Skip to main content

Structure and Morphogenesis of the Frustule

  • Chapter
  • First Online:
The Molecular Life of Diatoms

Abstract

The intricate morphology of diatom cell walls has fascinated scientists since the invention of the light microscope more than 300 years ago. However, it was not recognized until 1844 that the diatom cell wall, termed frustule (from Latin frustulum = piece, chunk), is actually mainly composed of glass (amorphous SiO2 or silica). As more and more details of frustule structures from numerous species were revealed through improvements in light microscopy and the development of electron microscopy, it became increasingly mysterious as to how such amazingly complex inorganic architectures are produced by individual cells. The species-specificity of the frustule structure indicates that the blueprint for its morphogenesis is encoded in adiatom’s genome. Unveiling the machinery that executes this morphogenesis program is still ongoing (see also Chap. “Biomolecules Involved in Frustule Biogenesis and Function”). Here, we explain the general architectures of frustules and describe the main cellular events and key steps in their morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ER:

Endoplasmic reticulum

GFP:

Green fluorescent protein

MC:

Microtubule organizing center

Mya:

Million years ago

PSS:

Primary silicification site

SDV:

Silica deposition vesicle

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

VHA:

V-type H+-ATPase

References

  • Bedoshvili Y, Gneusheva K, Popova M, Morozov A, Likhoshway Y (2018) Anomalies in the valve morphogenesis of the centric diatom alga Aulacoseira islandica caused by microtubule inhibitors. Biol Open 7:bio035519

    PubMed  PubMed Central  Google Scholar 

  • Bernecker A, Wieneke R, Riedel R, Seibt M, Geyer A, Steinem C (2010) Tailored synthetic polyamines for controlled biomimetic silica formation. J Am Chem Soc 132:1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Bishop I, Spaulding S (2014) Diatoms of North America. The source for diatom identification and ecology. https://diatoms.org/

  • Blank GS, Sullivan CW (1983) Diatom mineralization of silicic acid. VII. Influence of microtubule drugs on symmetry and pattern formation in valves of Navicula saprophila during morphogenesis. J Phycol 19:294–301

    Article  CAS  Google Scholar 

  • Bobeth M, Dianat A, Gutierrez R, Werner D, Yang H, Eckert H, Cuniberti G (2020) Continuum modelling of structure formation of biosilica patterns in diatoms. BMC Mater 2:1–11

    Google Scholar 

  • Bradbury J (2004) Nature’s nanotechnologists: unveiling the secrets of diatoms. PLoS Biol 2(10):e306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiappino ML, Volcani BE (1977) Studies on the biochemistry and fine structure of silicia shell formation in diatoms VII. Sequential cell wall development in the pennate Navicula pelliculosa. Protoplasma 93:205–221

    Article  Google Scholar 

  • Cohn SA, Nash J, Pickett-Heaps JD (1989) The effect of drugs on diatom valve morphogenesis. Protoplasma 149:130–143

    Article  Google Scholar 

  • Crawford RM, Schmid AM (1986) Ultrastructure of silica deposition in diatoms. In: Leadbeater BS, C., Riding R. (eds) Biomineralization in lower plants and animals. Clarendon Press, Oxford, pp 291–314

    Google Scholar 

  • Dawson PA (1973) Observations on the structure of some forms of Gomphonema parvulum. Kütz. III. Frustule formation. J Phycol 9:165–175

    Google Scholar 

  • Drum RW, Pankratz HS (1964) Post mitotic fine structure of Gomphonema parvulum. J Ultrastruct Res 10:217–223

    Article  CAS  PubMed  Google Scholar 

  • Durkin CA, Mock T, Armbrust EV (2009) Chitin in diatoms and its association with the cell wall. Euk Cell 8:1038–1050

    Article  CAS  Google Scholar 

  • Eppley RW, Holmes RW, Strickland JD (1967) Sinking rates of marine phytoplankton measured with a fluorometer. J Exp Mar Biol Ecol 1:191–208

    Article  Google Scholar 

  • Geitler L (1932) Der Formwechsel der pennaten Diatomeen. Archiv fur Protistenkunde 78:1–226

    Google Scholar 

  • Girard V, Saint Martin S, Saint Martin JP, Schmidt AR, Struwe S, Perrichot V, Breton G, Néraudeau D (2009) Exceptional preservation of marine diatoms in upper Albian amber. Geology 37(1):83–86

    Article  CAS  Google Scholar 

  • Gladenkov AY (2012) Middle Eocene diatoms from the marine Paleogene stratigraphic key section of Northeast Kamchatka. Austrian J Earth Sci 105:1

    Google Scholar 

  • Heintze C, Formanek P, Pohl D, Hauptstein J, Rellinghaus B, Kröger N (2020) An intimate view into the silica deposition vesicles of diatoms. BMC Mater. 2:1–15

    Google Scholar 

  • Heisenberg CP, Bellaïche Y (2013) Forces in tissue morphogenesis and patterning. Cell 153:948–962

    Article  CAS  PubMed  Google Scholar 

  • Herth W, Schnepf E (1982) Chitin-fibril formation in algae. In: Cellulose and other natural polymer systems. Springer, Boston, MA, pp 185–206

    Chapter  Google Scholar 

  • Hildebrand M, York E, Kelz JI, Davis AK, Frigeri LG, Allison DP, Doktycz MJ (2006) Nanoscale control of silica morphology and three-dimensional structure during diatom cell wall formation. J Mater Res 21:2689–2698

    Article  CAS  Google Scholar 

  • Hildebrand M, Frigeri LG, Davis AK (2007) Synchronized growth of Thalassiosira pseudonana (bacillariophyceae) provides novel insights into cell wall synthesis processes in relation to the cell cycle. J Phycol 43:730–740

    Article  CAS  Google Scholar 

  • Hildebrand M, Kim S, Shi D, Scott K, Subramaniam S (2009) 3D imaging of diatoms with ion-abrasion scanning electron microscopy. J Struct Biol 166:316–328

    Article  PubMed  PubMed Central  Google Scholar 

  • Hildebrand M, Lerch SJ, Shrestha RP (2018) Understanding diatom cell wall silicification—moving forward. Front Mar Sci 5:125

    Article  Google Scholar 

  • Hoops HJ, Floyd GL (1979) Ultrastructure of the centric diatom, Cyclotella meneghiniana: vegetative cell and auxospore development. Phycologia 18(4):424–435

    Article  Google Scholar 

  • Idei M, Sato S, Tamotsu N, Mann DG (2018) Valve morphogenesis in Diploneis smithii (Bacillariophyta). J Phycol 54:171–186

    Article  PubMed  Google Scholar 

  • Kaluzhnaya OV, Likhoshway YV (2007) Valve morphogenesis in an araphid diatom Synedra acus subsp. radians. Diatom Res 22:81–87

    Article  Google Scholar 

  • Kharitonenko KV, Bedoshvili YD, Likhoshway YV (2015) Changes in the micro-and nanostructure of siliceous valves in the diatom Synedra acus under the effect of colchicine treatment at different stages of the cell cycle. J Struct Biol 190:73–80

    Article  CAS  PubMed  Google Scholar 

  • Kotzsch A, Gröger P, Pawolski D, Bomans PH, Sommerdijk NA, Schlierf M, Kröger N (2017) Silicanin-1 is a conserved diatom membrane protein involved in silica biomineralization. BMC Biol 15:1–16

    Article  CAS  Google Scholar 

  • Kröger N, Poulsen N (2008) Diatoms - from cell wall biogenesis to nanotechnology. Annu Rev Genet 42:83–107

    Article  PubMed  CAS  Google Scholar 

  • Lange-Bertalot H (1999) Diatoms from Siberia I. Islands in the Arcic Ocean (Yugorsky Shar Strait). Iconographia Diatomologica 6:273

    Google Scholar 

  • LeDuff P, Rorrer GL (2019) Formation of extracellular β-chitin nanofibers during batch cultivation of marine diatom Cyclotella sp. at silicon limitation. J Appl Phycol 31:3479–3490

    Article  CAS  Google Scholar 

  • Lenoci L, Camp PJ (2008) Diatom structures templated by phase-separated fluids. Langmuir 24:217–223

    Article  CAS  PubMed  Google Scholar 

  • Mann DG (1981) A note on valve formation and homology in the diatom genus Cymbella. Ann Bot 47:267–269

    Article  Google Scholar 

  • McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596

    Article  CAS  PubMed  Google Scholar 

  • Medlin LK, Crawford RM, Andersen RA (1986) Histochemical and ultrastructural evidence for the function of the labiate process in the movement of centric diatoms. Br Phycol J 21:297–301

    Article  Google Scholar 

  • Moore ER, Bullington BS, Weisberg AJ, Jiang Y, Chang J, Halsey KH (2017) Morphological and transcriptomic evidence for ammonium induction of sexual reproduction in Thalassiosira pseudonana and other centric diatoms. PLoS One 12:e0181098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagai S, Hori Y, Manabe T, Imai I (1995) Restoration of cell size by vegetative cell enlargement in Coscinodiscus wailesii (Bacillariophyceae). Phycologia 34:533–535

    Article  Google Scholar 

  • Parkinson J, Brechet Y, Gordon R (1999) Centric diatom morphogenesis: a model based on a DLA algorithm investigating the potential role of microtubules. Biochem Biophys Acta 1452:89–102

    Article  CAS  PubMed  Google Scholar 

  • Pickett-Heaps JD, Tippit DH, Andreozzi JA (1979) Cell division in the pennate diatom Pinnularia. IV. Valve morphogenesis. Biol Cell 35:295

    Google Scholar 

  • Pickett-Heaps JD, Schmid AMM, Edgar LA (1990) The cell biology of diatom valve formation. In: Round FE, Chapman DJ (eds) Progress in psychological research. Biopress, Bristol, pp 1–168

    Google Scholar 

  • Robinson DH, Sullivan CW (1987) How do diatoms make silicon biominerals? Trends Biochem Sci 12:151–154

    Article  CAS  Google Scholar 

  • Romann J, Valmalette JC, Chauton MS, Tranell G, Einarsrud MA, Vadstein O (2015) Wavelength and orientation dependent capture of light by diatom frustule nanostructures. Sci Rep 5:1–6

    Article  CAS  Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) Diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  • Sar EA, Sunesen I, Jahn R (2010) Coscinodiscus perforatus revisited and compared with Coscinodiscus radiatus (Bacillariophyceae). Phycologia 49:514–524

    Article  Google Scholar 

  • Sato S (2010) Valve and girdle band morphogenesis in a bipolar centric diatom Plagiogrammopsis vanheurckii (Cymatosiraceae, Bacillariophyta). Eur J Phycol 45:167–176

    Article  Google Scholar 

  • Sato S, Medlin LK (2006) Motility of non-raphid diatoms. Diatom Res 21:473–477

    Article  Google Scholar 

  • Sato S, Mann DG, Nagumo T, Tanaka J, Tadano T, Medlin LK (2008) Auxospore fine structure and variation in modes of cell size changes in Grammatophora marina (Bacillariophyta). Phycologia 47:12–27

    Article  Google Scholar 

  • Sato S, Watanabe T, Nagumo T, Tanaka J (2011) Valve morphogenesis in an araphid diatom Rhaphoneis amphiceros (Rhaphoneidaceae, Bacillariophyta). Phycol Res 59:236–243

    Article  Google Scholar 

  • Schmid AMM (1980) Valve morphogenesis in diatoms: a pattern-related filamentous system in pennates and the effect of APM, colchicine and osmotic pressure. Nova Hedw 33:811–847

    Google Scholar 

  • Schmid AMM (1994) Aspects of morphogenesis and function of diatom cell walls with implications for taxonomy. In: The protistan cell surface. Springer, Vienna, pp 43–60

    Chapter  Google Scholar 

  • Schmid AMM, Schulz D (1979) Wall morphogenesis in diatoms: deposition of silica by cytoplasmic vesicles. Protoplasma 100:267–288

    Article  Google Scholar 

  • Schmid AMM, Volcani BE (1983) Wall morphogenesis in Coscinodiscus wailesii Gran and Angst. I. Valve morphology and development of its architecture. J Phycol 19:387–402

    Article  Google Scholar 

  • Schmid AMM, Borowitzka MA, Volcani BE (1981) Morphogenesis and biochemistry of diatom cell walls. In: Cytomorphogenesis in plants. Springer, Vienna, pp 63–97

    Chapter  Google Scholar 

  • Schoeman FR, Archibald REM, Barlow DJ (1976) Structural observations and notes on the freshwater diatom Navicula pelliculosa (Brébisson ex Kützing) Hilse. Br Phycol J 11:251–263

    Article  Google Scholar 

  • Schulz D, Drebes G, Lehmann H, Jank-Ladwig R (1984) Ultrastructure of Anaulus creticus Drebes & Schulz with special reference to its reduced ocelli. Eur J Cell Biol 33:43–51

    CAS  PubMed  Google Scholar 

  • Shimizu K, Del Amo Y, Brzezinski MA, Stucky GD, Morse DE (2001) A novel fluorescent silica tracer for biological silicification studies. Chem Biol 8:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Simpson TL, Volcani BE (eds) (2012) Silicon and siliceous structures in biological systems. Springer, New York

    Google Scholar 

  • Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45:361–402

    Article  Google Scholar 

  • Spaulding S, Potapova M (2020). Diatoms of North America. The source for diatom identification and ecology. https://diatoms.org/

  • Sumper M (2002) A phase separation model for the nanopatterning of diatom biosilica. Science 295:2430–2433

    Article  CAS  PubMed  Google Scholar 

  • Tesson B, Hildebrand M (2010a) Extensive and intimate association of the cytoskeleton with forming silica in diatoms: control over patterning on the meso-and micro-scale. PLoS One 5:e14300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tesson B, Hildebrand M (2010b) Dynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica: substructure formation and the role of microfilaments. J Struct Biol 169:62–74

    Article  CAS  PubMed  Google Scholar 

  • Tesson B, Lerch SJ, Hildebrand M (2017) Characterization of a new protein family associated with the silica deposition vesicle membrane enables genetic manipulation of diatom silica. Sci Rep 7:1–13

    Article  CAS  Google Scholar 

  • Tiffany MA (2002) Valve morphogenesis in the marine araphid diatom Gephyria media (Bacillariophyceae). Diatom Res 17:391–400

    Article  Google Scholar 

  • Tiffany MA (2005) Diatom auxospore scales and early stages in diatom frustule morphogenesis: their potential for use in nanotechnology. J Nanosci Nanotechnol 5:131–139

    Article  CAS  PubMed  Google Scholar 

  • Van De Meene AM, Pickett-Heaps JD (2002) Valve morphogenesis in the centric diatom Proboscia alata Sundstrom. J Phycol 38:351–363

    Article  Google Scholar 

  • Van de Meene AM, Pickett-Heaps JD (2004) Valve morphogenesis in the centric diatom Rhizosolenia setigera (Bacillariophyceae, Centrales) and its taxonomic implications. Eur J Phycol 39:93–104

    Article  Google Scholar 

  • Volcani BE (1981) Cell wall formation in diatoms: morphogenesis and biochemistry. In: Silicon and siliceous structures in biological systems. Springer, New York, pp 157–200

    Chapter  Google Scholar 

  • Vrieling EG, Gieskes WWC, Beelen TP (1999) Silicon deposition in diatoms: control by the pH inside the silicon deposition vesicle. J Phycol 35:548–559

    Article  CAS  Google Scholar 

  • Vrieling EG, Beelen TP, van Santen RA, Gieskes WW (2002) Mesophases of (bio) polymer–silica particles inspire a model for silica biomineralization in diatoms. Angew Chem Int Ed 41:1543–1546

    Article  CAS  Google Scholar 

  • Walsby AE, Xypolyta A (1977) The form resistance of chitan fibres attached to the cells of Thalassiosira fluviatilis Hustedt. Br Phycol J 12:215–223

    Article  Google Scholar 

  • Wetzel CE, Ector L (2014) Taxonomy, distribution and autecology of Planothidium bagualensis sp. nov.(Bacillariophyta) a common monoraphid species from southern Brazilian rivers. Phytotaxa 156:201–210

    Article  Google Scholar 

  • Willis L, Cox EJ, Duke T (2013) A simple probabilistic model of submicroscopic diatom morphogenesis. J R Soc Interf 10:20130067

    Article  CAS  Google Scholar 

  • Yee DP, Hildebrand M, Tresguerres M (2020) Dynamic subcellular translocation of V-type H+-ATPase is essential for biomineralization of the diatom silica cell wall. New Phytol 225:2411–2422

    Article  CAS  PubMed  Google Scholar 

  • Zurzolo C, Bowler C (2001) Exploring bioinorganic pattern formation in diatoms. A story of polarized trafficking. Plant Physiol 127:1339–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank David Mann (Royal Botanic Garden Edinburgh, UK) and Shinya Sato (Fukui Prefectural University, Japan) for critically reading the manuscript. We are indebted to the Deutsche Forschungsgemeinschaft (DFG) for financial support through grants KR1853/6-2 and KR1853/8-2 (to NK) in the framework of Research Unit 2038 (NANOMEE), and through a “Physics of Life” Starting Grant under Germany’s Excellence Strategy – EXC-2068 – 390729961– Cluster of Excellence Physics of Life of TU Dresden (to NK and BMF). BMF acknowledges support by the DFG through a Heisenberg grant (FR3429/4-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Kröger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babenko, I., Friedrich, B.M., Kröger, N. (2022). Structure and Morphogenesis of the Frustule. In: Falciatore, A., Mock, T. (eds) The Molecular Life of Diatoms. Springer, Cham. https://doi.org/10.1007/978-3-030-92499-7_11

Download citation

Publish with us

Policies and ethics