Skip to main content

Stress-Tolerant Species of Medicinal Plants and Phytoremediation Potential

  • Chapter
  • First Online:
Environmental Challenges and Medicinal Plants

Abstract

Presently, there seems to be an increase in interest in cultivating medicinal plants across the globe. Medicinal plants offer huge potential to be grown on contaminated sites to recover soil health, in addition to oil production and eco-tourism, to address the rising demand for pharmaceuticals, essential oils, and bioenergy. In the present chapter, efforts have been made to collect and analyze available information regarding stress tolerance capabilities and the phytoremediation potential of medicinal plants, which will provide valuable insight into understanding the putative mechanisms involved in stress tolerance and pollution alleviation. The medicinal plants that can withstand stress and be used for the phytoremediation of environmental contaminants have also been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd Manan F, Chai TT, Abd Samad A, Mamat DD (2015) Evaluation of the phytoremediation potential of two medicinal plants. Sains Malaysiana 44(4):503–509

    Article  CAS  Google Scholar 

  • Abreu CA, Cantoni M, Coscione AR, Paz-Ferreiro J (2012) Organic matter and barium absorption by plant species grown in an area polluted with scrap metal residue. Appl Environ Soil Sci 2012:476821

    Article  CAS  Google Scholar 

  • Adhikari T, Kumar A (2012) Phytoaccumulation and tolerance of Riccinus communis L. to nickel. Int J Phytoremediation 14:481–492

    Article  CAS  PubMed  Google Scholar 

  • Alavi-Samani SM, Kachouei MA, Pirbalouti AG (2015) Growth, yield, chemical composition, and antioxidant activity of essential oils from two thyme species under foliar application of jasmonic acid and water deficit conditions. Hortic Environ Biotechnol 56:411–420

    Article  CAS  Google Scholar 

  • Arifin A, Najihah A, Hazandy A-H, Majid NM, Shamshuddin J, Karam DS, Khairulmazmi A (2011) Using Orthosiphon stamineus B. for phytoremediation of heavy metals in soils amended with sewage sludge. Am J Appl Sci 8:323–331

    Article  CAS  Google Scholar 

  • Ashraf M, Orooj A (2006) Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum ammi [L.] Sprague). J Arid Environ 64:209–220

    Article  Google Scholar 

  • Augustynowicz J, Tokarz K, Baran A, PÅ‚achno BJ (2014) Phytoremediation of water polluted by thallium, cadmium, zinc, and lead with the use of macrophyte Callitriche cophocarpa. Arch Environ Contam Toxicol 66:572–581

    Article  CAS  PubMed  Google Scholar 

  • Aziz EE, Al-Amier H, Craker LE (2008) Influence of salt stress on growth and essential oil production in peppermint, pennyroyal, and apple mint. Int J Geogr Inf Syst 14:77–87

    CAS  Google Scholar 

  • Baghalian K, Haghiry A, Naghavi MR, Mohammadi A (2008) Effect of saline irrigation water on agronomical and phytochemical characters of chamomile (Matricaria recutita L.). Sci Hortic 116:437–441

    Article  CAS  Google Scholar 

  • Baher ZF, Mirza M, Ghorbanli M, Bagher Rezaii M (2002) The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour Fragr J 17:275–277

    Article  CAS  Google Scholar 

  • Balasankar D, Vanilarasu K, Preetha PS, Rajeswari S, Umadevi M, Bhowmik D (2013) Traditional and medicinal uses of vetiver. J Med Plants Stud 1:191–200

    Google Scholar 

  • Bauddh K, Singh RP (2012a) Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil. Int J Phytoremediation 14:772–785

    Article  CAS  PubMed  Google Scholar 

  • Bauddh K, Singh RP (2012b) Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Ecotoxicol Environ Saf 85:13–22

    Article  CAS  PubMed  Google Scholar 

  • Bauddh K, Singh RP (2015a) Assessment of metal uptake capacity of castor bean and mustard for phytoremediation of nickel from contaminated soil. Biorem J 19:124–138

    Article  CAS  Google Scholar 

  • Bauddh K, Singh RP (2015b) Effects of organic and inorganic amendments on bio-accumulation and partitioning of Cd in Brassica juncea and Ricinus communis. Ecol Eng 74:93–100

    Article  Google Scholar 

  • Bauddh K, Singh K, Singh B, Singh RP (2015) Ricinus communis: A robust plant for bio-energy and phytoremediation of toxic metals from contaminated soil. Ecol Eng 84:640–652

    Article  Google Scholar 

  • Bauddh K, Kumar A, Srivastava S, Singh RP, Tripathi R (2016a) A study on the effect of cadmium on the antioxidative defense system and alteration in different functional groups in castor bean and Indian mustard. Arch Agron Soil Sci 62:877–891

    Article  CAS  Google Scholar 

  • Bauddh K, Singh K, Singh RP (2016b) Ricinus communis L. a value added crop for remediation of cadmium contaminated soil. Bull Environ Contam Toxicol 96:265–269

    Google Scholar 

  • Bernstein N, Chaimovitch D, Dudai N (2009) Effect of irrigation with secondary treated effluent on essential oil, antioxidant activity, and phenolic compounds in oregano and rosemary. Agron J 101:1–10

    Article  CAS  Google Scholar 

  • Bhatla R, Tripathi A (2014) The study of rainfall and temperature variability over Varanasi. Int J Earth Atmos Sci 1:90–94

    Google Scholar 

  • Bhattacharjee S, Kar S, Chakravarty S (2004) Mineral compositions of Datura: a traditional tropical medicinal plant. Commun Soil Sci Plant Anal 35:937–946

    Article  CAS  Google Scholar 

  • Bishehkolaei R, Fahimi H, Saadatmand S, Nejadsattari T, Lahouti M, Yazdi FT (2011) Ultrastructural localisation of chromium in Ocimum basilicum. Turk J Bot 35:261–268

    CAS  Google Scholar 

  • Brandt R, Merkl N, Schultze-Kraft R, Infante C, Broll G (2006) Potential of vetiver (Vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. Int J Phytoremediation 8:273–284

    Article  CAS  PubMed  Google Scholar 

  • Brown S, Chaney R, Angle JS, Baker A (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J 59:125–133

    Article  CAS  Google Scholar 

  • Chen Y, Shen Z, Li X (2004) The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl Geochem 19:1553–1565

    Article  CAS  Google Scholar 

  • Citterio S, Santagostino A, Fumagalli P, Prato N, Ranalli P, Sgorbati S (2003) Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 256:243–252

    Article  CAS  Google Scholar 

  • Cosio C, Martinoia E, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Datta R, Quispe MA, Sarkar D (2011) Greenhouse study on the phytoremediation potential of vetiver grass, Chrysopogon zizanioides L., in arsenic-contaminated soils. Bull Environ Contam Toxicol 86:124–128

    Article  CAS  PubMed  Google Scholar 

  • Dinu C, Gheorghe S, Tenea AG, Stoica C, Vasile GG, Popescu RL, Pascu LF (2021) Toxic metals (As, Cd, Ni, Pb) impact in the Most common medicinal plant (Mentha piperita). Int J Environ Res Public Health 18(8):3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrikova A et al (2021) Tolerance mechanisms of the aromatic and medicinal plant Salvia sclarea L. to excess zinc. Plan Theory 10(2):194

    CAS  Google Scholar 

  • El-Din A, Aziz EE, Hendawy S, Omer E (2009) Response of Thymus vulgaris L. to salt stress and alar (B9) in newly reclaimed soil. J Appl Sci Res 5:2165–2170

    Google Scholar 

  • Facts U-W (2012) Figures from the United Nations World Water Development Report 4 (WWDR4). UNESCO: Paris, France

    Google Scholar 

  • García-Calderón M et al (2015) Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase. Front Plant Sci 6:760

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghassemi S, Delangiz N, Lajayer BA, Saghafi D, Maggi F (2021) Review and future prospects on the mechanisms related to cold stress resistance and tolerance in medicinal plants. Acta Ecol Sin 41(2):120–129

    Article  Google Scholar 

  • Gull A, Lone AA, Wani NUI (2019) Biotic and abiotic stresses in plants. In: Abiotic and biotic stress in plants. IntechOpen, pp 1–19

    Google Scholar 

  • Gupta AK, Verma SK, Khan K, Verma RK (2013) Phytoremediation using aromatic plants: a sustainable approach for remediation of heavy metals polluted sites. ACS Publications

    Google Scholar 

  • Gupta DK, Nicoloso FT, Schetinger MR, Rossato LV, Huang HG, Srivastava S, Yang XE (2011) Lead induced responses of Pfaffia glomerata, an economically important Brazilian medicinal plant, under in vitro culture conditions. Bull Environ Contam Toxicol 86(3):272–277

    Article  CAS  PubMed  Google Scholar 

  • Hamzah A, Hapsari RI, Wisnubroto EI (2016) Phytoremediation of cadmium-contaminated agricultural land using indigenous plants. Int J Environ Agric Res 2:8–14

    Google Scholar 

  • Hayat K et al (2020) Plant growth promotion and enhanced uptake of Cd by combinatorial application of Bacillus pumilus and EDTA on Zea mays L. Int J Phytoremediation 22:1372–1384

    Article  CAS  PubMed  Google Scholar 

  • Hendawy S, Khalid KA (2005) Response of sage (Salvia officinalis L.) plants to zinc application under different salinity levels. J Appl Sci Res 1:147–155

    Google Scholar 

  • Ho Y-N, Hsieh J-L, Huang C-C (2013) Construction of a plant–microbe phytoremediation system: Combination of vetiver grass with a functional endophytic bacterium, Achromobacter xylosoxidans F3B, for aromatic pollutants removal. Bioresour Technol 145:43–47

    Article  CAS  PubMed  Google Scholar 

  • Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184

    Article  CAS  PubMed  Google Scholar 

  • Hu N, Ding D, Li G (2014) Natural plant selection for radioactive waste remediation. In: Radionuclide contamination and remediation through plants. Springer, pp 33–53

    Google Scholar 

  • Jaafar HZ, Ibrahim MH, Mohamad Fakri NF (2012) Impact of soil field water capacity on secondary metabolites, phenylalanine ammonia-lyase (PAL), maliondialdehyde (MDA) and photosynthetic responses of Malaysian Kacip Fatimah (Labisia pumila Benth). Molecules 17:7305–7322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagatheeswari D, Deepa J, Ali HSJ, Ranganathan P (2013) Acalypha indica L-An important medicinal plant: A review of its traditional uses and pharmacological properties. Int J Res Botany 3:19–22

    Google Scholar 

  • Jiang W, Liu D, Hou W (2001) Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic (Allium sativum L.). Bioresour Technol 76:9–13

    Article  CAS  PubMed  Google Scholar 

  • Jisha C, Bauddh K, Shukla SK (2017) Phytoremediation and bioenergy production efficiency of medicinal and aromatic plants. In: Phytoremediation potential of bioenergy plants. Springer, pp 287–304

    Chapter  Google Scholar 

  • Kanta C, Sharma IP, Rao P (2016) Influence of water deficit stress on morpho-physiological and biochemical traits of four medicinal plant species in Tarai region. Res Environ 9:1391–1396

    Google Scholar 

  • Kelly RA, Andrews JC, DeWitt JG (2002) An X-ray absorption spectroscopic investigation of the nature of the zinc complex accumulated in Datura innoxia plant tissue culture. Microchem J 71:231–245

    Article  CAS  Google Scholar 

  • Khan M, Ulrichs C, Mewis I (2011) Water stress alters aphid-induced glucosinolate response in Brassica oleracea var. italica differently. Chemoecology 21:235–242

    Article  CAS  Google Scholar 

  • Kim HL, Streltzer J, Goebert D (1999) St. John’s wort for depression: a meta-analysis of well-defined clinical trials. J Nerv Ment Dis 187:532–538

    Article  CAS  PubMed  Google Scholar 

  • Kotagiri D, Kolluru VC (2017) Effect of salinity stress on the morphology and physiology of five different Coleus species. Biomed Pharmacol J 10:1639–1649

    Article  Google Scholar 

  • Lajayer BA, Ghorbanpour M, Nikabadi S (2017) Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol Environ Saf 145:377–390

    Article  CAS  Google Scholar 

  • Lal K, Minhas P, Chaturvedi R, Yadav R (2008) Cadmium uptake and tolerance of three aromatic grasses on the Cd-rich soil. J Indian Soc Soil Sci 56:290–294

    CAS  Google Scholar 

  • Lattanzio V, Cardinali A, Ruta C, Fortunato IM, Lattanzio VM, Linsalata V, Cicco N (2009) Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. Environ Exp Bot 65:54–62

    Article  CAS  Google Scholar 

  • Linger P, Müssig J, Fischer H, Kobert J (2002) Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind Crop Prod 16:33–42

    Article  CAS  Google Scholar 

  • Lone MI, He Z-l, Stoffella PJ, Yang X-e (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9:210–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreto F, Schnitzler J-P (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166

    Article  CAS  PubMed  Google Scholar 

  • Mafakheri M, Kordrostami M (2021) Recent advances toward exploiting medicinal plants as phytoremediators. In: Handbook of bioremediation. Elsevier, pp 371–383

    Chapter  Google Scholar 

  • Mahdavi A, Moradi P, Mastinu A (2020) Variation in terpene profiles of Thymus vulgaris in water deficit stress response. Molecules 25:1091

    Article  CAS  PubMed Central  Google Scholar 

  • Mahmud R, Inoue N, Kasajima S-y, Shaheen R (2008) Assessment of potential indigenous plant species for the phytoremediation of arsenic-contaminated areas of Bangladesh. Int J Phytoremediation 10:119–132

    Article  CAS  Google Scholar 

  • Makris KC, Shakya KM, Datta R, Sarkar D, Pachanoor D (2007) Chemically catalyzed uptake of 2, 4, 6-trinitrotoluene by Vetiveria zizanioides. Environ Pollut 148:101–106

    Article  CAS  PubMed  Google Scholar 

  • Malar S, Manikandan R, Favas PJ, Sahi SV, Venkatachalam P (2014) Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: a potential plant for phytoremediation. Ecotoxicol Environ Saf 108:249–257

    Article  CAS  PubMed  Google Scholar 

  • Malko A (2002) Untersuchungen zum Wirkstoffgehalt, zur Cadmiumaufnahme und Rotwelkeanfälligkeit von Hypericum perforatum L. Shaker

    Google Scholar 

  • Manikandan R, Sahi S, Venkatachalam P (2015) Impact assessment of mercury accumulation and biochemical and molecular response of Mentha arvensis: a potential hyperaccumulator plant. Sci World J 2015:715217

    Article  CAS  Google Scholar 

  • Maplestone RA, Stone MJ, Williams DH (1992) The evolutionary role of secondary metabolites—a review. Gene 115:151–157

    Article  CAS  PubMed  Google Scholar 

  • Maraghni M, Gorai M, Neffati M, Van Labeke MC (2014) Differential responses to drought stress in leaves and roots of wild jujube, Ziziphus lotus. Acta Physiol Plant 36:945–953

    Article  CAS  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    Article  CAS  PubMed  Google Scholar 

  • Menhas S et al (2021) Microbe-EDTA mediated approach in the phytoremediation of lead-contaminated soils using maize (Zea mays L.) plants. Int J Phytoremediation 23:585–596

    CAS  PubMed  Google Scholar 

  • MM I, Alsahli A, El-Gaaly G (2013) Evaluation of phytoremediation potential of six wild plants for metal in a site polluted by industrial wastes: a field study in Riyadh, Saudi Arabia. Pak J Bot 42:571–576

    Google Scholar 

  • Mohammadi H, Hazrati S, Ghorbanpour M (2020) Tolerance mechanisms of medicinal plants to abiotic stresses. Plant life under changing environment. Elsevier, In, pp 663–679

    Google Scholar 

  • Mohd Salim R, Adenan M, Amid A, Jauri M, Sued A (2013) Statistical analysis of metal chelating activity of Centella asiatica and Erythroxylum cuneatum using response surface methodology. Biotechnol Res Int 2013:137851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal HK, Kaur H (2017) Effect of salt stress on medicinal plants and its amelioration by plant growth promoting microbes. IJBSM 8:477–487

    Article  Google Scholar 

  • Mossi AJ, Pauletti GF, Rota L, Echeverrigaray S, Barros IBI, Oliveira JV, Cansian RL (2011) Effect of aluminum concentration on growth and secondary metabolites production in three chemotypes of Cunila galioides Benth. Medicinal plant. Braz J Biol 71:1003–1009

    Article  Google Scholar 

  • Müller WE (1999) Johanniskraut-vom Nerventee zum modernen Antidepressivum. DEUTSCHE APOTHEKER ZEITUNG-STUTTGART 139:49–58

    Google Scholar 

  • Neffati M, Marzouk B (2008) Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind Crop Prod 28:137–142

    Article  CAS  Google Scholar 

  • Nkoane BB, Sawula GM, Wibetoe G, Lund W (2005) Identification of Cu and Ni indicator plants from mineralised locations in Botswana. J Geochem Explor 86:130–142

    Article  CAS  Google Scholar 

  • Nowak M, Kleinwaechter M, Manderscheid R, Weigel H-J, Selmar D (2010) Drought stress increases the accumulation of monoterpenes in sage (Salvia officinalis), an effect that is compensated by elevated carbon dioxide concentration. J Appl Bot Food Qual 83:133–136

    CAS  Google Scholar 

  • Olowu RA, Adewuyi GO, Onipede OJ, Lawal OA, Sunday OM (2015) Concentration of heavy metals in root, stem and leaves of Acalypha indica and Panicum maximum jacq from three major dumpsites in Ibadan Metropolis, South West Nigeria. Am J Chem 5:40

    Google Scholar 

  • Pandey VC, Singh N (2015) Aromatic plants versus arsenic hazards in soils. J Geochem Explor 157:77–80

    Article  CAS  Google Scholar 

  • Pandey J, Chand S, Pandey S, Patra D (2015) Palmarosa [Cymbopogon martinii (Roxb.) Wats.] as a putative crop for phytoremediation, in tannery sludge polluted soil. Ecotoxicol Environ Saf 122:296–302

    Article  CAS  PubMed  Google Scholar 

  • PrzybyÅ‚owicz W, Pineda C, Prozesky V, Mesjasz-PrzybyÅ‚owicz J (1995) Investigation of Ni hyperaccumulation by true elemental imaging. Nucl Instrum Methods Phys Res, Sect B 104:176–181

    Article  Google Scholar 

  • Rai V, Vajpayee P, Singh SN, Mehrotra S (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci 167:1159–1169

    Article  CAS  Google Scholar 

  • Rai R, Pandey S, Shrivastava AK, Pandey Rai S (2014) Enhanced photosynthesis and carbon metabolism favor arsenic tolerance in Artemisia annua, a medicinal plant as revealed by homology-based proteomics. Int J Proteom 2014:163962

    Article  CAS  Google Scholar 

  • Rasool Hassan B (2012) Medicinal plants (importance and uses). Pharmaceut Anal Acta 3:2153–2435

    Article  Google Scholar 

  • Reeves R (2006) Hyperaccumulation of trace elements by plants. In: Phytoremediation of metal-contaminated soils. Springer, pp 25–52

    Chapter  Google Scholar 

  • Romeiro S, Lagôa AM, Furlani PR, Abreu CA, Abreu MF, Erismann NM (2006) Lead uptake and tolerance of Ricinus communis L. Braz J Plant Physiol 18:483–489

    Article  CAS  Google Scholar 

  • Sasmaz M, Topal EIA, Obek E, Sasmaz A (2015) The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey. J Environ Manag 163:246–253

    Article  CAS  Google Scholar 

  • Schneider M, Marquard DR (1995) Investigations on the uptake of cadmium in Hypercum perforatum L.(St. John’s wort). In: International Symposium on Medicinal and Aromatic Plants, 426, pp 435–442

    Google Scholar 

  • Scora R, Chang A (1997) Essential oil quality and heavy metal concentrations of peppermint grown on a municipal sludge-amended soil. Wiley Online Library

    Book  Google Scholar 

  • Seleiman MF et al (2021) Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plan Theory 10:259

    CAS  Google Scholar 

  • Selmar D, Kleinwächter M, Abouzeid S, Yahyazadeh M, Nowak M (2017) The impact of drought stress on the quality of spice and medicinal plants. In: Medicinal plants and environmental challenges. Springer, pp 159–175

    Chapter  Google Scholar 

  • Shabala S, Bose J, Hedrich R (2014) Salt bladders: do they matter? Trends Plant Sci 19:687–691

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Melo J, Eapen S, D’souza S (2008) Potential of vetiver (Vetiveria zizanioides L. Nash) for phytoremediation of phenol. Ecotoxicol Environ Saf 71:671–676

    Article  CAS  PubMed  Google Scholar 

  • Singhakant C, Koottatep T, Satayavivad J (2009) Enhanced arsenic removals through plant interactions in subsurface-flow constructed wetlands. J Environ Sci Health A 44:163–169

    Article  CAS  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Syukor AA, Sulaiman S, Siddique MNI, Zularisam A, Said M (2016) Integration of phytogreen for heavy metal removal from wastewater. J Clean Prod 112:3124–3131

    Article  CAS  Google Scholar 

  • SzczygÅ‚owska M, Piekarska A, Konieczka P, NamieÅ›nik J (2011) Use of Brassica plants in the phytoremediation and biofumigation processes. Int J Mol Sci 12:7760–7771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamari N, Mine A, Sako A, Tamagawa S, Tabira Y, Kitamura Y (2014) Possible application of the medicinal plant Hyoscyamus albus in phytoremediation: excess copper compensates for iron deficiency, depending on the light conditions. Am J Plant Sci 5:3812

    Article  CAS  Google Scholar 

  • Tirillini B, Ricci A, Pintore G, Chessa M, Sighinolfi S (2006) Induction of hypericins in Hypericum perforatum in response to chromium. Fitoterapia 77:164–170

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Nizam S, Verma PK (2013) Biotic and abiotic stress signaling in plants. In: Stress signaling in plants: Genomics and proteomics perspective, vol 1. Springer, pp 25–49

    Chapter  Google Scholar 

  • Verotta L (2003) Hypericum perforatum, a source of neuroactive lead structures. Curr Top Med Chem 3:187–201

    Article  CAS  PubMed  Google Scholar 

  • Wu X-h, Zhang H-s, Li G, Liu X-c, Qin P (2012) Ameliorative effect of castor bean (Ricinus communis L.) planting on physico-chemical and biological properties of seashore saline soil. Ecol Eng 38:97–100

    Article  Google Scholar 

  • Zahedifar M, Moosavi AA, Shafigh M, Zarei Z, Karimian F (2016) Cadmium accumulation and partitioning in Ocimum basilicum as influenced by the application of various potassium fertilizers. Arch Agron Soil Sci 62:663–673

    Article  CAS  Google Scholar 

  • Zahir AA et al (2010) Evaluation of botanical extracts against Haemaphysalis bispinosa Neumann and Hippobosca maculata Leach. Parasitol Res 107:585–592

    Article  PubMed  Google Scholar 

  • Zeng J et al (2020) Cadmium and lead mixtures are less toxic to the Chinese medicinal plant Ligusticum chuanxiong Hort. Than either metal alone. Ecotoxicol Environ Saf 193:110342

    Article  CAS  PubMed  Google Scholar 

  • Zhao L et al (2020) Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J Agric Food Chem 68:1935–1947

    Article  CAS  PubMed  Google Scholar 

  • Zheljazkov VD, Craker LE, Xing B (2006) Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environ Exp Bot 58:9–16

    Article  CAS  Google Scholar 

  • Zheljazkov VD, Craker LE, Xing B, Nielsen NE, Wilcox A (2008) Aromatic plant production on metal contaminated soils. Sci Total Environ 395:51–62

    Article  CAS  PubMed  Google Scholar 

  • Zurayk R, Sukkariyah B, Baalbaki R (2001) Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water Air Soil Pollut 127:373–388

    Article  CAS  Google Scholar 

  • Zurayk R, Sukkariyah B, Baalbaki R, Abi Ghanem D (2002) Ni Phytoaccumulation in Mentha aquatica L. and Mentha sylvestris L. Water Air Soil Pollut 139:355–364

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Hayat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hayat, K. et al. (2022). Stress-Tolerant Species of Medicinal Plants and Phytoremediation Potential. In: Aftab, T. (eds) Environmental Challenges and Medicinal Plants. Environmental Challenges and Solutions. Springer, Cham. https://doi.org/10.1007/978-3-030-92050-0_18

Download citation

Publish with us

Policies and ethics