Skip to main content

Horizontal Natural Product Transfer: A Phenomenon Which Is Responsible for the Widespread Alkaloidal Contaminations of Herbal Products

  • Chapter
  • First Online:
Environmental Challenges and Medicinal Plants

Abstract

Induced by numerous alarming reports of the European Food Safety Authority on widespread contaminations of plant-derived commodities by poisonous alkaloids (nicotine, pyrrolizidine alkaloids), the origin of these alkaloidal contaminations had been investigated. These studies unveiled that alkaloids, which have been leached out from decomposing alkaloidal donor plants, are taken up by the roots of acceptor plants growing in the vicinity. These insights had been the basis for establishing the so-called horizontal natural product transfer. Meanwhile, it is verified that many other natural products, such as coumarins or stilbenes, are also taken up from the soil by plant roots and then are allocated into the leaves. Recent research revealed that alkaloids are also transferred from living and vital donor plants into plants growing in their vicinity. Moreover, it became evident that in a number of acceptor plants, the imported natural products are modified, whereas in others, they are just accumulated. These modifications comprise hydroxylation, methylation and glucosylation processes analogous to the modifications described for xenobiotics. In the past, it was presumed that these reactions are part of a deliberate detoxification mechanism, denoted as “green liver concept”. But, since the mode and extent of these modifications strongly vary between different plant species, a general and universal mechanism such as the “green liver concept” can be excluded.

Apart from the high relevance for preventing contaminations of plant-derived commodities, the novel insights in the “horizontal natural product transfer” will also impact our understanding of plant-plant interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouzeid S, Beutling U, Selmar D (2019) Stress-induced modification of indole alkaloids, Phytomodificines as a new category of specialized metabolites. Phytochemistry 159:102–107

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Park S-W, Stermitz FR, Halligan KM, Vivanco JM (2002) RETRACTED: exudation of fluorescent β-carbolines from Oxalis tuberosa L. roots. Phytochemistry 61:539–543

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Vepachedu R, Vivanco JM (2003) Root specific elicitation and exudation of fluorescent β-carbolines in transformed root cultures of Oxalis tuberosa. Plant Physiol Biochem 41:345–353

    Article  CAS  Google Scholar 

  • Bartholomew BA, Smith MJ, Long MT, Darcy PJ, Trudgill PW, Hopper DJ (1993) The isolation and identification of 6-hydroxycyclohepta-1,4-dione as a novel intermediate in the bacterial degradation of atropine. Biochem J 293:115–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann TW, Gabriel H (1984) Metabolism and excretion of caffeine during germination of Coffea arabica L. Plant Cell Physiol 25:1431–1436

    Article  CAS  Google Scholar 

  • Basnet K (1993) Ecological consequences of root grafting in Tabonuco (Dacryodes excelsa) trees in the Luquillo experimental forest, Puerto Rico. Biotropica 25:28–35

    Article  Google Scholar 

  • Belz RG, Reinhardt CF, Foxcroft LC, Hurle K (2007) Residue allelopathy in Parthenium hysterophorus L.–Does parthenin play a leading role? Crop Prot 26:237–245

    Article  Google Scholar 

  • Bertin C, Yang X, West LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Blum U (2011) Plant-plant allelopathic interactions. In: Plant-plant allelopathic interactions. Springer, Heidelberg, pp 1–7

    Chapter  Google Scholar 

  • Bolan NS, Naidu R, Syers JK, Tillman RW (1999) Surface charge and solute interactions in soils. Adv Agron 67:87–140

    Article  CAS  Google Scholar 

  • Burken JG (2003) Uptake and metabolism of organic compounds: green-liver model. In: Phytoremediation–transformation and control of contaminants. Wiley-Interscience, pp 59–84

    Chapter  Google Scholar 

  • Collins CD, Martin I, Doucette W (2011) Plant uptake of xenobiotics. In: Organic xenobiotics and plants. plant ecophysiology 8. Springer, Dordrecht, pp 3–16

    Chapter  Google Scholar 

  • Cramer L, Schiebel HM, Ernst L, Beuerle T (2013) Pyrrolizidine alkaloids in the food chain. Development, validation, and application of a new HPLC-ESI-MS/MS sum parameter method. J Agric Food Chem 61:11382–11391

    Article  CAS  PubMed  Google Scholar 

  • Cronin MTD, Livingstone J (2004) Calculation of physiochemical properties. In: Predicting chemical toxicity and fate. CRC Press, pp 31–40

    Chapter  Google Scholar 

  • EFSA (2011a) European food safety authority 2011. Setting of temporary MRLs for nicotine in tea, herbal infusions, spices, rose hips and fresh herbs. EFSA J 9(3):2098

    Google Scholar 

  • EFSA (2011b) Scientific opinion on pyrrolizidine alkaloids in food and feed. EFSA J 9(11):2406

    Google Scholar 

  • EFSA (2016) Dietary exposure assessment to pyrrolizidine alkaloids in the European population. EFSA J 14(8):457

    Google Scholar 

  • EFSA (2017) Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA J 15(7):4908

    Google Scholar 

  • EFSA (2018) Human acute exposure assessment to tropane alkaloids. EFSA J 16(2):5160

    Google Scholar 

  • Eggen T, Heimstad ES, Stuanes AO, Norli HR (2013) Uptake and translocation of organophosphates and other emerging contaminants in food and forage crops. Environ Sci Pollut Res 20:4520–4531

    Article  CAS  Google Scholar 

  • Franz G (1962) Untersuchungen über die Aufnahme von Alkaloiden durch höhere Pflanzen. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 96:218–230

    Article  CAS  Google Scholar 

  • Fu PP, Xia Q, Lin G, Chou MW (2004) Pyrrolizidine alkaloids-genotoxicity, metabolism enzymes, metabolic activation, and Mechanisms. Drug Metab Rev 36:1–55

    Article  CAS  PubMed  Google Scholar 

  • García-Jorgensen DB, Hansen HCB, Abrahamsen P, Diamantopoulos E (2020) A novel model concept for modelling the leaching of natural toxins: results for the case of ptaquiloside. Environ Sci: Proc Impact 22:1768–1779

    Google Scholar 

  • Godheja J, Shekhar SK, Siddiqui SA, Moi DR (2016) Xenobiotic compounds present in soil and water: a review on remediation strategies. J Environ Anal Toxicol 6:5

    Article  Google Scholar 

  • Hama J, Strobel BW (2019) Pyrrolizidine alkaloids quantified in soil and water using UPLC-MS/MS. RSC Adv 9:30350–30357

    Article  CAS  Google Scholar 

  • Hama JR, Strobel BW (2020) Natural alkaloids from narrow-leaf and yellow lupins transfer to soil and soil solution in agricultural fields. Environ Sci Europe 32:126

    Article  CAS  Google Scholar 

  • Hama J, Strobel BW (2021) Occurrence of pyrrolizidine alkaloids in ragwort plants, soils and surface waters at the field scale in grassland. Sci Total Environ 755:142822

    Article  CAS  PubMed  Google Scholar 

  • Hatzios KK (1997) Regulation of enzymatic systems detoxifying xenobiotics in plants: a brief overview and directions for future research. In: High Technology 37–Regulation of enzymatic systems detoxifying xenobiotics in plants. NATO-ASI Series 3. Springer, Heidelberg, pp 1–8

    Chapter  Google Scholar 

  • Hazrati H, Fomsgaard IS, Kudsk P (2020) Root-Exuded benzoxazinoids: uptake and translocation in neighboring plants. J Agric Food Chem 68:10609–10617

    Article  CAS  PubMed  Google Scholar 

  • Hijazin T, Radwan A, Abouzeid S, Dräger G, Selmar D (2019) Uptake and modification of umbelliferone by various seedlings. Phytochemistry 157:194–199

    Article  CAS  PubMed  Google Scholar 

  • Hijazin T, Radwan A, Lewerenz L, Abouzeid S, Selmar D (2020) The uptake of alkaloids by plants from the soil is determined by rhizosphere pH. Rhizosphere 15:100234

    Article  Google Scholar 

  • Hoerger CC, Wettstein FE, Bachmann HJ, Hungerbühler K, Bucheli TD (2011) Occurrence and mass balance of isoflavones on an experimental grassland field. Environ Sci Technol 45:6752–6760

    Article  CAS  PubMed  Google Scholar 

  • Hsu FC, Marxmiller RL, Yang AYS (1990) Study of root uptake and xylem translocation of cinmethylin and related compounds in detopped soybean roots using a pressure chamber technique. Plant Physiol 93:1573–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurtado C, Domínguez C, Pérez-Babace L, Cãnameras N, Comas J, Bayona JM (2016) Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grow under controlled conditions. J Hazard Mater 305:139–148

    Article  CAS  PubMed  Google Scholar 

  • Jandrić Z, Rathor M, Ghhem-Kieth S, Adu-Gyamfi J, Mayr L, Resch C, Bado S, Švarc-Gajić J, Cannavan A (2013) Uptake of 14C-atropine and/or its transformation products from soil by wheat (Triticum aestivum var Kronjet) and their translocation to shoots. J Environ Sci Health B 48:1034–1104

    Article  CAS  PubMed  Google Scholar 

  • Jones G, Rahman MA (1994) Fluorescence properties of coumarin laser dyes in aqueous polymer media. Chromophore isolation in poly (methacrylic acid) hypercoils. J Phys Chem 98:13028–13037

    Article  CAS  Google Scholar 

  • Joosten L, van Veen JA (2011) Defensive properties of pyrrolizidine alkaloids against microorganisms. Phytochem Rev 10:127–136

    Article  CAS  PubMed  Google Scholar 

  • Kalinova J, Vrchotova N, Triska J (2007) Exudation of allelopathic substances in buckwheat (Fagopyrum esculentum Moench). J Agric Food Chem 55:6453–6459

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants Annual Reviews of. Plant Biol 63:131–152

    Article  CAS  Google Scholar 

  • Komives T, Gullner G (2005) Phase I xenobiotic metabolic systems in plants. Zeitschrift für Naturforschung C 60:179–185

    CAS  Google Scholar 

  • Kreis W, Munkert J (2019) Exploiting enzyme promiscuity to shape plant specialized metabolism. J Agric Food Chem 70:1435–1445

    CAS  Google Scholar 

  • Lewerenz L, Hijazin T, Abouzeid S, Hänsch R, Selmar D (2020) Pilot study on the uptake and modification of harmaline in acceptor plants: an innovative approach to visualize the interspecific transfer of natural products. Phytochemistry 174:102–107

    Article  CAS  Google Scholar 

  • Letsyo E, Adams ZS, Dzikunoo J, Asante-Donyinah D (2021) Uptake and accumulation of pyrrolizidine alkaloids in the tissues of maize (Zea mays L.) plants from the soil of a 4-year-old Chromolaena odorata dominated fallow farmland. Chemosphere 270:128669

    Article  CAS  PubMed  Google Scholar 

  • Li W, Hu Q, Chan W (2016) Uptake and accumulation of nephrotoxic and carcinogenic aristolochic acids in food crops grown in Aristolochia clematitis-contaminated soil and water. J Agric Food Chem 64:107–112

    Article  CAS  PubMed  Google Scholar 

  • Limmer MA, Burken JG (2014) Plant translocation of organic compounds: molecular and physicochemical predictors. Environ Sci Technol Lett 1:156–161

    Article  CAS  Google Scholar 

  • Matile P (1976) Localization of alkaloids and mechanism of their accumulation in vacuoles of Chelidonium majus laticifers. Nova Acta Leopold 7:139–156

    CAS  Google Scholar 

  • Mattocks AR (1986) Chemistry and toxicology of pyrrolizidine alkaloids. Academic Press, New York

    Google Scholar 

  • Mazzafera P, Olsson O, Sandberg G (1996) Degradation of caffeine and related methylxanthines by Serratia marcescens isolated from soil under coffee cultivation. Microb Ecol 31:199–207

    Article  CAS  PubMed  Google Scholar 

  • Miners JO, Coulter S, Tukey RH, Veronese ME, Birkett DJ (1996) Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-demethylation of R- and S-naproxen. Biochem Pharmacol 51:1003–1008

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Shitan N, Sawada K, Van Montagu MC, E. Inzé D., Rischer, H., Goossens, A., Oksman-Caldentey, K.-M., Moriyama, Y., Yazaki, K. (2009) Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. PNAS 106:2447–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulder PPJ, Sánchez PL, These A, Preiss-Weigert A, Castellari M (2015) Occurrence of pyrrolizidine alkaloids in food. EFSA Supporting Publication EN-859

    Google Scholar 

  • Nakano H, Nakajima E, Fujii Y, Yamada K, Shigemori H, Hasegawa K (2003) Leaching of the allelopathic substance L-tryptophan from the foliage of mesquite (Prosopis juliflora DC.) plants by water spraying. Plant Growth Regul 40:49–52

    Article  CAS  Google Scholar 

  • Nowak M, Wittke C, Lederer I, Klier B, Kleinwächter M, Selmar D (2016) Interspecific transfer of pyrrolizidine alkaloids: an unconsidered source of contaminations of phytopharmaceuticals and plant derived commodities. Food Chem 213:163–168

    Article  CAS  PubMed  Google Scholar 

  • Nowak M, Selmar D (2016) Cellular distribution of alkaloids and their translocation via phloem and xylem: the importance of compartment pH. Plant Biol 18:879–882

    Article  CAS  PubMed  Google Scholar 

  • Nowak M, Yahyazadeh M, Lewerenz L, Selmar D (2017) Horizontal natural product transfer: a so far unconsidered source of contamination of medicinal. In: Medicinal plants and environmental challenges. Springer International Publishing, Cham, Switzerland, pp 215–226

    Chapter  Google Scholar 

  • Otani M, Shitan N, Sakai K, Martinoia E, Sato F, Yazaki K (2005) Characterization of vacuolar transport of the endogenous alkaloid berberine in Coptis japonica. Plant Physiol 138:1939–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlović NM, Maksimović V, Maksimović JD, Orem WH, Tatu CA, Lerch HE, Bunnell JE, Kostić EN, Szilagyi DN, Paunescu V (2013) Possible health impacts of naturally occurring uptake of aristolochic acids by maize and cucumber roots: links to the etiology of endemic (Balkan) nephropathy. Environ Geochem Health 35:5–226

    Google Scholar 

  • Pullagurala VLR, Rawat S, Adisa IO, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2018) Plant uptake and translocation of contaminants of emerging concern in soil. Sci Total Environ 636:1585–1596

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen LH, Kroghsbo S, Frisvad JC, Hansen HCB (2003) Occurrence of the carcinogenic bracken constituent ptaquiloside in fronds, topsoils and organic soil layers in Denmark. Chemosphere 51:117–127

    Article  CAS  PubMed  Google Scholar 

  • Riedell WE, Schumacher TE (2009) Transport of water and nutrients in plants. In: Agricultural sciences–I. EOLSS Publications, pp 371–387

    Google Scholar 

  • Ruiz-May E, Galaz-Ávalos RM, Loyola-Vargas VM (2009) Differential secretion and accumulation of terpene indole alkaloids in hairy roots of Catharanthus roseus treated with methyl jasmonate. Mol Biotechnol 41:278–285

    Article  CAS  PubMed  Google Scholar 

  • Sandermann H (1994) Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics 4:225–241

    Article  CAS  PubMed  Google Scholar 

  • Schulz M, Friebe A, Kueck P, Seipel M, Schnabl H (1994) Allelopathic effects of living quackgrass (Agropyron repens L.). Identification of inhibitory allelochemicals exuded from rhizome borne roots. J Appl Bot 68:195–200

    CAS  Google Scholar 

  • Schulz M, Wieland I (1999) Variation in metabolism of BOA among species in various field communities–biochemical evidence for co-evolutionary processes in plant communities? Chemoecology 9:133–141

    Article  CAS  Google Scholar 

  • Seigler DS (2006) Basic pathways for the origin of allelopathic compounds. In: Allelopathy–A physiological process with ecological implications. Springer, Heidelberg, pp 11–61

    Google Scholar 

  • Selmar D, Engelhardt UH, Hänsel S, Thräne C, Nowak M, Kleinwächter M (2015b) Nicotine uptake by peppermint plants as a possible source of nicotine in plant-derived products. Agron Sustain Dev 35:1185–1190

    Article  CAS  Google Scholar 

  • Selmar D, Radwan A, Nowak M (2015a) Horizontal natural product transfer: a so far unconsidered source of contamination of plant-derived commodities. J, Environ Anal Toxicol 5:4

    Google Scholar 

  • Selmar D, Radwan A, Abdalla N, Taha H, Wittke C, El-Henawy A, Alshaal T, Amer M, Nowak M, El-Ramady H (2018) Uptake of nicotine from discarded cigarette butts–A so far unconsidered path of contamination of plant derived commodities. Environ Pollut 238:972–976

    Article  CAS  PubMed  Google Scholar 

  • Selmar D, Radwan A, Hijazin T, Abouzeid S, Yahyazadeh M, Lewerenz L, Kleinwächter M, Nowak M (2019a) Perspective: horizontal natural product transfer: intriguing insights into a newly discovered phenomenon. J Agric Food Chem 67:8740–8745

    Article  CAS  PubMed  Google Scholar 

  • Selmar D, Wittke C, Beck-von Wolffersdorff I, Klier B, Lewerenz L, Kleinwächter M, Nowak M (2019b) Transfer of pyrrolizidine alkaloids between living plants: a disregarded source of contaminations. Environ Pollut 248:456–461

    Article  CAS  PubMed  Google Scholar 

  • Selmar D, Abouzeid S, Radwan A, Hijazin T, Yahyazadeh M, Lewerenz L, Nowak M, Kleinwächter M (2020) Horizontal natural product transfer–A novel attribution in allelopathy. In: Reference series in phytochemistry. Co-evolution of secondary metabolites. Springer International Publishing, Cham, Switzerland, pp 429–439

    Chapter  Google Scholar 

  • Shajib MTI, Pedersen HA, Mortensen AG, Kudsk P, Fomsgaard IS (2012) Phytotoxic effect, uptake, and transformation of biochanin a in selected weed species. J Agric Food Chem 60:10715–10722

    Article  CAS  PubMed  Google Scholar 

  • Shitan N, Bazin I, Dan K, Obata K, Kigawa K, Ueda K, Sato F, Forestier C, Yazaki K (2003) Involvement of CjMDR1, a plant MDR-type ABC protein, in alkaloid transport in Coptis japonica. PNAS 100:751–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siminszky B (2006) Plant cytochrome P450-mediated herbicide metabolism. Phytochem Rev 5:445–458

    Article  CAS  Google Scholar 

  • Stegelmeier BL, Edgar JA, Colegate SM, Gardner DR, Schoch TK, Coulombe RA, Molyneux RJ (1999) Pyrrolizidine alkaloid plants, metabolism and toxicity. J Nat Toxins 8:95–116

    CAS  PubMed  Google Scholar 

  • Toppel G, Witte L, Riebesehl B, Borstel K, Hartmann T (1987) Alkaloid patterns and biosynthetic capacity of root cultures from some pyrrolizidine alkaloid producing Senecio species. Plant Cell Rep 6:466–469

    CAS  PubMed  Google Scholar 

  • Trapp S (2000) Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag Sci 56:767–778

    Article  CAS  Google Scholar 

  • Trapp S (2004) Plant uptake and transport models for neutral and ionic chemicals. Environ Sci Pollut Res 11:33–39

    Article  CAS  Google Scholar 

  • Trapp S, Legind CN (2011) Uptake of organic contaminants from soil into vegetables and fruits. In: Dealing with contaminated sites. Springer, Netherlands, pp 369–408

    Chapter  Google Scholar 

  • Tukey HB (1970) The leaching of substances from plants. Ann Rev Plant Biol 21:305–324

    Article  CAS  Google Scholar 

  • Van Aken B, Doty SL (2009) Transgenic plants and associated bacteria for phytoremediation of chlorinated compounds. Biotechnol Genet Eng Rev 26:43–64

    Article  Google Scholar 

  • Van Wyk BE, Stander MA, Long HS (2017) Senecio angustifolius as the major source of pyrrolizidine alkaloid contamination of rooibos tea (Aspalathus linearis). S Afr J Bot 110:124–131

    Article  CAS  Google Scholar 

  • Waldhauser SSM, Baumann TW (1996) Compartmentation of caffeine and related purine alkaloids depends exclusively on the physical chemistry of their vacuolar complex formation with chlorogenic acids. Phytochemistry 42:985–996

    Article  CAS  Google Scholar 

  • Wang X, Tang L, Yao Y, Wang H, Min H, Lu Z (2013) Bioremediation of the tobacco waste-contaminated soil by Pseudomonas sp. HF-1: nicotine degradation and microbial community analysis. Appl Microbiol Biotechnol 97:6077–6088

    Article  CAS  PubMed  Google Scholar 

  • Weidner M, Martins R, Müller A, Simon J, Schmitz H (2005) Uptake, transport and accumulation of nicotine by the Golden Potho (Epipremnum aureum): the central role of root pressure. J Plant Physiol 162:139–150

    Article  CAS  PubMed  Google Scholar 

  • Wiedenfeld H, Edgar J (2011) Toxicity of pyrrolizidine alkaloids to humans and ruminants. Phytochem Rev 10:137–115

    Article  CAS  Google Scholar 

  • Wink M (1983) Inhibition of seed germination by quinolizidine alkaloids. Planta 158:365–368

    Article  CAS  PubMed  Google Scholar 

  • Winter AG, Schönbeck F (1959) Untersuchungen über die Aufnahme organischer Substanzen durch die Wurzeln höherer Pflanzen. II. Phenol. Naturwissenschaften 46:537

    Article  CAS  Google Scholar 

  • Winter AG, Schönbeck-Peuss H, Schönbeck F (1959a) Untersuchungen über die Aufnahme organischer Substanzen durch die Wurzeln höherer Pflanzen. I. Phenolische Verbindungen. Naturwissenschaften 46:536–537

    Article  CAS  Google Scholar 

  • Winter AG, Schönbeck-Peuss H, Schönbeck F (1959b) Untersuchungen über die Aufnahme organischer Substanzen durch die Wurzeln höherer Pflanzen. IV. Bildungsbedingungen allochtonen arbutins und phlorins. Naturwissenschaften 46:673–674

    Article  Google Scholar 

  • Winter AG, Rings-Willeke L, Schönbeck F (1959c) Untersuchungen über die Aufnahme organischer Substanzen durch die Wurzeln höherer Pflanzen. III. Alkaloide. Naturwissenschaften 46:656–657

    Article  Google Scholar 

  • Winter AG, Brüsewitz G (1960) Untersuchungen über die Aufnahme organischer Substanzen durch die Wurzeln höherer Pflanzen. V. Anreicherung und Stabilität einiger organischer Verbindungen im Boden. Naturwissenschaften 47:139–140

    Google Scholar 

  • Winter AG, Brüsewitz G, Schönbeck F (1960) Untersuchungen über die Aufnahme organischer Substanzen durch die Wurzeln höherer Pflanzen. VI. Bildung allochtoner Substanzen in Weizen auf natürlichen Böden. Naturwissenschaften 47:139–140

    Google Scholar 

  • Yahyazadeh M, Nowak M, Kima H, Selmar D (2017) Horizontal natural product transfer: a potential source of alkaloidal contaminants in phytopharmaceuticals. Phytomedicine 34:21–25

    Article  CAS  PubMed  Google Scholar 

  • Yazaki K, Akifumi S, Morita M, Shitan N (2008) Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites. Phytochem Rev 7:513–524

    Article  CAS  Google Scholar 

  • Yun MS, Yogo Y, Miura R, Yamasue Y, Fischer AJ (2005) Cytochrome P-450 monooxygenase activity in herbicide-resistant and -susceptible late watergrass (Echinochloa phyllopogon). Pestic Biochem Physiol 83:107–114

    Article  CAS  Google Scholar 

  • Zhao B, Agblevor FA, Ritesh KC, Jelesko JG (2013) Enhanced production of the alkaloid nicotine in hairy root cultures of Nicotiana tabacum. Plant Cell Tissue Org Cult 113:121–129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Selmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hijazin, T., Lewerenz, L., Yahyazadeh, M., Selmar, D. (2022). Horizontal Natural Product Transfer: A Phenomenon Which Is Responsible for the Widespread Alkaloidal Contaminations of Herbal Products. In: Aftab, T. (eds) Environmental Challenges and Medicinal Plants. Environmental Challenges and Solutions. Springer, Cham. https://doi.org/10.1007/978-3-030-92050-0_7

Download citation

Publish with us

Policies and ethics