coefficients in localization. Experimentally, with only two simple standard feature sets, HoGs and colornames, the novel CSR-DCF method—DCF with channel and spatial reliability—achieves state-of-the-art results on VOT 2016, VOT 2015 and OTB100. The CSR-DCF runs close to real-time on a CPU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. The CSR-DCF Matlab source is publicly available on:

    https://github.com/alanlukezic/csr-dcf.

  2. With some basic code optimization and refactoring we speed-up our algorithm to 19 FPS without significant performance drop (only one additional failure on VOT2016 dataset).

References

  • Babenko, B., Yang, M. H., & Belongie, S. (2011). Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8), 1619–1632.

    Article  Google Scholar 

  • Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., & Torr, P. H. S. (2016a). Staple: Complementary learners for real-time tracking. In Computer vision and pattern recognition (pp. 1401–1409).

  • Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., & Torr, P. H. (2016b). Fully-convolutional siamese networks for object tracking. arXiv preprint arXiv:1606.09549.

  • Bolme, D. S., Beveridge, J. R., Draper, B. A., & Lui, Y. M. (2010). Visual object tracking using adaptive correlation filters. In IEEE: Computer vision and pattern recognition (pp. 2544–2550).

  • Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1), 1–122.

    Article  MATH  Google Scholar 

  • Čehovin, L., Leonardis, A., & Kristan, M. (2016). Visual object tracking performance measures revisited. IEEE Transactions on Image Processing, 25(3), 1261–1274.

    MathSciNet  Google Scholar 

  • Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. Computer Vision and Pattern Recognition, 1, 886–893.

    Google Scholar 

  • Danelljan, M., Häger, G., Khan, F. S., & Felsberg, M. (2014a). Accurate scale estimation for robust visual tracking. In Proceedings of British machine vision conference (pp. 1–11).

  • Danelljan, M., Häger, G., Khan, F. S., & Felsberg, M. (2015a). Convolutional features for correlation filter based visual tracking. In IEEE international conference on computer vision workshop (ICCVW) (pp. 621–629).

  • Danelljan, M., Hager, G., Khan, F. S., & Felsberg, M. (2015b). Learning spatially regularized correlation filters for visual tracking. In International conference on computer vision (pp. 4310–4318).

  • Danelljan, M., Häger, G., Khan, F. S., & Felsberg, M. (2017). Discriminative scale space tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(8), 1561–1575.

    Article  Google Scholar 

  • Danelljan, M., Khan, F. S., Felsberg, M., & van de Weijer, J. (2014b). Adaptive color attributes for real-time visual tracking. In 2014 IEEE conference on computer vision and pattern recognition, CVPR 2014, Columbus, OH, USA, June 23–28, 2014 (pp. 1090–1097).

  • Danelljan, M., Robinson, A., Khan, F. S., & Felsberg, M. (2016). Beyond correlation filters: Learning continuous convolution operators for visual tracking. In Proceedings of the European conference on computer vision (pp. 472–488). Springer.

  • Dinh, T. B., Vo, N., & Medioni, G. (2011). Context tracker: Exploring supporters and distracters in unconstrained environments. In Computer vision and pattern recognition (pp. 1177–1184).

  • Diplaros, A., Vlassis, N., & Gevers, T. (2007). A spatially constrained generative model and an em algorithm for image segmentation. IEEE Transactions on Neural Networks, 18(3), 798–808.

    Article  Google Scholar 

  • Felzenszwalb, P., Girshick, R., McAllester, D., & Ramanan, D. (2010). Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1627–1645.

    Article  Google Scholar 

  • Galoogahi, H. K., Sim, T., & Lucey, S. (2013). Multi-channel correlation filters. In International conference on computer vision (pp. 3072–3079).

  • Grabner, H., Grabner, M., & Bischof, H. (2006). Real-time tracking via on-line boosting. Proceedings of British Machine Vision Conference, 1, 47–56.

    Google Scholar 

  • Hare, S., Saffari, A., & Torr, P. H. S. (2011). Struck: Structured output tracking with kernels. In International conference on computer vision, IEEE Computer Society, Washington, DC, USA (pp. 263–270).

  • Henriques, J. F., Caseiro, R., Martins, P., & Batista, J. (2012). Exploiting the circulant structure of tracking-by-detection with kernels. In A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, & C. Schmid (Eds.), Proceedings of European conference computer vision (pp. 702–715). Berlin: Springer.

  • Henriques, J. F., Caseiro, R., Martins, P., & Batista, J. (2015). High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3), 583–596.

    Article  Google Scholar 

  • Hester, C. F., & Casasent, D. (1980). Multivariant technique for multiclass pattern recognition. Applied Optics, 19(11), 1758–1761.

    Article  Google Scholar 

  • Hong, Z., Chen, Z., Wang, C., Mei, X., Prokhorov, D., & Tao, D. (2015). Multi-store tracker (muster): A cognitive psychology inspired approach to object tracking. In Computer vision and pattern recognition (pp. 749–758).

  • Jia, X., Lu, H., & Yang, M. H. (2012). Visual tracking via adaptive structural local sparse appearance model. In Computer vision and pattern recognition (pp. 1822–1829).

  • Kalal, Z., Mikolajczyk, K., & Matas, J. (2012). Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7), 1409–1422.

    Article  Google Scholar 

  • Kiani Galoogahi, H., Sim, T., Lucey, S. (2015). Correlation filters with limited boundaries. In Computer vision and pattern recognition (pp. 4630–4638).

  • Kristan, M., Kenk, V. S., Kovačič, S., & Perš, J. (2016a). Fast image-based obstacle detection from unmanned surface vehicles. IEEE Transactions on Cybernetics, 46(3), 641–654.

    Article  Google Scholar 

  • Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R., Čehovin, L., et al. (2016b). The visual object tracking vot2016 challenge results. In Proceedings of the European conference on computer vision.

  • Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Čehovin, L., Fernandez, G., et al. (2015). The visual object tracking vot2015 challenge results. In International conference on computer vision

  • Kristan, M., Matas, J., Leonardis, A., Vojir, T., Pflugfelder, R., Fernandez, G., et al. (2016c). A novel performance evaluation methodology for single-target trackers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 2137–2155.

    Article  Google Scholar 

  • Kristan, M., Pflugfelder, R., Leonardis, A., Matas, J., Čehovin, L., Nebehay, G., et al. (2014). The visual object tracking vot2014 challenge results. In Proceedings of the European conference on computer vision (pp. 191–217).

  • Kristan, M., Pflugfelder, R., Leonardis, A., Matas, J., Porikli, F., Čehovinehovin, L., et al. (2013). The visual object tracking vot2013 challenge results. In The visual object tracking challenge VOT2013, in conjunction with ICCV2013 (pp. 98–111).

  • Li, Y., & Zhu, J. (2014). A scale adaptive kernel correlation filter tracker with feature integration. In Proceedings of the European conference on computer vision (pp. 254–265).

  • Liang, P., Blasch, E., & Ling, H. (2015). Encoding color information for visual tracking: Algorithms and benchmark. IEEE Transactions on Image Processing, 24(12), 5630–5644.

    Article  MathSciNet  Google Scholar 

  • Liu, B., Huang, J., Yang, L., & Kulikowsk, C. (2011). Robust tracking using local sparse appearance model and k-selection. In Computer vision and pattern recognition (pp. 1313–1320).

  • Liu, S., Zhang, T., Cao, X., & Xu, C. (2016). Structural correlation filter for robust visual tracking. In Computer vision and pattern recognition (pp. 4312–4320).

  • Liu, T., Wang, G., & Yang, Q. (2015). Real-time part-based visual tracking via adaptive correlation filters. In Computer vision and pattern recognition (pp. 4902–4912).

  • Lukežič, A., Zajc, L. Č., & Kristan, M. (2017). Deformable parts correlation filters for robust visual tracking. IEEE Transactions on Cybernetics, 99, 1–13.

    Google Scholar 

  • Ma, C., Huang, J. B., Yang, X., & Yang, M. H. (2015). Hierarchical convolutional features for visual tracking. In International conference on computer vision (pp 3074–3082).

  • Mueller, M., Smith, N., & Ghanem, B. (2016). A benchmark and simulator for uav tracking. In Proceedings of the European conference on computer vision.

  • Nam, H., & Han, B. (2016). Learning multi-domain convolutional neural networks for visual tracking. In Computer vision and pattern recognition (pp. 4293–4302).

  • Qi, Y., Zhang, S., Qin, L., Yao, H., Huang, Q., Lim, J., et al. (2016). Hedged deep tracking. In CVPR (pp. 4303–4311).

  • Smeulders, A., Chu, D., Cucchiara, R., Calderara, S., Dehghan, A., & Shah, M. (2014). Visual tracking: An experimental survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(7), 1442–1468.

    Article  Google Scholar 

  • van de Weijer, J., Schmid, C., Verbeek, J., & Larlus, D. (2009). Learning color names for real-world applications. IEEE Transactions on Image Processing, 18(7), 1512–1523.

    Article  MathSciNet  MATH  Google Scholar 

  • Vojir, T., & Matas, J. (2017). Pixel-wise object segmentations for the VOT 2016 dataset. Research Report CTU-CMP-2017-01, Center for Machine Perception, K13133 FEE Czech Technical University, Prague, Czech Republic.

  • Wang, L., Ouyang, W., Wang, X., & Lu, H. (2015). Visual tracking with fully convolutional networks. In International conference on computer vision (pp. 3119–3127).

  • Wang, N., Li, S., Gupta, A., & Yeung, D. (2015). Transferring rich feature hierarchies for robust visual tracking. CoRR arXiv:1501.04587.

  • Wang, S., Zhang, S., Liu, W., & Metaxas, D. N. (2016). Visual tracking with reliable memories. In Proceedings of the twenty-fifth international joint conference on artificial intelligence (pp. 3491–3497).

  • Wu, Y., Lim, J., & Yang, M. H. (2013). Online object tracking: A benchmark. In Computer vision and pattern recognition (pp. 2411–2418).

  • Wu, Y., Lim, J., & Yang, M. H. (2015). Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1834–1848.

    Article  Google Scholar 

  • Zhang, K., Zhang, L., Liu, Q., Zhang, D., & Yang, M. H. (2014). Fast visual tracking via dense spatio-temporal context learning. In Proceedings of the European conference on computer vision (pp. 127–141). Springer.

  • Zhong, W., Lu, H., & Yang, M. H. (2012). Robust object tracking via sparsity-based collaborative model. In Computer vision and pattern recognition (pp. 1838–1845).

  • Zhu, G., Porikli, F., & Li, H. (2016). Beyond local search: Tracking objects everywhere with instance-specific proposals. In The IEEE conference on computer vision and pattern recognition (CVPR) (pp. 943–951).

Download references

Acknowledgements

This work was supported in part by the following research programs and projects: Slovenian Research Agency Research Programs and Projects P2-0214 and L2-6765. Jiři Matas and Tomáš Vojír̃ were supported by The Czech Science Foundation Project GACR P103/12/G084 and Toyota Motor Europe. We would also like to thank Dr. Rok Žitko for discussion on complex differentiation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Lukežič.

Additional information

Communicated by Florent Perronnin.

Appendix 1: Derivation of the Augmented Lagrangian Minimizer

Appendix 1: Derivation of the Augmented Lagrangian Minimizer

This section provides a complete derivation of the relations (12, 13) in the Sect. 3.1. The augmented Lagrangian from Eq. (8) is

$$\begin{aligned} \mathcal {L}\left( \hat{\mathbf {h}}_c, \mathbf {h}, \hat{\mathbf {l}}\right)= & {} \left\| \mathrm {diag}(\hat{\mathbf {f}}) \overline{\hat{\mathbf {h}}}_c - \hat{\mathbf {g}} \right\| ^2 + \frac{\lambda }{2} \Vert \mathbf {h}_m \Vert ^2 \nonumber \\&+\,\left[ \hat{\mathbf {l}}^H\big ( \hat{\mathbf {h}}_c - \hat{\mathbf {h}}_m\big ) + \overline{\hat{\mathbf {l}}^H\big ( \hat{\mathbf {h}}_c -\hat{\mathbf {h}}_m\big )}\right] \nonumber \\&+\, \mu \big \Vert \hat{\mathbf {h}}_c - \hat{\mathbf {h}}_m \big \Vert ^2, \end{aligned}$$
(20)

with \(\mathbf {h}_m = (\mathbf {m} \odot \mathbf {h})\). For the purposes of derivation we will rewrite (20) into a fully vectorized form

$$\begin{aligned} \mathcal {L}(\hat{\mathbf {h}}_c, \mathbf {h}, \hat{\mathbf {l}})= & {} \left\| \mathrm {diag}\left( \hat{\mathbf {f}}\right) \overline{\hat{\mathbf {h}}}_c - \hat{\mathbf {g}} \right\| ^2 + \frac{\lambda }{2} \left\| \mathbf {h}_m \right\| ^2 \nonumber \\&+\, \left[ \hat{\mathbf {l}}^H\bigg ( \hat{\mathbf {h}}_c - \sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h}\bigg ) + \overline{\hat{\mathbf {l}}^H( \hat{\mathbf {h}}_c - \sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h})}\right] \nonumber \\&+\, \mu \bigg \Vert \hat{\mathbf {h}}_c - \sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h} \bigg \Vert ^2, \end{aligned}$$
(21)

where \(\mathbf {F}\) denotes \(D\times D\) orthonormal matrix of Fourier coefficients, such that the Fourier transform is defined as \(\hat{\mathbf {x}} = \mathcal {F}(\mathbf {x}) = \sqrt{D}\mathbf {F}\mathbf {x}\) and \(\mathbf {M}=\mathrm {diag}(\mathbf {m})\). For clearer representation we denote the four terms in the summation (21) as

$$\begin{aligned} \mathcal {L}\bigg (\hat{\mathbf {h}}_c, \mathbf {h}, \hat{\mathbf {l}}\bigg ) = \mathcal {L}_{1} + \mathcal {L}_{2} + \mathcal {L}_{3} + \mathcal {L}_{4}, \end{aligned}$$
(22)

where

$$\begin{aligned} \mathcal {L}_1 = \overline{\Big ( \mathrm {diag}(\hat{\mathbf {f}}) \overline{\hat{\mathbf {h}}}_c - \hat{\mathbf {g}} \Big )}^{T} \Big ( \mathrm {diag}(\hat{\mathbf {f}}) \overline{\hat{\mathbf {h}}}_c - \hat{\mathbf {g}} \Big ), \end{aligned}$$
(23)
$$\begin{aligned} \mathcal {L}_2 = \frac{\lambda }{2} \Vert \mathbf {h}_m \Vert ^2, \end{aligned}$$
(24)
$$\begin{aligned} \mathcal {L}_3 = \hat{\mathbf {l}}^H( \hat{\mathbf {h}}_c - \sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h}) + \overline{\hat{\mathbf {l}}^H( \hat{\mathbf {h}}_c - \sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h})}, \end{aligned}$$
(25)
$$\begin{aligned} \mathcal {L}_4 = \mu \Vert \hat{\mathbf {h}}_c - \sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h} \Vert ^2. \end{aligned}$$
(26)

Minimization of Eq. (8) in Sect. 3.1 is an iterative process at which the following minimizations are required:

$$\begin{aligned} \hat{\mathbf {h}}_c^\mathrm {opt} = \mathop {\arg \min }\limits _\mathbf {h_c} \mathcal {L} \bigg (\hat{\mathbf {h}}_c, \mathbf {h}, \hat{\mathbf {l}}\bigg ),\end{aligned}$$
(27)
$$\begin{aligned} \mathbf {h}^\mathrm {opt} = \mathop {\arg \min }\limits _\mathbf {h} \mathcal {L} \bigg (\hat{\mathbf {h}}_c^\mathrm {opt}, \mathbf {h}, \hat{\mathbf {l}}\bigg ). \end{aligned}$$
(28)

Minimization w.r.t. to \(\hat{\mathbf {h}}_c\) is derived by finding \(\hat{\mathbf {h}}_c\) at which the complex gradient of the augmented Lagrangian vanishes, i.e.,

$$\begin{aligned}&\nabla _{\overline{\hat{\mathbf {h}}}_c} \mathcal {L} \equiv 0, \end{aligned}$$
(29)
$$\begin{aligned}&\nabla _{\overline{\hat{\mathbf {h}}}_c} \mathcal {L}_{1} + \nabla _{\overline{\hat{\mathbf {h}}}_c} \mathcal {L}_{2} + \nabla _{\overline{\hat{\mathbf {h}}}_c} \mathcal {L}_{3} + \nabla _{\overline{\hat{\mathbf {h}}}_c} \mathcal {L}_{4} \equiv 0. \end{aligned}$$
(30)

The partial complex gradients are:

$$\begin{aligned} \nabla _{\overline{\hat{\mathbf {h}}}_c} \mathcal {L}_{1}= & {} \frac{\partial }{\partial \overline{\hat{\mathbf {h}}}_c} \bigg [ \overline{\Big ( \mathrm {diag}(\hat{\mathbf {f}}) \overline{\hat{\mathbf {h}}}_c - \hat{\mathbf {g}} \Big )}^{T} \Big ( \mathrm {diag}(\hat{\mathbf {f}}) \overline{\hat{\mathbf {h}}}_c - \hat{\mathbf {g}} \Big ) \bigg ] \nonumber \\= & {} \frac{\partial }{\partial \overline{\hat{\mathbf {h}}}_c} \bigg [ \hat{\mathbf {h}}_c^T \mathrm {diag}(\hat{\mathbf {f}})^H \mathrm {diag}(\hat{\mathbf {f}}) \overline{\hat{\mathbf {h}}}_c - \hat{\mathbf {h}}_{c}^{T} \mathrm {diag}(\hat{\mathbf {f}})^{H} \hat{\mathbf {g}} \nonumber \\&-\, \hat{\mathbf {g}}^{H} \mathrm {diag}(\hat{\mathbf {f}}) \overline{\hat{\mathbf {h}}}_c + \hat{\mathbf {g}}^{H}\hat{\mathbf {g}} \bigg ] \nonumber \\= & {} \mathrm {diag}(\hat{\mathbf {f}})^{H} \mathrm {diag}(\hat{\mathbf {f}}) \hat{\mathbf {h}}_c - \mathrm {diag}(\hat{\mathbf {f}}) \overline{\hat{\mathbf {g}}}, \end{aligned}$$
(31)
$$\begin{aligned} \nabla _{\overline{\hat{\mathbf {h}}}_c} \mathcal {L}_{2}= & {} 0,\end{aligned}$$
(32)
$$\begin{aligned} \nabla _{\overline{\hat{\mathbf {h}}}_c} \mathcal {L}_{3}= & {} \frac{\partial }{\partial \overline{\hat{\mathbf {h}}}_c} \bigg [ \hat{\mathbf {l}}^H \Big ( \hat{\mathbf {h}}_c - \sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h} \Big ) + \overline{\hat{\mathbf {l}}^H \Big ( \hat{\mathbf {h}}_c - \sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h} \Big )} \bigg ] \nonumber \\= & {} \frac{\partial }{\partial \overline{\hat{\mathbf {h}}}_c} \bigg [ \hat{\mathbf {l}}^H \hat{\mathbf {h}}_c - \hat{\mathbf {l}}^H \sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h} + \hat{\mathbf {l}}^T \overline{\hat{\mathbf {h}}}_c - \hat{\mathbf {l}}^T \sqrt{D}\overline{\mathbf {F}}\overline{\mathbf {M}}\overline{\mathbf {h}} \bigg ] \nonumber \\= & {} \hat{\mathbf {l}}, \end{aligned}$$
(33)
$$\begin{aligned} \nabla _{\overline{\hat{\mathbf {h}}}_c} \mathcal {L}_{4}= & {} \frac{\partial }{\partial \overline{\hat{\mathbf {h}}}_c} \bigg [ \mu \overline{\Big ( \hat{\mathbf {h}}_c - \sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h} \Big )}^{T} \Big ( \hat{\mathbf {h}}_c - \sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h} \Big ) \bigg ] \nonumber \\= & {} \frac{\partial }{\partial \overline{\hat{\mathbf {h}}}_c} \bigg [ \mu \Big ( \hat{\mathbf {h}}_c^{H} \hat{\mathbf {h}}_c - \hat{\mathbf {h}}_c^{H}\sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h} \nonumber \\&-\, \sqrt{D}\mathbf {h}^T\mathbf {M}\mathbf {F}^{H}\hat{\mathbf {h}}_c + D\mathbf {h}^T\mathbf {M}\mathbf {F}^{H}\mathbf {F}\mathbf {M}\mathbf {h} \Big ) \bigg ] \nonumber \\= & {} \mu \hat{\mathbf {h}}_c - \mu \sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h}. \end{aligned}$$
(34)

Note that \(\sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h} = \hat{\mathbf {h}}_m\) according to our original definition of \(\hat{\mathbf {h}}_m\). Plugging (3134) into (30) yields

$$\begin{aligned}&\mathrm {diag}(\hat{\mathbf {f}})^{H} \mathrm {diag}(\hat{\mathbf {f}}) \hat{\mathbf {h}}_c - \mathrm {diag}(\hat{\mathbf {f}}) \overline{\hat{\mathbf {g}}} + \hat{\mathbf {l}} + \mu \hat{\mathbf {h}}_c - \mu \hat{\mathbf {h}}_m = 0,\\&\hat{\mathbf {h}}_c = \frac{\mathrm {diag}(\hat{\mathbf {f}}) \overline{\hat{\mathbf {g}}} + \mu \hat{\mathbf {h}}_m - \hat{\mathbf {l}}}{\mathrm {diag}(\hat{\mathbf {f}})^{H} \mathrm {diag}(\hat{\mathbf {f}}) + \mu },\nonumber \end{aligned}$$
(35)

which can be rewritten into

$$\begin{aligned} \hat{\mathbf {h}}_c = \frac{\hat{\mathbf {f}} \odot \overline{\hat{\mathbf {g}}} + \mu \hat{\mathbf {h}}_m - \hat{\mathbf {l}}}{\overline{\hat{\mathbf {f}}} \odot \hat{\mathbf {f}} + \mu }. \end{aligned}$$
(36)

Next we derive the closed-form solution of (28). The optimal \(\mathbf {h}\) is obtained when the complex gradient w.r.t. \(\mathbf {h}\) vanishes, i.e.,

$$\begin{aligned}&\nabla _{\overline{\mathbf {h}}} \mathcal {L} \equiv 0 \end{aligned}$$
(37)
$$\begin{aligned}&\nabla _{\overline{\mathbf {h}}} \mathcal {L}_{1} + \nabla _{\overline{\mathbf {h}}} \mathcal {L}_{2} + \nabla _{\overline{\mathbf {h}}} \mathcal {L}_{3} + \nabla _{\overline{\mathbf {h}}} \mathcal {L}_{4} \equiv 0. \end{aligned}$$
(38)

The partial gradients are

$$\begin{aligned} \nabla _{\overline{\mathbf {h}}} \mathcal {L}_{1}= & {} 0, \end{aligned}$$
(39)
$$\begin{aligned} \nabla _{\overline{\mathbf {h}}} \mathcal {L}_{2}= & {} \frac{\partial }{\partial \overline{\mathbf {h}}} \bigg [ \frac{\lambda }{2} \overline{(\mathbf {M} \mathbf {h})}^T (\mathbf {M} \mathbf {h}) \bigg ] = \frac{\partial }{\partial \overline{\mathbf {h}}} \bigg [ \frac{\lambda }{2} \mathbf {h}^H \overline{\mathbf {M}} \mathbf {M} \mathbf {h} \bigg ]. \end{aligned}$$
(40)

Since we defined mask \(\mathbf {m}\) as a binary mask, the product \(\overline{\mathbf {M}} \mathbf {M}\) can be simplified into \(\mathbf {M}\) and the result for \(\nabla _{\overline{\mathbf {h}}} \mathcal {L}_{2}\) is

$$\begin{aligned} \nabla _{\overline{\mathbf {h}}} \mathcal {L}_{2} = \frac{\lambda }{2} \mathbf {M} \mathbf {h}. \end{aligned}$$
(41)

The remaining gradients are as follows:

$$\begin{aligned} \nabla _{\overline{\mathbf {h}}} \mathcal {L}_{3}= & {} \frac{\partial }{\partial \overline{\mathbf {h}}} \bigg [ \hat{\mathbf {l}}^H \Big ( \hat{\mathbf {h}}_c - \sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h} \Big ) + \overline{\hat{\mathbf {l}}^H \Big ( \hat{\mathbf {h}}_c - \sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h} \Big )} \bigg ] \nonumber \\= & {} \frac{\partial }{\partial \overline{\mathbf {h}}} \bigg [ \hat{\mathbf {l}}^H \hat{\mathbf {h}}_c - \hat{\mathbf {l}}^H \sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h} + \hat{\mathbf {l}}^T \overline{\hat{\mathbf {h}}}_c - \hat{\mathbf {l}}^T \sqrt{D}\overline{\mathbf {F}}\overline{\mathbf {M}}\overline{\mathbf {h}} \bigg ] \nonumber \\= & {} - \sqrt{D} \mathbf {M} \mathbf {F}^H \hat{\mathbf {l}}, \end{aligned}$$
(42)
$$\begin{aligned} \nabla _{\overline{\mathbf {h}}} \mathcal {L}_{4}= & {} \frac{\partial }{\partial \overline{\mathbf {h}}} \bigg [ \mu \overline{\Big ( \hat{\mathbf {h}}_c - \sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h} \Big )}^{T} \Big ( \hat{\mathbf {h}}_c - \sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h} \Big ) \bigg ] \nonumber \\= & {} \frac{\partial }{\partial \overline{\mathbf {h}}} \bigg [ \mu \Big ( \hat{\mathbf {h}}_c^H \hat{\mathbf {h}}_c - \hat{\mathbf {h}}_c^H\sqrt{D}\mathbf {F}\mathbf {M}\mathbf {h} \nonumber \\&- \, \sqrt{D}\mathbf {h}^H\mathbf {M}\mathbf {F}^H\hat{\mathbf {h}}_c + D\mathbf {h}^H \mathbf {M}\mathbf {h} \Big ) \bigg ] \nonumber \\= & {} - \mu \sqrt{D}\mathbf {M}\mathbf {F}^H \hat{\mathbf {h}}_c + \mu D\mathbf {M}\mathbf {h}. \end{aligned}$$
(43)

Plugging (3943) into (38) yields

$$\begin{aligned}&\frac{\lambda }{2} \mathbf {M} \mathbf {h} - \sqrt{D} \mathbf {M} \mathbf {F}^H \hat{\mathbf {l}} - \mu \sqrt{D}\mathbf {M}\mathbf {F}^H \hat{\mathbf {h}}_c + \mu D\mathbf {M}\mathbf {h} = 0, \nonumber \\&\mathbf {M}\mathbf {h} = \mathbf {M}\frac{\sqrt{D}\mathbf {F}^H(\hat{\mathbf {l}} + \mu \hat{\mathbf {h}}_c)}{\frac{\lambda }{2} + \mu D}. \end{aligned}$$
(44)

Using the definition of the inverse Fourier transform, i.e., \(\mathcal {F}^{-1}(\hat{\mathbf {x}}) = \frac{1}{\sqrt{D}} \mathbf {F}^H \hat{\mathbf {x}}\), (44) can be rewritten into

$$\begin{aligned} \mathbf {m} \odot \mathbf {h} = \mathbf {m} \odot \frac{\mathcal {F}^{-1}(\hat{\mathbf {l}} + \mu \hat{\mathbf {h}}_c)}{\frac{\lambda }{2D} + \mu }. \end{aligned}$$
(45)

The values in \(\mathbf {m}\) are either zero or one. Elements in \(\mathbf {h}\) that correspond to the zeros in \(\mathbf {m}\) can in principle not be recovered from (45) since this would result in division by zero. But our initial definition of the problem was to seek solutions for the filter that satisfies the following relation \(\mathbf {h} \equiv \mathbf {h} \odot \mathbf {m}\). This means the values corresponding to zeros in \(\mathbf {m}\) should be zero in \(\mathbf {h}\). Thus the proximal solution to (45) is

$$\begin{aligned} \mathbf {h} = \mathbf {m} \odot \frac{\mathcal {F}^{-1}(\hat{\mathbf {l}} + \mu \hat{\mathbf {h}}_c)}{\frac{\lambda }{2D} + \mu }. \end{aligned}$$
(46)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukežič, A., Vojíř, T., Čehovin Zajc, L. et al. Discriminative Correlation Filter Tracker with Channel and Spatial Reliability. Int J Comput Vis 126, 671–688 (2018). https://doi.org/10.1007/s11263-017-1061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-017-1061-3

Keywords

Navigation