Skip to main content

Introduction

  • Chapter
  • First Online:
The Krasnosel'skiĭ-Mann Iterative Method

Abstract

Let \( \mathscr {H}\) be a Hilbert space, C a nonempty closed convex subset of \( \mathscr {H}\), and T : C → C an operator. Denote by Fix(T) the set of fixed points of T, i.e., Fix(T) = {x ∈ C : x = T(x)}.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.H. Bauschke, P.L. Combettes, A weak-to-strong convergence principle for fejer-monotone methods in Hilbert spaces, Math. Oper. Res. 26(2001), 248–264.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Berinde, Iterative approximation of fixed points, Springer, 2006.

    MATH  Google Scholar 

  3. E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathematics Student 63 (1994), 123–145.

    MathSciNet  MATH  Google Scholar 

  4. R.I. Bot, E.R. Csetnek, D. Meier, Inducing strong convergence into the asymptotic behaviour of proximal splitting algorithms in Hilbert spaces, Optim. Methods Softw. 34(2019), 489–514.

    Article  MathSciNet  MATH  Google Scholar 

  5. C.E. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Springer Verlag Series: Lecture Notes in Mathematics, Vol. 1965 (2009) XVII, 326 pp. ISBN 978-1-84882-189-7.

    Google Scholar 

  6. C.E. Chidume, S.A. Mutangadura, An example on the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc. 129(2001), 2359–2363.

    Article  MathSciNet  MATH  Google Scholar 

  7. P.L. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6(2005), 117–136.

    MathSciNet  MATH  Google Scholar 

  8. P.L. Combettes, L.E. Glaudin, Quasi-nonexpansive iterations on the affine hull of orbits: from Mann’s mean value algorithm to inertial methods, SIAM J. Optim. 27(2017), 2356–2380.

    Article  MathSciNet  MATH  Google Scholar 

  9. P.L. Combettes, T. Pennanen, Generalized Mann iterates for constructing fixed points in Hilbert spaces, J. Math. Anal. Appl. 275(2002), 521–536.

    Article  MathSciNet  MATH  Google Scholar 

  10. P.L. Combettes, J.C. Pesquet, Fixed point strategies in data science, IEEE T. Signal Proces. 69(2021), 3878–3905.

    Article  MathSciNet  Google Scholar 

  11. K. Deimling, Zeros of accretive operators, Manuscripta Math. 13(1974), 365–374.

    Article  MathSciNet  MATH  Google Scholar 

  12. Q.L. Dong, Y.J. Cho, Th.M. Rassias, General inertial Mann algorithms and their convergence analysis for nonexpansive mappings, pp. 175–191, Applications of Nonlinear Analysis, Edited by by Th.M. Rassias, Springer, 2018.

    Google Scholar 

  13. Q.L. Dong, S. He, A viscosity projection method for class T mappings, An. Sti. U. Ovid. Co-Mat. 21(2)(2013), 95–109.

    MathSciNet  MATH  Google Scholar 

  14. Q.L. Dong, S. He, Y.J. Cho, A new hybrid algorithm and its numerical realization for two nonexpansive mappings, Fixed Point Theory Appl. 2015(2015), 150.

    Article  MathSciNet  MATH  Google Scholar 

  15. Q.L. Dong, S. He, X. Liu, Rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval, J. Inequal. Appl. 2013(2013), 269.

    Article  MATH  Google Scholar 

  16. Q.L. Dong, S. He, F. Su, Strong convergence theorems by shrinking projection methods for class Tmappings, Fixed Point Theory Appl. 681214(2011) 7 pp.

    Google Scholar 

  17. Q.L. Dong, J. Huang, X.H. Li, Y.J. Cho, Th.M. Rassias, MiKM: Multi–step inertial Krasnosel’skiı̆–Mann algorithm and its applications, J. Global Optim. 73(2019) 801–824.

    Article  MathSciNet  MATH  Google Scholar 

  18. Q.L. Dong, X.H. Li, Y.J. Cho, Th.M. Rassias, Multi-step inertial Krasnosel’skiı̆–Mann iteration with new inertial parameters arrays, J. Fixed Point Theory Appl. 23(2021), 44.

    Article  MATH  Google Scholar 

  19. Q.L. Dong, X.H. Li, S. He, Outer perturbations of a projection method and two approximation methods for the split equality problem, Optimization 67(2018), 1429–1446.

    Article  MathSciNet  MATH  Google Scholar 

  20. Q.L. Dong, Y.Y. Lu, A new hybrid algorithm for a nonexpansive mapping, Fixed Point Theory Appl. 2015(2015), 37.

    Article  MathSciNet  MATH  Google Scholar 

  21. Q.L. Dong, J. Zhao, S. He, Bounded perturbation resilience of the viscosity algorithm, J. Inequal. Appl. 2016(2016), Art. ID 299.

    Google Scholar 

  22. M. Edelstein, A remark on a theorem of M.A. Krasnosel’skiı̆, Amer. Math. Monthly 73(1966), 509–501.

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Fan, A minimax inequality and applications, Inequalities III, Proc. Third Sympos., Univ. California, Los Angeles, 1969.

    Google Scholar 

  24. A. Genel, J. Lindenstrauss, An example concerning fixed points, Israel J. Math. 22(1975), 81–86.

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73(1967), 957–961.

    Article  MathSciNet  MATH  Google Scholar 

  26. G.J. Hartman, G. Stampacchia, On some nonlinear elliptic differential equations, Acta Math. 112 (1966), 271–310.

    Article  MATH  Google Scholar 

  27. Y. Haugazeau, Sur les Inéquations Variationnelles et la Minimisation de Fonctionnelles Convexes, Thèse, Université in Paris, Paris, France. (1968).

    Google Scholar 

  28. S. He, T. Wu, Y.J. Cho, Th.M. Rassias, Optimal parameter selections for a general Halpern iteration, Numer. Algor. 82(2019), 1171–1188.

    Article  MathSciNet  MATH  Google Scholar 

  29. S. He, C. Yang, Boundary point algorithms for minimum norm fixed points of nonexpansive mappings, Fixed Point Theory Appl. 2014(2014), 56.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. He, Z. Yang, A modified successive projection method for Mann’s iteration process, J. Fixed Point Theory Appl. 21(2019), 9.

    Article  MathSciNet  MATH  Google Scholar 

  31. S. He, C. Yang, P. Duan, Realization of the hybrid method for Mann iterations, Appl. Math. Comput. 217(2010), 4239–4247.

    MathSciNet  MATH  Google Scholar 

  32. T.L. Hicks, J.D. Kubicek, On the Mann iteration process in a Hilbert spaces, J. Math. Anal. Appl. 59(1977), 498–504.

    Article  MathSciNet  MATH  Google Scholar 

  33. D.V. Hieu, P.K. Anh, L.D. Muu, Modified hybrid projection methods for finding common solutions to variational inequality problems, Comput. Optim. Appl. 66(2017), 75–96.

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Hundal, An alternating projection that does not converge in norm, Nonlinear Anal. Theory 57(2004), 35–61.

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Ishikawa, Fixed points and iterations of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59(1976), 65–71.

    Article  MathSciNet  MATH  Google Scholar 

  36. M.A. Krasnosel’skiı̆, Two remarks on the method of successive approximations (in Russian,) Usp. Mat. Nauk. 10(1955), 123–127.

    Google Scholar 

  37. G. Lewicki, G. Marino, On some algorithms in Banach spaces for finding fixed points of nonlinear mappings, Nonlinear Anal. 71(2009), 3964–3972.

    Article  MathSciNet  MATH  Google Scholar 

  38. F. Lieder, On the convergence rate of the Halpern-iteration, Optim. Lett. 15(2021), 405–418.

    Article  MathSciNet  MATH  Google Scholar 

  39. P.E. Mainge, The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces, Comput. Math. Appl. 59(2010), 74–79.

    Article  MathSciNet  MATH  Google Scholar 

  40. P.E. Mainge, Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math. 219(2008), 223–236.

    Article  MathSciNet  MATH  Google Scholar 

  41. P.E. Mainge, S. Maruster, Convergence in norm of modified Krasnosel’skiı̆–Mann iterations for fixed points of demicontractive mappings, Appl. Math. Comput. 217(2011), 9864–9874.

    MathSciNet  MATH  Google Scholar 

  42. W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4(1953), 506–510.

    Article  MathSciNet  MATH  Google Scholar 

  43. G. Marino, H.K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 329(2007), 336–346.

    Article  MathSciNet  MATH  Google Scholar 

  44. G. Marino, H.K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318(2006), 43–52.

    Article  MathSciNet  MATH  Google Scholar 

  45. C. Martinez-Yanes, H.K. Xu, Strong convergence of the CQmethod for fixed point iteration processes, J. Nonlinear Anal. 26(2006), 2400–2411.

    Article  MATH  Google Scholar 

  46. S. Maruster, The solution by iteration of nonlinear equations in Hilbert spaces, Proc. Amer. Math. Soc. 63(1977), 69–73.

    Article  MathSciNet  MATH  Google Scholar 

  47. A. McLennan, Advanced Fixed Point Theory for Economics, Singapore, Springer, 2018.

    Book  MATH  Google Scholar 

  48. A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241(2000), 46–55.

    Article  MathSciNet  MATH  Google Scholar 

  49. K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279(2003), 372–379.

    Article  MathSciNet  MATH  Google Scholar 

  50. JJ. Nieto, H.K. Xu, Solvability of nonlinear Volterra and Fredholm equations in weighted spaces, Nonlinear Anal. 24(1995), 1289–1297.

    Article  MathSciNet  MATH  Google Scholar 

  51. E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pures Appl. 6(1890), 145–210.

    MATH  Google Scholar 

  52. H. Schäefer, Über die Methode sukzessiver Approximationen, Jahresbericht der Deutschen Mathematiker-Vereinigung 59(1957), 131–140.

    MathSciNet  MATH  Google Scholar 

  53. T. Shi, S. He, Modified hybrid algorithms for Lipschitz quasi-pseudo-contractive mappings in Hilbert spaces, Comput. Math. Appl. 59(2010), 2940–2950.

    Article  MathSciNet  MATH  Google Scholar 

  54. Y. Su, X. Qin, Monotone CQiteration processes for nonexpansive semigroups and maximal monotone operators, Nonlinear Anal. 68(2008), 3657–3664.

    Article  MathSciNet  MATH  Google Scholar 

  55. W. Takahashi, Y. Takeuchi, R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341(2008), 276–286.

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Tian, A general iterative algorithm for nonexpansive mappings in Hilbert spaces, Nonlinear Anal. Theory 73(2010), 689–694.

    Article  MathSciNet  MATH  Google Scholar 

  57. F. Wang, H.K. Xu, Approximating curve and strong convergence of the CQ algorithm for the split feasibility problem, J. Inequal. Appl. 2010(2010), Art. ID 102085.

    Google Scholar 

  58. H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298(2004), 279–291.

    Article  MathSciNet  MATH  Google Scholar 

  59. H.K. Xu, Another control condition in an iterative method for nonexpansive mapping, Bull. Austral. Math. Soc. 65(2002), 109–113.

    Article  MathSciNet  MATH  Google Scholar 

  60. Y. Yao, H. Zhou, Y.C. Liou, Strong convergence of a modified Krasnoselski–Mann iterative algorithm for non-expansive mappings, J. Appl. Math. Comput. 29(2009), 383–389.

    Article  MathSciNet  MATH  Google Scholar 

  61. J. Zhao, S. He, A hybrid iteration scheme for equilibrium problems and common fixed point problems of generalized quasi-φ-asymptotically nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. 2012(2012), 33.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dong, QL., Cho, Y.J., He, S., Pardalos, P.M., Rassias, T.M. (2022). Introduction. In: The Krasnosel'skiĭ-Mann Iterative Method. SpringerBriefs in Optimization. Springer, Cham. https://doi.org/10.1007/978-3-030-91654-1_1

Download citation

Publish with us

Policies and ethics