Skip to main content

The Impact of Drought Stress on the Quality of Spice and Medicinal Plants

  • Chapter
Medicinal Plants and Environmental Challenges

Abstract

This review addresses the well known phenomenon that spice and medicinal plants grown under semi-arid conditions generally reveal significantly higher concentrations of relevant natural products than identical plants, which however are cultivated in moderate climates. Unfortunately, only limited information on this intriguing phenomenon is available. The corresponding data are compiled, the relevant aspects are outlined, and the metabolic background is presented. Based on these reflections, it becomes obvious that drought stress and the related metabolic changes are responsible for the higher natural product accumulation in plants grown in semi-arid regions. In principle, there are three causes: first, the effect might be a consequence of a reduced production of biomass in the stressed plants. Even without an enhancement of biosynthesis of natural products, their concentration on dry or fresh weight basis simply will be elevated. Secondly, the drought stress enhances the actual rate of biosynthesis of natural products due to a passive shift or thirdly, due to an active up-regulation of the enzymes involved in natural product biosynthesis. The latter both options are related to the strongly enhanced reduction status of the leaves exposed to drought stress. The over-reduction, which goes along with a strongly enhanced concentration of NADPH+H+, directly results in a passive increase of all processes consuming NADPH+H+, including the biosyntheses of highly reduced secondary plant products. Alternatively, the enzymes responsible for the biosynthesis of natural products could be actively up-regulated. The corresponding increment in NADPH+H+ consumption significantly contributes to the dissipation of the stress related surplus of energy and thus, is part of the machinery that prevents the generation of toxic oxygen radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouzeid S, Beutling U, Surup F, Abdel-Bar FM, Amer MM, Badria FA, Yahyazadeh M, Brönstrup M, Selmar D (2017) Treatment of Vinca minor leaves with methyl jasmonate extensively alters the pattern and composition of indole alkaloids. In press: J Nat Prod

    Article  CAS  Google Scholar 

  • Aerts RJ, Gisi D, de Carolis E, de Luca V, Baumann TW (1994) Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J 5:635–643

    Article  CAS  Google Scholar 

  • Azhar N, Hussain B, Ashraf YM, Abbasim KY (2011) Water stress mediated changes in growth, physiology and secondary metabolites of desi ajwain (Trachyspermum ammi). Paktanian J Bot 43(SI):15–19

    Google Scholar 

  • Baher ZF, Mirza M, Ghorbanli M, Rezaiim MB (2002) The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour Fragr J 17:275–277

    Article  CAS  Google Scholar 

  • Ballhorn DJ, Kautz S, Jensen M, Schmitt S, Heil M, Hegeman AD (2011) Genetic and environmental interactions determine plant defences against herbivores. J Ecol Chem 99:313–326

    Article  Google Scholar 

  • Behnke K, Ehlting B, Teuber M, Bauerfeind M, Louis S, Hänsch R, Polle A, Bohlmann J, Schnitzler JP (2007) Transgenic, non-isoprene emitting poplars don’t like it hot. Plant J 51:485–499

    Article  CAS  Google Scholar 

  • Bejarano L, Mignolet E, Devaux A, Espinola N, Carrasco E, Larondelle Y (2000) Glycoalkaloids in potato tubers: the effect of variety and drought stress on the α-solanine and α-chaconine contents of potatoes. J Sci Food Agric 80:2096–2100

    Article  CAS  Google Scholar 

  • Bettaieb I, Zakhama N, Aidi Wannes W, Kchouk ME, Marzouk B (2009) Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci Hortic 120:271–275

    Article  CAS  Google Scholar 

  • Bloem E, Haneklaus S, Kleinwächter M, Paulsen J, Schnug E, Selmar D (2014) Stress-induced changes of bioactive compounds inTropaeolum majus L. Ind Crops Prod 60:349–359

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  CAS  Google Scholar 

  • Briske DD, Camp BJ (1982) Water stress increases alkaloid concentrations in threadleaf groundsel (Senecio longilobus). Weed Sci 30:106–108

    Google Scholar 

  • Bytof G, Knopp S-E, Schieberle P, Teutsch I, Selmar D (2005) Influence of processing on the generation of γ-aminobutyric acid in green coffee beans. Eur Food Res Tech 220:245–250

    Article  CAS  Google Scholar 

  • Çakir R, Çebi U (2010) The effect of irrigation scheduling and water stress on the maturity and chemical composition of Virginia tobacco leaf. Field Crop Res 119:269–276

    Article  Google Scholar 

  • Charles DJ, Joly RJ, Simon JE (1990) Effects of osmotic stress on the essential oil content and composition of peppermint. Phytochemistry 29:2837–2840

    Article  CAS  Google Scholar 

  • Chen Y, Guo Q, Liu L, Liao L, Zaibiao Z (2011) Influence of fertilization and drought stress on the growth and production of secondary metabolites in Prunella vulgaris L. J Med Plant Res 5:1749–1755

    CAS  Google Scholar 

  • Cho Y, Njitiv N, Chen X, Lightfood DA, Wood AJ (2003) Trigonelline concentration in field-grown soybean in response to irrigation. Biol Plant 46:405–410

    Article  CAS  Google Scholar 

  • Christiansen JL, Jørnsgard B, Buskov S, Olsen CE (1997) Effect of drought stress on content and composition of seed alkaloids in narrow-leafed lupin, Lupinus angustifolius L. Eur J Agron 7:307–314

    Article  CAS  Google Scholar 

  • Cree RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  Google Scholar 

  • D’Amelio Sr, FS, Mirhom YW, Williamson YW, Schulbaum PL, Krueger EB (2012) Comparative study of the alkaloids extracted from Vinca minor and those present in the homeopathic tincture 1X. Palnta medica 78:PF4

    Google Scholar 

  • Das S, Bhattacharya SS (2016) In: Siddiqui MW, Bansal V (eds) Plant secondary metabolites, volume 3: their roles in stress ecophysiology. Canada Apple Academic Press, Oakville, pp 1–38

    Google Scholar 

  • de Abreu IN, Mazzafera P (2005) Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol Biochem 43:241–248

    Article  Google Scholar 

  • de Bruijn GH (1973) The cyanogenic character of cassava (Manihot esculenta). In: Nestel B, MacIntyre R (eds) Chronic cassava toxicity. International Development Research Centre, Ottawa, pp 43–48

    Google Scholar 

  • Delitala I-F, Gessa C, Solinas V (1986) Water stress and flexibility of phenolic metabolism in Thymus capitatus. Fitoterapia 57:401–408

    CAS  Google Scholar 

  • del Moral R (1972) On the variability of chlorogenic acid concentration. Oecologia 9:289–300

    Article  Google Scholar 

  • Falk KL, Tokuhisa JG, Gershenzon J (2007) The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanisms. Plant Biol 9:573–581

    Article  CAS  Google Scholar 

  • Fall R (1999) Biogenic emissions of volatile organic compounds from higher plants. In: Hewitt CN (ed) Reactive hydrocarbons in the atmosphere. Academic Press, pp 41–95

    Chapter  Google Scholar 

  • Forouzandeh M, Fanoudi M, Arazmjou E, Tabiei H (2012) Effect of drought stress and types of fertilizers on the quantity and quality of medicinal plant Basil (Ocimum basilicum L.). Indian J Innov Dev 1:734–737

    Google Scholar 

  • Gershenzon J (1984) Changes in the levels of plant secondary metabolites under water and nutrient stress. Recent Adv Phytochem 18:273–320

    CAS  Google Scholar 

  • Grace SC, Logan BA (2000) Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philos Trans B 355:1499–1510

    Article  CAS  Google Scholar 

  • Gray DE, Pallardy SG, Garrett HE, Rottinghaus G (2003) Acute drought stress and plant age effects on alkamide and phenolic acid content in purple coneflower roots. Planta Med 69:50–55

    Article  CAS  Google Scholar 

  • Hahlbrock K, Bednarek P, Ciolkowski I, Hamberger B, Heise A, Liedgens H, Logemann E, Nürnberger T, Schmelzer E, Somssich IE (2003) Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. Proceed Natl Acad Sci USA 100:14569–14576

    Article  CAS  Google Scholar 

  • Harborne JB (1988) Introduction to ecological biochemistry, 3rd edn. Academic Press, London

    Google Scholar 

  • Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846

    Article  CAS  Google Scholar 

  • Hernández I, Alegre L, Munné-Bosch S (2006) Enhanced oxidation of flavan-3-ols and proanthocyanidin accumulation in water-stressed tea plants. Phytochemistry 67:1120–1126

    Article  Google Scholar 

  • Jaafar HZ, Ibrahim MH, Mohamad Fakri NF (2012) Impact of soil field water capacity on secondary metabolites, phenylalanine ammonia-lyase (PAL), maliondialdehyde (MDA) and photosynthetic responses of Malaysian kacip fatimah (Labisia pumila Benth). Molecules 17:7305–7322

    Article  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007) Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloid Surf B 60:201–206

    Article  CAS  Google Scholar 

  • Jensen CR, Mogensen VO, Mortensen G, Fieldsend JK, Milford GFJ, Andersen MN, Thage JH (1996) Seed glucosinolate, oil and protein contents of field-grown rape (Brassica napus L.) affected by soil drying and evaporative demand. Field Crops Research 47:93–105

    Article  Google Scholar 

  • Kazan K, Manners JM (2008) Jasmonate Signaling: Toward an Integrated View. Plant Physiol 146:1459–1468

    Article  CAS  Google Scholar 

  • Kim HJ, Chen F, Wang X, Rajapakse NC (2006) Effect of methyl jasmonate on secondary metabolites of sweet basil (Ocimum basilicum L.). J Agric Food Chem 54:2327–2332

    Article  CAS  Google Scholar 

  • Kirakosyan A, Kaufman P, Warber S, Zick S, Aaronson K, Bolling S, Chang SC (2004) Applied environmental stresses to enhance the levels of polyphenolics in leaves of hawthorn plants. Physiolgia Plantarum 121:182–186

    Article  CAS  Google Scholar 

  • Kirk H, Vrieling K, van der Meijden E, Klinkhamer PGL (2010) Species by environment interactions affect pyrrolizidine alkaloid expression in Senecio jacobaea, Senecio aquaticus, and their hybrids. J Chem Ecol 36:378–387

    Article  CAS  Google Scholar 

  • Kleinwächter M, Selmar D (2014) Influencing the product quality by applying drought stress during the cultivation of medicinal Plants. In: Ahmad P, Wani MR (eds) Physiological mechanisms and adaptation strategies in plants under changing environment -volume 1. Springer, New York, pp 57–73

    Chapter  Google Scholar 

  • Kleinwächter M, Selmar D (2015) New insights explain that drought stress enhances the quality of spice and medicinal plants: potential applications. Agron Sustain Dev 35:121–131

    Article  Google Scholar 

  • Kleinwächter M, Paulsen J, Bloem E, Schnug E, Selmar D (2015) Moderate drought and signal transducer induced biosynthesis of relevant secondary metabolites in thyme (Thymus vulgaris), greater celandine (Chelidonium majus) and parsley (Petroselinum crispum). Ind Crops Prod 64:158–166

    Article  Google Scholar 

  • Kubota N, Mimura H, Shimamura K (1988) The effects of drought and flooding on the phenolic compounds in peach fruits. Sci Rep Fac Agric, Okayama University 171:17–21

    Google Scholar 

  • Liu H, Wang X, Wang D, Zou Z, Lianga Z (2011) Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Ind Crops Prod 33:84–88

    Article  CAS  Google Scholar 

  • Llusià J, Peñuelas J (1998) Changes in terpene content and emission in potted Mediterranean woody plants under severe drought. Can J Bot 76:1366–1373

    Google Scholar 

  • Magel E, Mayrhofer S, Müller A, Zimmer I, Hampp R, Schnitzler JP (2006) Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves. Atmos Environ 40:138–151

    Article  Google Scholar 

  • Majak W, McDiarmid RE, Hall JW, van Ryswyk AL (1980) Seasonal variation in the cyanide potential of arrowgrass (Triglochin maritima). Can J Plant Sci 60:1235–1241

    Article  CAS  Google Scholar 

  • Manukyan A (2011) Effect of growing factors on productivity and quality of lemon catmint, lemon balm and sage under soilless greenhouse production: I. drought stress. Medicinal and aromatic plant science and biotechnology 5:119–125

    Google Scholar 

  • Morshedloo MR, Craker Lyle E, Salami A, Nazeri V, Sang H, Maggi F (2017) Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono- and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiol Biochem 111:119–128

    Article  CAS  Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79

    CAS  Google Scholar 

  • Nasrollahi V, Mirzaie-asl A, Piri K, Nazeri S, Mehrabi R (2014) The effect of drought stress on the expression of key genes involved in the biosynthesis of triterpenoid saponins in liquorice (Glycyrrhiza glabra). Phytochemistry 103:32–37

    Article  CAS  Google Scholar 

  • Ninou E, Paschalidis K, Mylonas I (2017) Essential oil responses to water stress in greek oregano populations. J Essent Oil Bear Plant 30:1–2

    Google Scholar 

  • Nogués S, Allen DJ, Morison JIL, Baker NR (1998) Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants. Plant Physiol 117:173–181

    Article  Google Scholar 

  • Nowak M, Manderscheid R, Weigel H-J, Kleinwächter M, Selmar D (2010) Drought stress increases the accumulation of monoterpenes in sage (Salvia officinalis), an effect that is compensated by elevated carbon dioxide concentration. J Appl Bot Food Qual 83:133–136

    CAS  Google Scholar 

  • Paulsen J, Selmar D (2016) The difficulty of correct reference values when evaluating the effects of drought stress: a case study with Thymus vulgaris. J Appl Bot Food Qual 89:287–289

    Google Scholar 

  • Petropoulos SA, Daferera D, Polissiou MG, Passam HC (2008) The effect of water deficit stress on the growth, yield and composition of essential oils of parsley. Sci Hortic 115:393–397

    Article  CAS  Google Scholar 

  • Proksa B, Grossmann E (1991) High performance liquid chromatographic determination of alkaloids from Vinca minor L. Phytochem Anal 2:74–76

    Article  CAS  Google Scholar 

  • Radovich TJK, Kleinhenz MD, Streeter JG (2005) Irrigation timing relative to head development influences yield components, sugar levels, and glucosinolate concentrations in cabbage. J Am Soc Hortic Sci 130:943–949

    CAS  Google Scholar 

  • Radwan A, Kleinwächter M, Selmar D (2017) Impact of drought stress on specialised metabolism: biosynthesis and the expression of monoterpene synthases in sage (Salvia officinalis). Phytochem 141:20–26

    Article  CAS  Google Scholar 

  • Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731

    Article  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161(11):1189–1202

    Article  CAS  Google Scholar 

  • Sampaio BL, Edrada-Ebel R, Da Costa FB (2016) Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Sci Rep 6:29265

    Article  Google Scholar 

  • Schreiner M, Beyene B, Krumbein A, Stützel H (2009) Ontogenetic changes of 2-propenyl and 3-indolylmethyl glucosinolates in Brassica carinata leaves as affected by water supply. J Sci Food Agric 57:7259–7263

    Article  CAS  Google Scholar 

  • Selmar D, Kleinwächter M (2013a) Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind Crop Prod 42:558–566

    Article  CAS  Google Scholar 

  • Selmar D, Kleinwächter M (2013b) Stress enhances the synthesis of secondary plant products: the impact of the stress-related over-reduction on the accumulation of natural products. Plant Cell Physiol 54:817–826

    Article  CAS  Google Scholar 

  • Sharkey TD, Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol 52:407–436

    Article  CAS  Google Scholar 

  • Singh-Sangwan N, Abad Farooqi AH, Sangwan RS (1994) Effect of drought stress on growth and essential oil metabolism in lemongrasses. New Phytol 128:173–179

    Article  CAS  Google Scholar 

  • Szabó B, Tyihák E, Szabó LG, Botz L (2003) Mycotoxin and drought stress induced change of alkaloid content of Papaver somniferum plantlets. Acta Botanica Hungarica 45:409–417

    Article  Google Scholar 

  • Szabó I, Bergantino E, Giocometti GM (2005) Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation. EMBO Rep 6:629–634

    Article  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14:153–164

    Article  Google Scholar 

  • Turtola S, Manninen A-M, Rikala R, Kainulainen P (2003) Drought stress alters the concentration of wood terpenoids in Scots pine and Norway spruce seedlings. J Chem Ecol 29:1981–1995

    Article  CAS  Google Scholar 

  • Wang DH, Du F, Liu HY, Liang ZS (2010) Drought stress increases iridoid glycosides biosynthesis in the roots of Scrophularia ningpoensis seedlings. J Med Plant Res 4:2691–2699

    Article  CAS  Google Scholar 

  • Wilhelm C, Selmar D (2011) Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. J Plant Physiol 168:79–87

    Article  CAS  Google Scholar 

  • Wink M (2010) Introduction: biochemistry, physiology and ecological functions of secondary metabolites. In: Wink M (ed) Biochemistry of plant secondary metabolism. Wiley-Blackwell, pp 1–19

    Google Scholar 

  • Xia L, Yang W, Xiufeng Y (2007) Effects of water stress on berberine, jatrorrhizine and palmatine contents in amur corktree seedlings. Acta Ecol Sin 27:58–64

    Article  Google Scholar 

  • Zhu Z, Liang Z, Han R, Wang X (2009) Impact of fertilization an drought response in the medicinal herb Bupleurum chinense DC.: Growth and saikosaponin production. Ind Crops Prod 29:629–663

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Selmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Selmar, D., Kleinwächter, M., Abouzeid, S., Yahyazadeh, M., Nowak, M. (2017). The Impact of Drought Stress on the Quality of Spice and Medicinal Plants. In: Ghorbanpour, M., Varma, A. (eds) Medicinal Plants and Environmental Challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-68717-9_9

Download citation

Publish with us

Policies and ethics