Skip to main content

Long Non-coding RNAs in Rheumatology

  • Chapter
  • First Online:
Long Noncoding RNA

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1363))

Abstract

The last decade has seen an enormous increase in long non-coding RNA (lncRNA) research within rheumatology. LncRNAs are arbitrarily classed as non-protein encoding RNA transcripts that exceed 200 nucleotides in length. These transcripts have tissue and cell specific patterns of expression and are implicated in a variety of biological processes. Unsurprisingly, numerous lncRNAs are dysregulated in rheumatoid conditions, correlating with disease activity and cited as potential biomarkers and targets for therapeutic intervention. In this chapter, following an introduction into each condition, we discuss the lncRNAs involved in rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus. These inflammatory joint conditions share several inflammatory signalling pathways and therefore not surprisingly many commonly dysregulated lncRNAs are shared across these conditions. In the interest of translational research only those lncRNAs which are strongly conserved have been addressed. The lncRNAs discussed here have diverse roles in regulating inflammation, proliferation, migration, invasion and apoptosis. Understanding the molecular basis of lncRNA function in rheumatology will be crucial in fully determining the inflammatory mechanisms that drive these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J (2018) Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res 6:15. https://doi.org/10.1038/s41413-018-0016-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Crowson CS, Matteson EL, Myasoedova E et al (2011) The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis Rheum 63(3):633–639. https://doi.org/10.1002/art.30155

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xu B, Lin J (2017) Characteristics and risk factors of rheumatoid arthritis in the United States: an NHANES analysis. Peer J 5:e4035. https://doi.org/10.7717/peerj.4035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fukui S, Iwamoto N, Takatani A et al (2017) M1 and M2 monocytes in rheumatoid arthritis: a contribution of imbalance of M1/M2 monocytes to Osteoclastogenesis. Front Immunol 8:1958. https://doi.org/10.3389/fimmu.2017.01958

    Article  CAS  PubMed  Google Scholar 

  5. Kung CC, Dai SP, Chiang H, Huang HS, Sun WH (2020) Temporal expression patterns of distinct cytokines and M1/M2 macrophage polarization regulate rheumatoid arthritis progression. Mol Biol Rep 47(5):3423–3437. https://doi.org/10.1007/s11033-020-05422-6

    Article  CAS  PubMed  Google Scholar 

  6. Pap T, Korb-Pap A (2015) Cartilage damage in osteoarthritis and rheumatoid arthritis--two unequal siblings. Nat Rev Rheumatol 11(10):606–615. https://doi.org/10.1038/nrrheum.2015.95

    Article  PubMed  Google Scholar 

  7. Ostrowska M, Maśliński W, Prochorec-Sobieszek M, Nieciecki M, Sudoł-Szopińska I (2018) Cartilage and bone damage in rheumatoid arthritis. Reumatologia 56(2):111–120. https://doi.org/10.5114/reum.2018.75523

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sudoł-Szopińska I, Kontny E, Maśliński W, Prochorec-Sobieszek M, Warczyńska A, Kwiatkowska B (2013) Significance of bone marrow edema in pathogenesis of rheumatoid arthritis. Pol J Radiol 78(1):57–63. https://doi.org/10.12659/PJR.883768

    Article  Google Scholar 

  9. Malemud CJ (2013) Intracellular signaling pathways in rheumatoid arthritis. J Clin Cell Immunol 4:160. https://doi.org/10.4172/2155-9899.1000160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Madhok R, Crilly A, Watson J, Capell HA (1993) Serum interleukin 6 levels in rheumatoid arthritis: correlations with clinical and laboratory indices of disease activity. Ann Rheum Dis 52(3):232–234. https://doi.org/10.1136/ard.52.3.232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Noack M, Miossec P (2017) Selected cytokine pathways in rheumatoid arthritis. Semin Immunopathol 39(4):365–383. https://doi.org/10.1007/s00281-017-0619-z

    Article  CAS  Google Scholar 

  12. Arleevskaya MI, Larionova RV, Brooks WH, Bettacchioli E, Renaudineau Y (2020) Toll-like receptors, infections, and rheumatoid arthritis. Clin Rev Allergy Immunol 58(2):172–181. https://doi.org/10.1007/s12016-019-08742-z

    Article  PubMed  Google Scholar 

  13. Kloppenburg M, Berenbaum F (2020) Osteoarthritis year in review 2019: epidemiology and therapy. Osteoarthr Cartil 28(3):242–248. https://doi.org/10.1016/j.joca.2020.01.002

    Article  Google Scholar 

  14. Hootman JM, Helmick CG, Brady TJ (2012) A public health approach to addressing arthritis in older adults: the most common cause of disability. Am J Public Health 102(3):426–433. https://doi.org/10.2105/AJPH.2011.300423

    Article  PubMed  PubMed Central  Google Scholar 

  15. Philp AM, Collier RL, Grover LM, Davis ET, Jones SW (2017) Resistin promotes the abnormal type I collagen phenotype of subchondral bone in obese patients with end stage hip osteoarthritis. Sci Rep 7(1):4042. https://doi.org/10.1038/s41598-017-04119-4

    Article  CAS  Google Scholar 

  16. Pearson MJ, Herndler-Brandstetter D, Tariq MA et al (2017) IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity. Sci Rep 7(1):3451. https://doi.org/10.1038/s41598-017-03759-w

    Article  CAS  Google Scholar 

  17. Safiri S, Kolahi AA, Smith E et al (2020) Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann Rheum Dis 79(6):819–828. https://doi.org/10.1136/annrheumdis-2019-216515

    Article  Google Scholar 

  18. Palazzo C, Nguyen C, Lefevre-Colau M-M, Rannou F, Poiraudeau S (2016) Risk factors and burden of osteoarthritis. Ann Phys Rehabil Med 59(3):134–138. https://doi.org/10.1016/j.rehab.2016.01.006

    Article  Google Scholar 

  19. Nanus DE, Wijesinghe SN, Pearson MJ et al (2020) Regulation of the inflammatory synovial fibroblast phenotype by metastasis-associated lung adenocarcinoma transcript 1 long noncoding RNA in obese patients with osteoarthritis. Arthritis Rheumatol 72(4):609–619. https://doi.org/10.1002/art.41158

    Article  CAS  PubMed  Google Scholar 

  20. Tonge DP, Pearson MJ, Jones SW (2014) The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics. Osteoarthr Cartil 22(5):609–621. https://doi.org/10.1016/j.joca.2014.03.004

    Article  CAS  Google Scholar 

  21. Jones SW, Brockbank SM, Clements KM et al (2009) Mitogen-activated protein kinase-activated protein kinase 2 (MK2) modulates key biological pathways associated with OA disease pathology. Osteoarthr Cartil 17(1):124–131. https://doi.org/10.1016/j.joca.2008.05.001

    Article  CAS  Google Scholar 

  22. Cooke ME, Lawless BM, Jones SW, Grover LM (2018) Matrix degradation in osteoarthritis primes the superficial region of cartilage for mechanical damage. Acta Biomater 78:320–328. https://doi.org/10.1016/j.actbio.2018.07.037

    Article  CAS  PubMed  Google Scholar 

  23. Chang J, Jackson SG, Wardale J, Jones SW (2014) Hypoxia modulates the phenotype of osteoblasts isolated from knee osteoarthritis patients, leading to undermineralized bone nodule formation. Arthritis Rheumatol 66(7):1789–1799. https://doi.org/10.1002/art.38403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hügle T, Geurts J (2017) What drives osteoarthritis?-synovial versus subchondral bone pathology. Rheumatology (Oxford) 56(9):1461–1471. https://doi.org/10.1093/rheumatology/kew389

    Article  CAS  Google Scholar 

  25. Philp AM, Davis ET, Jones SW (2017) Developing anti-inflammatory therapeutics for patients with osteoarthritis. Rheumatology (Oxford) 56(6):869–881. https://doi.org/10.1093/rheumatology/kew278

    Article  CAS  Google Scholar 

  26. Nanus DE, Badoume A, Wijesinghe SN et al (2020) Identification of synovial fibroblasts subsets associated with pain and progression of knee osteoarthritis by single cell sequencing. Osteoarthr Cartil 28:S133. https://doi.org/10.1016/j.joca.2020.02.220

    Article  Google Scholar 

  27. Wijesinghe SN, Badoume A, Nanus DE, Davis ET, Lindsay MA, Jones SW (2020) Obese synovial fibroblasts exhibit single cell subsets with specific pathological inflammatory functions in osteoarthritis patients. Osteoarthr Cartil 28:S84. https://doi.org/10.1016/j.joca.2020.02.128

    Article  Google Scholar 

  28. Pearson MJ, Jones SW (2016) Review: long noncoding RNAs in the regulation of inflammatory pathways in rheumatoid arthritis and osteoarthritis. Arthritis Rheumatol 68(11):2575–2583. https://doi.org/10.1002/art.39759

    Article  CAS  Google Scholar 

  29. Saito T, Tanaka S (2017) Molecular mechanisms underlying osteoarthritis development: Notch and NF-κB. Arthritis Res Ther 19(1):94. https://doi.org/10.1186/s13075-017-1296-y

    Article  CAS  Google Scholar 

  30. Olivotto E, Otero M, Marcu KB, Goldring MB (2015) Pathophysiology of osteoarthritis: canonical NF-κB/IKKβ-dependent and kinase-independent effects of IKKα in cartilage degradation and chondrocyte differentiation. RMD Open 1(Suppl 1):e000061. https://doi.org/10.1136/rmdopen-2015-000061

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ahmed AS, Gedin P, Hugo A et al (2018) Activation of NF-κB in synovium versus cartilage from patients with advanced knee osteoarthritis: a potential contributor to inflammatory aspects of disease progression. J Immunol 201(7):1918. https://doi.org/10.4049/jimmunol.1800486

    Article  CAS  PubMed  Google Scholar 

  32. Barreto G, Manninen M, Eklund K (2020) Osteoarthritis and Toll-Like receptors: when innate immunity meets chondrocyte apoptosis. Biology (Basel) 9(4). https://doi.org/10.3390/biology9040065

  33. Bar-Or D, Rael LT, Thomas GW, Brody EN (2015) Inflammatory pathways in knee osteoarthritis: potential targets for treatment. Curr Rheumatol Rev 11(1):50–58. https://doi.org/10.2174/1573397111666150522094131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hsu CC, Lin CL, Jou IM, Wang PH, Lee JS (2017) The protective role of nitric oxide-dependent innate immunosuppression in the early stage of cartilage damage in rats: role of nitric oxide in cartilage damage. Bone Joint Res 6(4):253–258. https://doi.org/10.1302/2046-3758.64.BJJ-2016-0161.R1

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang H, Zheng J, Shen N et al (2018) Identification of pathways and genes associated with synovitis in osteoarthritis using bioinformatics analyses. Sci Rep 8(1):10050. https://doi.org/10.1038/s41598-018-28280-6

    Article  CAS  Google Scholar 

  36. Azamar-Llamas D, Hernández-Molina G, Ramos-Ávalos B, Furuzawa-Carballeda J (2017) Adipokine contribution to the pathogenesis of osteoarthritis. Mediat Inflamm 2017:5468023. https://doi.org/10.1155/2017/5468023

    Article  CAS  Google Scholar 

  37. Ji P, Diederichs S, Wang W et al (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22(39):8031–8041. https://doi.org/10.1038/sj.onc.1206928

    Article  CAS  PubMed  Google Scholar 

  38. Tripathi V, Ellis JD, Shen Z et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39(6):925–938. https://doi.org/10.1016/j.molcel.2010.08.011

    Article  CAS  Google Scholar 

  39. Li ZX, Zhu QN, Zhang HB, Hu Y, Wang G, Zhu YS (2018) MALAT1: a potential biomarker in cancer. Cancer Manag Res 10:6757–6768. https://doi.org/10.2147/CMAR.S169406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pan L, Liu D, Zhao L, Wang L, Xin M, Li X (2018) Long noncoding RNA MALAT1 alleviates lipopolysaccharide-induced inflammatory injury by upregulating microRNA-19b in murine chondrogenic ATDC5 cells. J Cell Biochem 119(12):10165–10175. https://doi.org/10.1002/jcb.27357

    Article  CAS  Google Scholar 

  41. Gao GC, Cheng XG, Wei QQ, Chen WC, Huang WZ (2019) Long noncoding RNA MALAT-1 inhibits apoptosis and matrix metabolism disorder in interleukin-1β-induced inflammation in articular chondrocytes via the JNK signaling pathway. J Cell Biochem 120(10):17167–17179. https://doi.org/10.1002/jcb.28977

    Article  CAS  Google Scholar 

  42. Arun G, Aggarwal D, Spector DL (2020) Long non-coding RNA: functional implications. Noncoding RNA 6(2). https://doi.org/10.3390/ncrna6020022

  43. Liang J, Xu L, Zhou F et al (2018) MALAT1/miR-127-5p regulates Osteopontin (OPN)-mediated proliferation of human chondrocytes through PI3K/Akt pathway. J Cell Biochem 119(1):431–439. https://doi.org/10.1002/jcb.26200

    Article  CAS  Google Scholar 

  44. Zhang Y, Wang F, Chen G, He R, Yang L (2019) LncRNA MALAT1 promotes osteoarthritis by modulating miR-150-5p/AKT3 axis. Cell Biosci 9:54. https://doi.org/10.1186/s13578-019-0302-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu C, Ren S, Zhao S, Wang Y (2019) LncRNA MALAT1/MiR-145 adjusts IL-1β-induced chondrocytes viability and cartilage matrix degradation by regulating ADAMTS5 in human osteoarthritis. Yonsei Med J 60(11):1081–1092. https://doi.org/10.3349/ymj.2019.60.11.1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li H, Xie S, Zhang R, Zhang H (2020) LncRNA MALAT1 mediates proliferation of LPS treated-articular chondrocytes by targeting the miR-146a-PI3K/Akt/mTOR axis. Life Sci 254:116801. https://doi.org/10.1016/j.lfs.2019.116801

    Article  CAS  PubMed  Google Scholar 

  47. Song J, Kim D, Han J, Kim Y, Lee M, Jin EJ (2015) PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin Exp Med 15(1):121–126. https://doi.org/10.1007/s10238-013-0271-4

    Article  CAS  PubMed  Google Scholar 

  48. Li GQ, Fang YX, Liu Y et al (2019) MALAT1-driven inhibition of Wnt signal impedes proliferation and inflammation in fibroblast-like Synoviocytes through CTNNB1 promoter methylation in rheumatoid arthritis. Hum Gene Ther 30(8):1008–1022. https://doi.org/10.1089/hum.2018.212

    Article  CAS  Google Scholar 

  49. Wan L, Liu J, Huang C et al (2020) Decreased long-chain non-coding RNA MALAT1 expression and increased hsa-miR155-3p expression involved in Notch signaling pathway regulation in rheumatoid arthritis patients. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 36(6):535–541

    PubMed  Google Scholar 

  50. Pan F, Zhu L, Lv H, Pei C (2016) Quercetin promotes the apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis by upregulating lncRNA MALAT1. Int J Mol Med 38(5):1507–1514. https://doi.org/10.3892/ijmm.2016.2755

    Article  CAS  PubMed  Google Scholar 

  51. Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323. https://doi.org/10.1016/j.cell.2007.05.022

    Article  CAS  Google Scholar 

  52. Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by Noncoding RNAs. Cell 129(7):1311–1323. https://doi.org/10.1016/j.cell.2007.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bond CS, Fox AH (2009) Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol 186(5):637–644. https://doi.org/10.1083/jcb.200906113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Imamura K, Imamachi N, Akizuki G et al (2014) Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell 53(3):393–406. https://doi.org/10.1016/j.molcel.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  55. Chen H, Qi J, Bi Q, Zhang S (2017) Expression profile of long noncoding RNA (HOTAIR) and its predicted target miR-17-3p in LPS-induced inflammatory injury in human articular chondrocyte C28/I2 cells. Int J Clin Exp Pathol 10(9):9146–9157

    PubMed  PubMed Central  Google Scholar 

  56. Hu J, Wang Z, Shan Y, Pan Y, Ma J, Jia L (2018) Long non-coding RNA HOTAIR promotes osteoarthritis progression via miR-17-5p/FUT2/β-catenin axis. Cell Death Dis 9(7):711. https://doi.org/10.1038/s41419-018-0746-z

    Article  CAS  Google Scholar 

  57. Yang Y, Xing D, Wang Y, Jia H, Li B, Li JJ (2020) A long non-coding RNA, HOTAIR, promotes cartilage degradation in osteoarthritis by inhibiting WIF-1 expression and activating Wnt pathway. BMC Mol Cell Biol 21(1):53. https://doi.org/10.1186/s12860-020-00299-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. He B, Jiang D (2020) HOTAIR-induced apoptosis is mediated by sponging miR-130a-3p to repress chondrocyte autophagy in knee osteoarthritis. Cell Biol Int 44(2):524–535. https://doi.org/10.1002/cbin.11253

    Article  CAS  PubMed  Google Scholar 

  59. Chen Y, Zhang L, Li E et al (2020) Long-chain non-coding RNA HOTAIR promotes the progression of osteoarthritis via sponging miR-20b/PTEN axis. Life Sci 253:117685. https://doi.org/10.1016/j.lfs.2020.117685

    Article  CAS  PubMed  Google Scholar 

  60. Dou P, Hu R, Zhu W et al (2017) Long non-coding RNA HOTAIR promotes expression of ADAMTS-5 in human osteoarthritic articular chondrocytes. Pharmazie 72(2):113–117. https://doi.org/10.1691/ph.2017.6649

    Article  CAS  PubMed  Google Scholar 

  61. Zhang C, Wang P, Jiang P et al (2016) Upregulation of lncRNA HOTAIR contributes to IL-1β-induced MMP overexpression and chondrocytes apoptosis in temporomandibular joint osteoarthritis. Gene 586(2):248–253. https://doi.org/10.1016/j.gene.2016.04.016

    Article  CAS  PubMed  Google Scholar 

  62. Mao T, He C, Wu H, Yang B, Li X (2019) Silencing lncRNA HOTAIR declines synovial inflammation and synoviocyte proliferation and promotes synoviocyte apoptosis in osteoarthritis rats by inhibiting Wnt/β-catenin signaling pathway. Cell Cycle 18(22):3189–3205. https://doi.org/10.1080/15384101.2019.1671716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang HJ, Wei QF, Wang SJ et al (2017) LncRNA HOTAIR alleviates rheumatoid arthritis by targeting miR-138 and inactivating NF-κB pathway. Int Immunopharmacol 50:283–290. https://doi.org/10.1016/j.intimp.2017.06.021

    Article  CAS  PubMed  Google Scholar 

  64. Ji J, Dai X, Yeung SJ, He X (2019) The role of long non-coding RNA GAS5 in cancers. Cancer Manag Res 11:2729–2737. https://doi.org/10.2147/CMAR.S189052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3(107):ra8. https://doi.org/10.1126/scisignal.2000568

    Article  CAS  Google Scholar 

  66. Xing D, Liang JQ, Li Y et al (2014) Identification of long noncoding RNA associated with osteoarthritis in humans. Orthop Surg 6(4):288–293. https://doi.org/10.1111/os.12147

    Article  PubMed  PubMed Central  Google Scholar 

  67. Song J, Ahn C, Chun CH, Jin EJ (2014) A long non-coding RNA, GAS5, plays a critical role in the regulation of miR-21 during osteoarthritis. J Orthop Res 32(12):1628–1635. https://doi.org/10.1002/jor.22718

    Article  CAS  PubMed  Google Scholar 

  68. Ji Q, Qiao X, Liu Y, Wang D, Yan J (2020) Silencing of long-chain non-coding RNA GAS5 in osteoarthritic chondrocytes is mediated by targeting the miR-34a/Bcl-2 axis. Mol Med Rep 21(3):1310–1319. https://doi.org/10.3892/mmr.2019.10900

    Article  CAS  PubMed  Google Scholar 

  69. Li F, Sun J, Huang S, Su G, Pi G (2018) LncRNA GAS5 overexpression reverses LPS-induced inflammatory injury and apoptosis through up-regulating KLF2 expression in ATDC5 chondrocytes. Cell Physiol Biochem 45(3):1241–1251. https://doi.org/10.1159/000487455

    Article  CAS  PubMed  Google Scholar 

  70. Li G, Liu Y, Meng F et al (2018) Tanshinone IIA promotes the apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis by up-regulating lncRNA GAS5. Biosci Rep 38(5). https://doi.org/10.1042/BSR20180626

  71. Ma C, Wang W, Li P (2019) LncRNA GAS5 overexpression downregulates IL-18 and induces the apoptosis of fibroblast-like synoviocytes. Clin Rheumatol 38(11):3275–3280. https://doi.org/10.1007/s10067-019-04691-2

    Article  PubMed  Google Scholar 

  72. Li M, Wang N, Shen Z, Yan J (2020) Long non-coding RNA growth arrest-specific transcript 5 regulates rheumatoid arthritis by targeting homeodomain-interacting protein kinase 2. Clin Exp Rheumatol 38:1145

    PubMed  Google Scholar 

  73. Ghafouri-Fard S, Esmaeili M, Taheri M (2020) H19 lncRNA: roles in tumorigenesis. Biomed Pharmacother 123:109774. https://doi.org/10.1016/j.biopha.2019.109774

    Article  CAS  PubMed  Google Scholar 

  74. Steck E, Boeuf S, Gabler J et al (2012) Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. J Mol Med (Berl) 90(10):1185–1195. https://doi.org/10.1007/s00109-012-0895-y

    Article  CAS  Google Scholar 

  75. Hu Y, Li S, Zou Y (2019) Knockdown of LncRNA H19 relieves LPS-induced damage by modulating miR-130a in osteoarthritis. Yonsei Med J 60(4):381–388. https://doi.org/10.3349/ymj.2019.60.4.381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang X, Liu X, Ni X, Feng P, Wang YU (2019) Long non-coding RNA H19 modulates proliferation and apoptosis in osteoarthritis via regulating miR-106a-5p. J Biosci 44(6):128

    Article  Google Scholar 

  77. Yang B, Xu L, Wang S (2020) Regulation of lncRNA-H19/miR-140-5p in cartilage matrix degradation and calcification in osteoarthritis. Ann Palliat Med 9(4):1896–1904. https://doi.org/10.21037/apm-20-929

    Article  Google Scholar 

  78. Tan F, Wang D, Yuan Z (2020) The fibroblast-like Synoviocyte derived Exosomal long non-coding RNA H19 alleviates osteoarthritis progression through the miR-106b-5p/TIMP2 Axis. Inflammation 43(4):1498–1509. https://doi.org/10.1007/s10753-020-01227-8

    Article  CAS  PubMed  Google Scholar 

  79. Stuhlmüller B, Kunisch E, Franz J et al (2003) Detection of oncofetal h19 RNA in rheumatoid arthritis synovial tissue. Am J Pathol 163(3):901–911. https://doi.org/10.1016/S0002-9440(10)63450-5

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yang J, Li Y, Wang L, Zhang Z, Li Z, Jia Q (2020) LncRNA H19 aggravates TNF-α-induced inflammatory injury via TAK1 pathway in MH7A cells. Biofactors. https://doi.org/10.1002/biof.1659

  81. Liu F, Liu X, Yang Y et al (2020) NEAT1/miR-193a-3p/SOX5 axis regulates cartilage matrix degradation in human osteoarthritis. Cell Biol Int 44(4):947–957. https://doi.org/10.1002/cbin.11291

    Article  CAS  PubMed  Google Scholar 

  82. Tu Y, Ma T, Wen T et al (2020) MicroRNA-377-3p alleviates IL-1β-caused chondrocyte apoptosis and cartilage degradation in osteoarthritis in part by downregulating ITGA6. Biochem Biophys Res Commun 523(1):46–53. https://doi.org/10.1016/j.bbrc.2019.11.186

    Article  CAS  PubMed  Google Scholar 

  83. Li D, Sun Y, Wan Y, Wu X, Yang W (2020) LncRNA NEAT1 promotes proliferation of chondrocytes via down-regulation of miR-16-5p in osteoarthritis. J Gene Med:e3203. https://doi.org/10.1002/jgm.3203

  84. Wang Z, Hao J, Chen D (2019) Long noncoding RNA Nuclear enriched abundant transcript 1 (NEAT1) regulates proliferation, apoptosis, and inflammation of chondrocytes via the miR-181a/Glycerol-3-phosphate dehydrogenase 1-like (GPD1L) Axis. Med Sci Monit 25:8084–8094. https://doi.org/10.12659/MSM.918416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shui X, Chen S, Lin J, Kong J, Zhou C, Wu J (2019) Knockdown of lncRNA NEAT1 inhibits Th17/CD4. J Cell Physiol 234(12):22477–22484. https://doi.org/10.1002/jcp.28811

    Article  CAS  Google Scholar 

  86. Borsani G, Tonlorenzi R, Simmler MC et al (1991) Characterization of a murine gene expressed from the inactive X chromosome. Nature 351(6324):325–329. https://doi.org/10.1038/351325a0

    Article  Google Scholar 

  87. Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B (2002) Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 36:233–278. https://doi.org/10.1146/annurev.genet.36.042902.092433

    Article  CAS  PubMed  Google Scholar 

  88. Marshall EA, Stewart GL, Sage AP, Lam WL, Brown CJ (2019) Beyond sequence homology: cellular biology limits the potential of XIST to act as a miRNA sponge. PLoS One 14(8):e0221371. https://doi.org/10.1371/journal.pone.0221371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lambert NC (2019) Nonendocrine mechanisms of sex bias in rheumatic diseases. Nat Rev Rheumatol 15(11):673–686. https://doi.org/10.1038/s41584-019-0307-6

    Article  Google Scholar 

  90. Kanaan SB, Onat OE, Balandraud N et al (2016) Evaluation of X chromosome inactivation with respect to HLA genetic susceptibility in rheumatoid arthritis and systemic sclerosis. PLoS One 11(6):e0158550. https://doi.org/10.1371/journal.pone.0158550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lin J, He Y, Chen J, Zeng Z, Yang B, Ou Q (2017) A critical role of transcription factor YY1 in rheumatoid arthritis by regulation of interleukin-6. J Autoimmun 77:67–75. https://doi.org/10.1016/j.jaut.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  92. Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D, Jones G (2005) A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthr Cartil 13(9):769–781. https://doi.org/10.1016/j.joca.2005.04.014

    Article  Google Scholar 

  93. Hame SL, Alexander RA (2013) Knee osteoarthritis in women. Curr Rev Musculoskelet Med 6(2):182–187. https://doi.org/10.1007/s12178-013-9164-0

    Article  PubMed  PubMed Central  Google Scholar 

  94. Xiang S, Li Z, Bian Y, Weng X (2019) Identification of changed expression of mRNAs and lncRNAs in osteoarthritic synovium by RNA-sequencing. Gene 685:55–61. https://doi.org/10.1016/j.gene.2018.10.076

    Article  CAS  PubMed  Google Scholar 

  95. Li L, Lv G, Wang B, Kuang L (2018) The role of lncRNA XIST/miR-211 axis in modulating the proliferation and apoptosis of osteoarthritis chondrocytes through CXCR4 and MAPK signaling. Biochem Biophys Res Commun 503(4):2555–2562. https://doi.org/10.1016/j.bbrc.2018.07.015

    Article  CAS  Google Scholar 

  96. Sun P, Wu Y, Li X, Jia Y (2020) miR-142-5p protects against osteoarthritis through competing with lncRNA XIST. J Gene Med 22(4):e3158. https://doi.org/10.1002/jgm.3158

    Article  Google Scholar 

  97. Lian LP, Xi XY (2020) Long non-coding RNA XIST protects chondrocytes ATDC5 and CHON-001 from IL-1β-induced injury via regulating miR-653-5p/SIRT1 axis. J Biol Regul Homeost Agents 34(2):379–391. https://doi.org/10.23812/19-549-A-65

    Article  Google Scholar 

  98. Wang T, Liu Y, Wang Y, Huang X, Zhao W, Zhao Z (2019) Long non-coding RNA XIST promotes extracellular matrix degradation by functioning as a competing endogenous RNA of miR-1277-5p in osteoarthritis. Int J Mol Med 44(2):630–642. https://doi.org/10.3892/ijmm.2019.4240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu Y, Liu K, Tang C, Shi Z, Jing K, Zheng J (2020) Long non-coding RNA XIST contributes to osteoarthritis progression via miR-149-5p/DNMT3A axis. Biomed Pharmacother 128:110349. https://doi.org/10.1016/j.biopha.2020.110349

    Article  CAS  PubMed  Google Scholar 

  100. Chen H, Yang S, Shao R (2019) Long non-coding XIST raises methylation of TIMP-3 promoter to regulate collagen degradation in osteoarthritic chondrocytes after tibial plateau fracture. Arthritis Res Ther 21(1):271. https://doi.org/10.1186/s13075-019-2033-5

    Article  CAS  Google Scholar 

  101. Li L, Lv G, Wang B, Kuang L (2020) XIST/miR-376c-5p/OPN axis modulates the influence of proinflammatory M1 macrophages on osteoarthritis chondrocyte apoptosis. J Cell Physiol 235(1):281–293. https://doi.org/10.1002/jcp.28968

    Article  CAS  Google Scholar 

  102. Ghafouri-Fard S, Taheri M (2019) Maternally expressed gene 3 (MEG3): a tumor suppressor long non coding RNA. Biomed Pharmacother 118:109129. https://doi.org/10.1016/j.biopha.2019.109129

    Article  CAS  PubMed  Google Scholar 

  103. Mondal T, Subhash S, Vaid R et al (2015) MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures. Nat Commun 6:7743. https://doi.org/10.1038/ncomms8743

    Article  CAS  PubMed  Google Scholar 

  104. Su W, Xie W, Shang Q, Su B (2015) The long noncoding RNA MEG3 is downregulated and inversely associated with VEGF levels in osteoarthritis. Biomed Res Int 2015:356893. https://doi.org/10.1155/2015/356893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xu J, Xu Y (2017) The lncRNA MEG3 downregulation leads to osteoarthritis progression via miR-16/SMAD7 axis. Cell Biosci 7:69. https://doi.org/10.1186/s13578-017-0195-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen K, Zhu H, Zheng MQ, Dong QR (2019) LncRNA MEG3 inhibits the degradation of the extracellular matrix of chondrocytes in osteoarthritis via targeting miR-93/TGFBR2 Axis. Cartilage 1947603519855759. https://doi.org/10.1177/1947603519855759

  107. Wang Z, Chi X, Liu L et al (2018) Long noncoding RNA maternally expressed gene 3 knockdown alleviates lipopolysaccharide-induced inflammatory injury by up-regulation of miR-203 in ATDC5 cells. Biomed Pharmacother 100:240–249. https://doi.org/10.1016/j.biopha.2018.02.018

    Article  CAS  PubMed  Google Scholar 

  108. Li X, Tang C, Wang J et al (2018) Methylene blue relieves the development of osteoarthritis by upregulating lncRNA MEG3. Exp Ther Med 15(4):3856–3864. https://doi.org/10.3892/etm.2018.5918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang A, Hu N, Zhang Y et al (2019) MEG3 promotes proliferation and inhibits apoptosis in osteoarthritis chondrocytes by miR-361-5p/FOXO1 axis. BMC Med Genet 12(1):201. https://doi.org/10.1186/s12920-019-0649-6

    Article  CAS  Google Scholar 

  110. Li G, Liu Y, Meng F et al (2019) LncRNA MEG3 inhibits rheumatoid arthritis through miR-141 and inactivation of AKT/mTOR signalling pathway. J Cell Mol Med 23(10):7116–7120. https://doi.org/10.1111/jcmm.14591

    Article  CAS  Google Scholar 

  111. Lu X, Qian J (2019) Downregulated MEG3 participates in rheumatoid arthritis via promoting proliferation of fibroblast-like synoviocytes. Exp Ther Med 17(3):1637–1642. https://doi.org/10.3892/etm.2018.7100

    Article  CAS  PubMed  Google Scholar 

  112. Wang KC, Yang YW, Liu B et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341):120–124. https://doi.org/10.1038/nature09819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shang A, Wang W, Gu C et al (2019) Long non-coding RNA HOTTIP enhances IL-6 expression to potentiate immune escape of ovarian cancer cells by upregulating the expression of PD-L1 in neutrophils. J Exp Clin Cancer Res 38(1):411. https://doi.org/10.1186/s13046-019-1394-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ghafouri-Fard S, Dashti S, Taheri M (2020) The HOTTIP (HOXA transcript at the distal tip) lncRNA: review of oncogenic roles in human. Biomed Pharmacother 127:110158. https://doi.org/10.1016/j.biopha.2020.110158

    Article  CAS  PubMed  Google Scholar 

  115. Kim D, Song J, Han J, Kim Y, Chun CH, Jin EJ (2013) Two non-coding RNAs, MicroRNA-101 and HOTTIP contribute cartilage integrity by epigenetic and homeotic regulation of integrin-α1. Cell Signal 25(12):2878–2887. https://doi.org/10.1016/j.cellsig.2013.08.034

    Article  CAS  PubMed  Google Scholar 

  116. Mao G, Kang Y, Lin R et al (2019) Long non-coding RNA HOTTIP promotes CCL3 expression and induces cartilage degradation by sponging miR-455-3p. Front Cell Dev Biol 7:161. https://doi.org/10.3389/fcell.2019.00161

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hu X, Tang J, Bao P et al (2020) Silencing of long non-coding RNA HOTTIP reduces inflammation in rheumatoid arthritis by demethylation of SFRP1. Mol Ther Nucleic Acids 19:468–481. https://doi.org/10.1016/j.omtn.2019.11.015

    Article  CAS  PubMed  Google Scholar 

  118. Onagoruwa OT, Pal G, Ochu C, Ogunwobi OO (2020) Oncogenic role of PVT1 and therapeutic implications. Front Oncol 10:17. https://doi.org/10.3389/fonc.2020.00017

    Article  PubMed  PubMed Central  Google Scholar 

  119. Li Y, Li S, Luo Y, Liu Y, Yu N (2017) LncRNA PVT1 regulates chondrocyte apoptosis in osteoarthritis by acting as a sponge for miR-488-3p. DNA Cell Biol 36(7):571–580. https://doi.org/10.1089/dna.2017.3678

    Article  CAS  PubMed  Google Scholar 

  120. Zhao Y, Zhao J, Guo X, She J, Liu Y (2018) Long non-coding RNA PVT1, a molecular sponge for miR-149, contributes aberrant metabolic dysfunction and inflammation in IL-1β-simulated osteoarthritic chondrocytes. Biosci Rep 38(5). https://doi.org/10.1042/BSR20180576

  121. Lu X, Yu Y, Yin F et al (2020) Knockdown of PVT1 inhibits IL-1β-induced injury in chondrocytes by regulating miR-27b-3p/TRAF3 axis. Int Immunopharmacol 79:106052. https://doi.org/10.1016/j.intimp.2019.106052

    Article  CAS  PubMed  Google Scholar 

  122. Ding LB, Li Y, Liu GY et al (2020) Long non-coding RNA PVT1, a molecular sponge of miR-26b, is involved in the progression of hyperglycemia-induced collagen degradation in human chondrocytes by targeting CTGF/TGF. Innate Immun 26(3):204–214. https://doi.org/10.1177/1753425919881778

    Article  CAS  Google Scholar 

  123. Xu K, Meng Z, Xian XM et al (2020) LncRNA PVT1 induces chondrocyte apoptosis through upregulation of TNF-α in synoviocytes by sponging miR-211-3p. Mol Cell Probes 52:101560. https://doi.org/10.1016/j.mcp.2020.101560

    Article  CAS  PubMed  Google Scholar 

  124. Wang J, Kong X, Hu H, Shi S (2020) Knockdown of long non-coding RNA PVT1 induces apoptosis of fibroblast-like synoviocytes through modulating miR-543-dependent SCUBE2 in rheumatoid arthritis. J Orthop Surg Res 15(1):142. https://doi.org/10.1186/s13018-020-01641-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang CW, Wu X, Liu D et al (2019) Long non-coding RNA PVT1 knockdown suppresses fibroblast-like synoviocyte inflammation and induces apoptosis in rheumatoid arthritis through demethylation of. J Biol Eng 13:60. https://doi.org/10.1186/s13036-019-0184-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhou H, Sun L, Wan F (2019) Molecular mechanisms of TUG1 in the proliferation, apoptosis, migration and invasion of cancer cells. Oncol Lett 18(5):4393–4402. https://doi.org/10.3892/ol.2019.10848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tang LP, Ding JB, Liu ZH, Zhou GJ (2018) LncRNA TUG1 promotes osteoarthritis-induced degradation of chondrocyte extracellular matrix via miR-195/MMP-13 axis. Eur Rev Med Pharmacol Sci 22(24):8574–8581. https://doi.org/10.26355/eurrev_201812_16620

    Article  Google Scholar 

  128. Liang Z, Ren C (2018) Emodin attenuates apoptosis and inflammation induced by LPS through up-regulating lncRNA TUG1 in murine chondrogenic ATDC5 cells. Biomed Pharmacother 103:897–902. https://doi.org/10.1016/j.biopha.2018.04.085

    Article  CAS  PubMed  Google Scholar 

  129. Ghafouri-Fard S, Taheri M (2019) UCA1 long non-coding RNA: an update on its roles in malignant behavior of cancers. Biomed Pharmacother 120:109459. https://doi.org/10.1016/j.biopha.2019.109459

    Article  CAS  PubMed  Google Scholar 

  130. Wang G, Bu X, Zhang Y et al (2017) LncRNA-UCA1 enhances MMP-13 expression by inhibiting miR-204-5p in human chondrocytes. Oncotarget 8(53):91281–91290. https://doi.org/10.18632/oncotarget.20108

    Article  Google Scholar 

  131. Yan ZF, Zhao XY, Liu W, Liu XP (2018) UCA1 impacts progress of rheumatoid arthritis by inducing the apoptosis of fibroblast-like synoviocyte. Eur Rev Med Pharmacol Sci 22(4):914–920. https://doi.org/10.26355/eurrev_201802_14370

    Article  Google Scholar 

  132. Baldinu P, Cossu A, Manca A et al (2004) Identification of a novel candidate gene, CASC2, in a region of common allelic loss at chromosome 10q26 in human endometrial cancer. Hum Mutat 23(4):318–326. https://doi.org/10.1002/humu.20015

    Article  CAS  PubMed  Google Scholar 

  133. Palmieri G, Paliogiannis P, Sini MC et al (2017) Long non-coding RNA CASC2 in human cancer. Crit Rev Oncol Hematol 111:31–38. https://doi.org/10.1016/j.critrevonc.2017.01.003

    Article  PubMed  Google Scholar 

  134. Sun Y, Kang S, Pei S, Sang C, Huang Y (2020) MiR93-5p inhibits chondrocyte apoptosis in osteoarthritis by targeting lncRNA CASC2. BMC Musculoskelet Disord 21(1):26. https://doi.org/10.1186/s12891-019-3025-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Huang T, Wang J, Zhou Y, Zhao Y, Hang D, Cao Y (2019) LncRNA CASC2 is up-regulated in osteoarthritis and participates in the regulation of IL-17 expression and chondrocyte proliferation and apoptosis. Biosci Rep 39(5). https://doi.org/10.1042/BSR20182454

  136. Liu C, Guo X, Bai S, Zeng G, Wang H (2020) lncRNA CASC2 downregulation participates in rheumatoid arthritis, and CASC2 overexpression promotes the apoptosis of fibroblast-like synoviocytes by downregulating IL-17. Mol Med Rep 21(5):2131–2137. https://doi.org/10.3892/mmr.2020.11018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Congrains A, Kamide K, Ohishi M, Rakugi H (2013) ANRIL: molecular mechanisms and implications in human health. Int J Mol Sci 14(1):1278–1292. https://doi.org/10.3390/ijms14011278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kotake Y, Nakagawa T, Kitagawa K et al (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30(16):1956–1962. https://doi.org/10.1038/onc.2010.568

    Article  CAS  Google Scholar 

  139. Kong Y, Hsieh CH, Alonso LC (2018) A lncRNA at the CDKN2A/B locus with roles in cancer and metabolic disease. Front Endocrinol (Lausanne) 9:405. https://doi.org/10.3389/fendo.2018.00405

    Article  Google Scholar 

  140. Li X, Huang TL, Zhang GD, Jiang JT, Guo PY (2019) LncRNA ANRIL impacts the progress of osteoarthritis via regulating proliferation and apoptosis of osteoarthritis synoviocytes. Eur Rev Med Pharmacol Sci 23(22):9729–9737. https://doi.org/10.26355/eurrev_201911_19535

    Article  Google Scholar 

  141. Zhang TP, Zhu BQ, Tao SS et al (2019) Long non-coding RNAs genes polymorphisms and their expression levels in patients with rheumatoid arthritis. Front Immunol 10:2529. https://doi.org/10.3389/fimmu.2019.02529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ye S, Zhu S, Feng L (2020) LncRNA ANRIL/miR-125a axis exhibits potential as a biomarker for disease exacerbation, severity, and inflammation in bronchial asthma. J Clin Lab Anal 34(3):e23092. https://doi.org/10.1002/jcla.23092

    Article  PubMed  Google Scholar 

  143. Wang X, Sun W, Shen W et al (2016) Long non-coding RNA DILC regulates liver cancer stem cells via IL-6/STAT3 axis. J Hepatol 64(6):1283–1294. https://doi.org/10.1016/j.jhep.2016.01.019

    Article  CAS  Google Scholar 

  144. Huang J, Liu L, Yang J, Ding J, Xu X (2019) lncRNA DILC is downregulated in osteoarthritis and regulates IL-6 expression in chondrocytes. J Cell Biochem 120(9):16019–16024. https://doi.org/10.1002/jcb.28880

    Article  CAS  Google Scholar 

  145. Wang G, Tang L, Zhang X, Li Y (2019) LncRNA DILC participates in rheumatoid arthritis by inducing apoptosis of fibroblast-like synoviocytes and down-regulating IL-6. Biosci Rep 39(5). https://doi.org/10.1042/BSR20182374

  146. Xu D, Jiang Y, Yang L et al (2017) Long noncoding RNAs expression profile and functional networks in rheumatoid arthritis. Oncotarget 8(56):95280–95292. https://doi.org/10.18632/oncotarget.20036

    Article  Google Scholar 

  147. Zhang P, Sun J, Liang C et al (2020) lncRNA IGHC. Mediat Inflamm 2020:9743037. https://doi.org/10.1155/2020/9743037

    Article  CAS  Google Scholar 

  148. Chen S, Liang H, Yang H et al (2017) LincRNa-p21: function and mechanism in cancer. Med Oncol 34(5):98. https://doi.org/10.1007/s12032-017-0959-5

    Article  CAS  PubMed  Google Scholar 

  149. Tang L, Ding J, Zhou G, Liu Z (2018) LncRNA-p21 promotes chondrocyte apoptosis in osteoarthritis by acting as a sponge for miR-451. Mol Med Rep 18(6):5295–5301. https://doi.org/10.3892/mmr.2018.9506

    Article  CAS  PubMed  Google Scholar 

  150. Spurlock CF, Tossberg JT, Matlock BK, Olsen NJ, Aune TM (2014) Methotrexate inhibits NF-κB activity via long intergenic (noncoding) RNA-p21 induction. Arthritis Rheumatol 66(11):2947–2957. https://doi.org/10.1002/art.38805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I (2020) An emerging class of long non-coding RNA with oncogenic role arises from the snoRNA host genes. Front Oncol 10:389. https://doi.org/10.3389/fonc.2020.00389

    Article  PubMed  PubMed Central  Google Scholar 

  152. Thin KZ, Tu JC, Raveendran S (2019) Long non-coding SNHG1 in cancer. Clin Chim Acta 494:38–47. https://doi.org/10.1016/j.cca.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  153. Lei J, Fu Y, Zhuang Y, Zhang K, Lu D (2019) LncRNA SNHG1 alleviates IL-1β-induced osteoarthritis by inhibiting miR-16-5p-mediated p38 MAPK and NF-κB signaling pathways. Biosci Rep 39(9). https://doi.org/10.1042/BSR20191523

  154. Li Z, Chao TC, Chang KY et al (2014) The long noncoding RNA THRIL regulates TNFα expression through its interaction with hnRNPL. Proc Natl Acad Sci U S A 111(3):1002–1007. https://doi.org/10.1073/pnas.1313768111

    Article  CAS  PubMed  Google Scholar 

  155. Liu G, Wang Y, Zhang M, Zhang Q (2019) Long non-coding RNA THRIL promotes LPS-induced inflammatory injury by down-regulating microRNA-125b in ATDC5 cells. Int Immunopharmacol 66:354–361. https://doi.org/10.1016/j.intimp.2018.11.038

    Article  CAS  PubMed  Google Scholar 

  156. Moharamoghli M, Hassan-Zadeh V, Dolatshahi E, Alizadeh Z, Farazmand A (2019) The expression of GAS5, THRIL, and RMRP lncRNAs is increased in T cells of patients with rheumatoid arthritis. Clin Rheumatol 38(11):3073–3080. https://doi.org/10.1007/s10067-019-04694-z

    Article  PubMed  Google Scholar 

  157. Liang Y, Li H, Gong X, Ding C (2020) Long non-coding RNA THRIL mediates cell growth and inflammatory response of fibroblast-like Synoviocytes by activating PI3K/AKT signals in rheumatoid arthritis. Inflammation 43(3):1044–1053. https://doi.org/10.1007/s10753-020-01189-x

    Article  CAS  PubMed  Google Scholar 

  158. Dong D, Mu Z, Zhao C (2018) Sun M. : a novel tumor-related long non-coding RNA. Cancer Cell Int 18:125. https://doi.org/10.1186/s12935-018-0623-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ye Y, Gao X, Yang N (2018) LncRNA ZFAS1 promotes cell migration and invasion of fibroblast-like synoviocytes by suppression of miR-27a in rheumatoid arthritis. Hum Cell 31(1):14–21. https://doi.org/10.1007/s13577-017-0179-5

    Article  CAS  PubMed  Google Scholar 

  160. Gergianaki I, Bortoluzzi A, Bertsias G (2018) Update on the epidemiology, risk factors, and disease outcomes of systemic lupus erythematosus. Best Pract Res Clin Rheumatol 32(2):188–205. https://doi.org/10.1016/j.berh.2018.09.004

    Article  Google Scholar 

  161. Margery-Muir AA, Bundell C, Nelson D, Groth DM, Wetherall JD (2017) Gender balance in patients with systemic lupus erythematosus. Autoimmun Rev 16(3):258–268. https://doi.org/10.1016/j.autrev.2017.01.007

    Article  PubMed  Google Scholar 

  162. Lewis MJ, Jawad AS (2017) The effect of ethnicity and genetic ancestry on the epidemiology, clinical features and outcome of systemic lupus erythematosus. Rheumatology (Oxford) 56(suppl_1):i67–i77. https://doi.org/10.1093/rheumatology/kew399

    Article  CAS  Google Scholar 

  163. Ferretti C, La Cava A (2016) Chapter 8 - overview of the pathogenesis of systemic lupus erythematosus. In: Tsokos GC (ed) Systemic lupus erythematosus. Academic, pp 55–62

    Google Scholar 

  164. Sawalha AH (2016) Chapter 15 - neutrophils in systemic lupus erythematosus. In: Basic, applied and clinical aspects

    Google Scholar 

  165. Jacquemin C, Blanco P (2016) Chapter 16 - the role of dendritic cells in systemic lupus erythematosus. In: Tsokos GC (ed) Systemic lupus erythematosus. Academic, pp 131–136

    Google Scholar 

  166. Drijvers JM, Pillai S (2016) Chapter 14 - integrating current thinking on peripheral B-cell tolerance in lupus. In: Tsokos GC (ed) Systemic lupus erythematosus. Academic, pp 121–126

    Google Scholar 

  167. Tsokos GC (2020) Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol 21(6):605–614. https://doi.org/10.1038/s41590-020-0677-6

    Article  CAS  Google Scholar 

  168. Tsokos GC, Lo MS, Costa Reis P, Sullivan KE (2016) New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 12(12):716–730. https://doi.org/10.1038/nrrheum.2016.186

    Article  CAS  Google Scholar 

  169. Hagberg N, Rönnblom L (2016) Chapter 19 - the interferon system in lupus erythematosus. In: Tsokos GC (ed) Systemic lupus erythematosus. Academic, pp 153–158

    Google Scholar 

  170. Luan M, Shang Z, Teng Y et al (2017) The shared and specific mechanism of four autoimmune diseases. Oncotarget 8(65):108355–108374. https://doi.org/10.18632/oncotarget.19383

    Article  Google Scholar 

  171. Moulton VR, Suarez-Fueyo A, Meidan E, Li H, Mizui M, Tsokos GC (2017) Pathogenesis of human systemic lupus erythematosus: a cellular perspective. Trends Mol Med 23(7):615–635. https://doi.org/10.1016/j.molmed.2017.05.006

    Article  CAS  Google Scholar 

  172. Moulton VR (2016) Chapter 17 - Cytokines. In: Tsokos GC (ed) Systemic lupus erythematosus. Academic, pp 137–141

    Google Scholar 

  173. Sunahori K, Nagpal K, Hedrich CM, Mizui M, Fitzgerald LM, Tsokos GC (2013) The catalytic subunit of protein phosphatase 2A (PP2Ac) promotes DNA hypomethylation by suppressing the phosphorylated mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/phosphorylated ERK/DNMT1 protein pathway in T-cells from controls and systemic lupus erythematosus patients. J Biol Chem 288(30):21936–21944. https://doi.org/10.1074/jbc.M113.467266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ye H, Wang X, Wang L et al (2019) Full high-throughput sequencing analysis of differences in expression profiles of long noncoding RNAs and their mechanisms of action in systemic lupus erythematosus. Arthritis Res Ther 21(1):70. https://doi.org/10.1186/s13075-019-1853-7

    Article  Google Scholar 

  175. Luo Q, Li X, Xu C et al (2018) Integrative analysis of long non-coding RNAs and messenger RNA expression profiles in systemic lupus erythematosus. Mol Med Rep 17(3):3489–3496. https://doi.org/10.3892/mmr.2017.8344

    Article  CAS  PubMed  Google Scholar 

  176. Li J, Wu GC, Zhang TP et al (2017) Association of long noncoding RNAs expression levels and their gene polymorphisms with systemic lupus erythematosus. Sci Rep 7(1):15119. https://doi.org/10.1038/s41598-017-15156-4

    Article  CAS  Google Scholar 

  177. Wu GC, Hu Y, Guan SY, Ye DQ, Pan HF (2019) Differential plasma expression profiles of long non-coding RNAs reveal potential biomarkers for systemic lupus erythematosus. Biomol Ther 9(6). https://doi.org/10.3390/biom9060206

  178. Xu H, Chen W, Zheng F et al (2020) Reconstruction and analysis of the aberrant lncRNA-miRNA-mRNA network in systemic lupus erythematosus. Lupus 29(4):398–406. https://doi.org/10.1177/0961203320908927

    Article  CAS  PubMed  Google Scholar 

  179. Li C, Pan S, Song Y, Li Y, Qu J (2019) Silence of lncRNA MIAT protects ATDC5 cells against lipopolysaccharides challenge via up-regulating miR-132. Artif Cells Nanomed Biotechnol 47(1):2521–2527. https://doi.org/10.1080/21691401.2019.1626410

    Article  CAS  PubMed  Google Scholar 

  180. Ali MA, Shaker OG, Khalefa AA et al (2020) Serum long noncoding RNAs FAS-AS1 & PVT1 are novel biomarkers for systemic lupus erythematous. Br J Biomed Sci:1–5. https://doi.org/10.1080/09674845.2020.1765459

  181. Zhu JK, He TD, Wei ZX, Wang YM (2018) LncRNA FAS-AS1 promotes the degradation of extracellular matrix of cartilage in osteoarthritis. Eur Rev Med Pharmacol Sci 22(10):2966–2972. https://doi.org/10.26355/eurrev_201805_15051

    Article  Google Scholar 

  182. Wang JB, Li J, Zhang TP et al (2019) Expression of several long noncoding RNAs in peripheral blood mononuclear cells of patients with systemic lupus erythematosus. Adv Med Sci 64(2):430–436. https://doi.org/10.1016/j.advms.2019.08.002

    Article  PubMed  Google Scholar 

  183. Wang Y, Chen S, Du J et al (2018) Long noncoding RNA expression profile and association with SLEDAI score in monocyte-derived dendritic cells from patients with systematic lupus erythematosus. Arthritis Res Ther 20(1):138. https://doi.org/10.1186/s13075-018-1640-x

    Article  CAS  Google Scholar 

  184. Xuan J, Xiong Y, Shi L, Aramini B, Wang H (2019) Do lncRNAs and circRNAs expression profiles influence discoid lupus erythematosus progression?-a comprehensive analysis. Ann Transl Med 7(23):728. https://doi.org/10.21037/atm.2019.12.10

    Article  CAS  Google Scholar 

  185. Guo G, Chen A, Ye L et al (2020) TCONS_00483150 as a novel diagnostic biomarker of systemic lupus erythematosus. Epigenomics 12(11):973–988. https://doi.org/10.2217/epi-2019-0265

    Article  CAS  PubMed  Google Scholar 

  186. Li L-J, Zhao W, Tao S-S et al (2017) Comprehensive long non-coding RNA expression profiling reveals their potential roles in systemic lupus erythematosus. Cell Immunol 319:17–27. https://doi.org/10.1016/j.cellimm.2017.06.004

    Article  CAS  PubMed  Google Scholar 

  187. Yang H, Liang N, Wang M et al (2017) Long noncoding RNA MALAT-1 is a novel inflammatory regulator in human systemic lupus erythematosus. Oncotarget 8(44):77400–77406. https://doi.org/10.18632/oncotarget.20490

    Article  Google Scholar 

  188. Gao F, Tan Y, Luo H (2020) MALAT1 is involved in type I IFNs-mediated systemic lupus erythematosus by up-regulating OAS2, OAS3, and OASL. Braz J Med Biol Res 53(5):e9292. https://doi.org/10.1590/1414-431X20209292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wu GC, Li J, Leng RX et al (2017) Identification of long non-coding RNAs GAS5, linc0597 and lnc-DC in plasma as novel biomarkers for systemic lupus erythematosus. Oncotarget 8(14):23650–23663. https://doi.org/10.18632/oncotarget.15569

    Article  Google Scholar 

  190. Suo QF, Sheng J, Qiang FY, Tang ZS, Yang YY (2018) Association of long non-coding RNA GAS5 and miR-21 levels in CD4. Exp Ther Med 15(1):345–350. https://doi.org/10.3892/etm.2017.5429

    Article  CAS  PubMed  Google Scholar 

  191. Zhang F, Wu L, Qian J et al (2016) Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. J Autoimmun 75:96–104. https://doi.org/10.1016/j.jaut.2016.07.012

    Article  CAS  PubMed  Google Scholar 

  192. Dong G, Yang Y, Li X et al (2020) Granulocytic myeloid-derived suppressor cells contribute to IFN-I signaling activation of B cells and disease progression through the lncRNA NEAT1-BAFF axis in systemic lupus erythematosus. Biochim Biophys Acta Mol basis Dis 1866(1):165554. https://doi.org/10.1016/j.bbadis.2019.165554

    Article  CAS  Google Scholar 

  193. Zhang LH, Xiao B, Zhong M et al (2020) LncRNA NEAT1 accelerates renal mesangial cell injury via modulating the miR-146b/TRAF6/NF-κB axis in lupus nephritis. Cell Tissue Res. https://doi.org/10.1007/s00441-020-03248-z

  194. Rider V, Abdou NI, Kimler BF, Lu N, Brown S, Fridley BL (2018) Gender bias in human systemic lupus erythematosus: a problem of steroid receptor action? Front Immunol 9:611. https://doi.org/10.3389/fimmu.2018.00611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wang J, Syrett CM, Kramer MC, Basu A, Atchison ML, Anguera MC (2016) Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc Natl Acad Sci U S A 113(14):E2029–E2038. https://doi.org/10.1073/pnas.1520113113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Martin AR, Syrett CM, Myles A, Atchison ML, Anguera MC (2018) Atypical Xist RNA localization to the inactive X in a female-biased murine model of systemic lupus erythematosus. J Immunol 200(1 Supplement):40.18–40.18

    Google Scholar 

  197. Syrett CM, Paneru B, Sandoval-Heglund D et al (2019) Altered X-chromosome inactivation in T cells may promote sex-biased autoimmune diseases. JCI Insight 4(7). https://doi.org/10.1172/jci.insight.126751

  198. Zhang Y, Li X, Gibson A, Edberg J, Kimberly RP, Absher DM (2020) Skewed allelic expression on X-chromosome associated with aberrant expression of XIST on systemic lupus erythematosus lymphocytes. Hum Mol Genet. https://doi.org/10.1093/hmg/ddaa131

  199. Lee JT, Davidow LS, Warshawsky D (1999) Tsix, a gene antisense to Xist at the X-inactivation Centre. Nat Genet 21(4):400–404. https://doi.org/10.1038/7734

    Article  CAS  PubMed  Google Scholar 

  200. Loos F, Maduro C, Loda A et al (2016) Xist and Tsix transcription dynamics is regulated by the X-to-autosome ratio and Semistable transcriptional states. Mol Cell Biol 36(21):2656–2667. https://doi.org/10.1128/MCB.00183-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Cao HY, Li D, Wang YP, Lu HX, Sun J, Li HB (2020) Clinical significance of reduced expression of lncRNA TUG1 in the peripheral blood of systemic lupus erythematosus patients. Int J Rheum Dis 23(3):428–434. https://doi.org/10.1111/1756-185X.13786

    Article  CAS  PubMed  Google Scholar 

  202. Xu Y, Deng W, Zhang W (2018) Long non-coding RNA TUG1 protects renal tubular epithelial cells against injury induced by lipopolysaccharide via regulating microRNA-223. Biomed Pharmacother 104:509–519. https://doi.org/10.1016/j.biopha.2018.05.069

    Article  CAS  PubMed  Google Scholar 

  203. Cao HY, Li D, Wang YP, Lu HX, Sun J, Li HB (2020) The protection of NF-κB inhibition on kidney injury of systemic lupus erythematosus mice may be correlated with lncRNA TUG1. Kaohsiung J Med Sci 36(5):354–362. https://doi.org/10.1002/kjm2.12183

    Article  CAS  PubMed  Google Scholar 

  204. Jiang CR, Li TH (2018) Circulating UCA1 is highly expressed in patients with systemic lupus erythematosus and promotes the progression through the AKT pathway. Eur Rev Med Pharmacol Sci 22(8):2364–2371. https://doi.org/10.26355/eurrev_201804_14828

    Article  Google Scholar 

  205. Deng Y, Luan S, Zhang Q, Xiao Y (2018) Long noncoding RNA THRIL contributes in lipopolysaccharide-induced HK-2 cells injury by sponging miR-34a. J Cell Biochem. https://doi.org/10.1002/jcb.27354

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon W. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wijesinghe, S.N., Lindsay, M.A., Jones, S.W. (2022). Long Non-coding RNAs in Rheumatology. In: Carpenter, S. (eds) Long Noncoding RNA. Advances in Experimental Medicine and Biology, vol 1363. Springer, Cham. https://doi.org/10.1007/978-3-030-92034-0_4

Download citation

Publish with us

Policies and ethics