Skip to main content

Diagnostics of the Rotor-Stator Contact by Spectral Analysis of the Vibration State for Rotor Machines

  • Conference paper
  • First Online:
Advanced Manufacturing Processes III (InterPartner 2021)

Abstract

The spectral composition of the rotor’s vibration characteristic under its contact conditions with the stator was investigated in the article. Based on the clipped sinewave model, it was determined that the signal spectrum contains odd components in addition to the main harmonic. Analytical dependences of amplitudes for spectral composition’s components of a signal on the dimensionless radial gap between a rotor and a stator were established. As a result, the main and third harmonics have the highest amplitudes. An analytical dependence determining the dimensionless radial gap by the ratio of the spectral components’ amplitudes was obtained. Moreover, theoretically substantiated that the representation of the response for the system “rotor-stator” as a superposition of only the main and third harmonics allows modeling the system’s response caused by the influence of contact interaction. This approximation has a maximum relative error of 5% for the dimensionless radial gap in a range of 0.56–1.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Y., et al.: Numerical and experimental investigation on thermohydrodynamic performance of turbocharger rotor-bearing system. Appl. Therm. Eng. 121, 27–38 (2017). https://doi.org/10.1016/j.applthermaleng.2017.04.041

    Article  Google Scholar 

  2. Heshmat, H., Walton, J. F., II.: On the integration of hot foil bearings into gas turbine engines: theoretical treatment. In: Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 7B: Structures and Dynamics. Phoenix, Arizona, USA, V07BT34A036 (2019). https://doi.org/10.1115/GT2019-91710

  3. Nyssen, F., Batailly, A.: Sensitivity analysis of rotor/stator interactions accounting for wear and thermal effects within low-and high-pressure compressor stages. Coatings 10(1), 74 (2020). https://doi.org/10.3390/coatings10010074

    Article  Google Scholar 

  4. Wu, K., Xing, Y., Chu, N., Wu, P., Cao, L., Wu, D.: A carrier wave extraction method for cavitation characterization based on time synchronous average and time-frequency analysis. J. Sound Vibration 489, 115682 (2020). https://doi.org/10.1016/j.jsv.2020.115682

  5. Jayaswal, P., Wadhwani, A.K., Mulchandani, K.B.: Machine fault signature analysis. International J. Rotating Mach. 2008, 583982 (2008). https://doi.org/10.1155/2008/583982

  6. Gadyaka, V., Leikykh, D., Simonovskiy, V.: Phenomena of stability loss of rotor rotation at tilting pad bearings. Procedia Eng. 39, 244–253 (2012). https://doi.org/10.1016/j.proeng.2012.07.031

    Article  Google Scholar 

  7. Bykov, V.G., Tovstik, P.E.: Synchronous whirling and self-oscillations of a statically unbalanced rotor in limited excitation. Mech. Solids 53, 60–70 (2018). https://doi.org/10.3103/S0025654418050047

    Article  MATH  Google Scholar 

  8. Rusov, V.A.: Diagnostics of Defects in Rotating Equipment by Vibration Signals. Perm, Vibrocenter (2012)

    Google Scholar 

  9. Butymova, L.N., Modorskii, V.Y.: Development and application of a unified algorithm for solving the interdisciplinary problem of modeling aeroelastic processes in the labyrinth seal of centrifugal compressors. Paper presented at the AIP Conference Proceedings, 1893, 030067 (2017). https://doi.org/10.1063/1.5007525

  10. Gritsenko, V.G., Lazarenko, A.D., Lyubchenko, K.Y., Martsinkovskii, V.S., Tarel’nik, V.B.: Increasing the Life of the slider bearings of the Turbines of high-speed compressors. Chem. Pet. Eng. 55(9–10), 821–828 (2020). https://doi.org/10.1007/s10556-020-00699-7

    Article  Google Scholar 

  11. Kondratiuk, E., Torba, Y., Grebennikov, M., Yemelianova, L., Khavkina, O.: The control of GTE brush seal flow characteristics. In: Tonkonogyi, V., et al. (eds.) InterPartner 2019. LNME, pp. 510–519. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40724-7_52

    Chapter  Google Scholar 

  12. Mammadov, V., Tacon, K., Davies, B., Ahmedov, N.S.: Coatings help to improve centrifugal pump reliability. In: Fluid Machinery Congress, pp. 67–77 (2014), https://doi.org/10.1016/B978-0-0810-0109-7.50007-8

  13. Davydov, S.Y., Kosarev, N.P., Valiev, N.G., Simisinov, D.I., Kozhushko, G.G., Panov, D.A.: Problems with the use of pneumatic screw pumps to transport bulk cargo. Refract. Ind. Ceram 54(2), 100–105 (2013). https://doi.org/10.1007/s11148-013-9557-z

    Article  Google Scholar 

  14. Niu, G., Duan, F., Liu, Z., Jiang, J., Fu, X.: A high-accuracy non-contact online measurement method of the rotor-stator axial gap based on the microwave heterodyne structure. Mech. Syst. Signal Process. 150, 107320 (2021). https://doi.org/10.1016/j.ymssp.2020.107320

  15. Gavrilin, A.N., Moyzes, B.B.: Diagnostics of Technological Systems: Part 2. Tomsk Polytechnic Institute (2014)

    Google Scholar 

  16. Vedreño-Santos, F., Riera-Guasp, M., Henao, H., Pineda-Sánchez, M., Puche-Panadero, R.: Diagnosis of rotor and stator asymmetries in wound-rotor induction machines under nonstationary operation through the instantaneous frequency. IEEE Trans. Industrial Electron. 61(9), 4947–4959 (2014). https://doi.org/10.1109/TIE.2013.2288192.

  17. Zaccardo, V.M., Buckner, G.D.: Active magnetic dampers for controlling lateral rotor vibration in high-speed rotating shafts. Mech. Syst. Signal Process. 152, 107445 (2021). https://doi.org/10.1016/j.ymssp.2020.107445

  18. Yadav, A.K., Prajapati, Y.K.: PAPR minimization of clipped OFDM signals using tangent rooting companding technique. Wireless Pers. Commun. 105(4), 1435–1447 (2019). https://doi.org/10.1007/s11277-019-06151-1

    Article  Google Scholar 

  19. Esqueda, F., Bilbao, S., Välimäki, V.: Aliasing reduction in clipped signals. IEEE Trans. Signal Process. 64(20), 5255–5267 (2016). https://doi.org/10.1109/TSP.2016.2585091

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, T., Jin, S., Wen, C.-K., You, X.: OFDM-clipped signal recovery and learning using gaussian mixture GTurbo approach. IEEE Wirel. Commun. Lett. 8(6), 1533–1536 (2019). https://doi.org/10.1109/LWC.2019.2926260

    Article  Google Scholar 

  21. Altaf, S., Mehmood, M.S., Soomro, M.W.: Advancement of fault diagnosis and detection process in the industrial machine environment. J. Eng. Sci. 6(2), D1–D8 (2019). https://doi.org/10.21272/jes.2019.6(2).d1

    Article  Google Scholar 

  22. Kolomvakis, N., Eriksson, T., Coldrey, M., Viberg, M.: Reconstruction of clipped signals in quantized uplink massive MIMO systems. IEEE Trans. Commun. 68(5), 2891–2905 (2020). https://doi.org/10.1109/TCOMM.2020.2971975

    Article  Google Scholar 

  23. Dyer, S.A., Dyer, J.S.: Distortion: total harmonic distortion in an asymmetrically clipped sinewave. IEEE Instrum. Meas. Mag. 14(2), 48–51 (2011). https://doi.org/10.1109/MIM.2011.5735256

    Article  Google Scholar 

  24. Zhou, Q., Wu, C., Fan, Q.: Gear fault diagnosis under the run-up condition using fractional fourier transform and hilbert transform. In: Tan, J. (ed.) ICMD 2019. MMS, vol. 77, pp. 918–943. Springer, Singapore (2020). https://doi.org/10.1007/978-981-32-9941-2_77

    Chapter  Google Scholar 

  25. Jalayer, M., Orsenigo, C., Vercellis, C.: Fault detection and diagnosis for rotating machinery: a model based on convolutional LSTM, fast fourier and continuous wavelet transforms. Comput. Ind. 125, 103378 (2021). https://doi.org/10.1016/j.compind.2020.103378

  26. Xu, L., Chatterton, S., Pennacchi, P., Liu, C.: A tacholess order tracking method based on inverse short time fourier transform and singular value decomposition for bearing fault diagnosis. Sensors (Switzerland) 20(23), 1–20 (2020). https://doi.org/10.3390/s20236924

    Article  Google Scholar 

  27. Monkova, K., et al.: Condition monitoring of Kaplan turbine bearings using vibro-diagnostics. Int. J. Mech. Eng. Robot. Res. 9(8), 1182–1188 (2020). https://doi.org/10.18178/ijmerr.9.8.1182-1188

    Article  Google Scholar 

  28. Pavlenko, I., Ivanov, V., Kuric, I., Gusak, O., Liaposhchenko, O.: Ensuring vibration reliability of turbopump units using artificial neural networks. In: Trojanowska, J., Ciszak, O., Machado, J.M., Pavlenko, I. (eds.) MANUFACTURING 2019. LNME, pp. 165–175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18715-6_14

    Chapter  Google Scholar 

  29. Pavlenko, I., Trojanowska, J., Ivanov, V., Liaposhchenko, O.: Parameter identification of hydro-mechanical processes using artificial intelligence systems. Int. J. Mechatronics Appl. Mech. 2019(5), 19–26 (2019)

    Google Scholar 

  30. Sokolov, V., Krol, O., Romanchenko, O., Kharlamov, Y., Baturin, Y.: Mathematical model for dynamic characteristics of automatic electrohydraulic drive for technological equipment. J. Phys. Conf. Series 1553(1), 012013 (2020). https://doi.org/10.1088/1742-6596/1553/1/012013

  31. Sokolov, V., Porkuian, O., Krol, O., Baturin, Y.: Design calculation of electrohydraulic servo drive for technological equipment. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds.) DSMIE 2020. LNME, pp. 75–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50794-7_8

    Chapter  Google Scholar 

  32. Tarelnyk, V., Konoplianchenko, I., Gaponova, O., Sarzhanov, B.: Assessment of hydroabrasive wear resistance of construction materials with functional coatings, which are formed by resource-saving and environmentally friendly technologies. Key Eng. Mater. 864, 265–277 (2020). doi: https://doi.org/10.4028/www.scientific.net/KEM.864.265

  33. Hovorun, T.P., et al.: Physical-mechanical properties and structural-phase state of nanostructured wear-resistant coatings based on nitrides of refractory metals Ti and Zr. Funct. Mater. 26(3), 548–555 (2019). https://doi.org/10.15407/fm26.03.548

    Article  Google Scholar 

  34. Gaydamaka, A., et al.: Devising an engineering procedure for calculating the ductility of a roller bearing under a no-central radial load. Eastern-European J. Enterprise Technol. 3(7–99), 6–10 (2019). https://doi.org/10.15587/1729-4061.2019.168145

  35. Rogovyi, A., Khovanskyy, S., Grechka, I., Pitel, J.: The wall erosion in a vortex chamber supercharger due to pumping abrasive mediums. In: Ivanov, V., et al. (eds.) DSMIE 2019. LNME, pp. 682–691. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_68

    Chapter  Google Scholar 

  36. Ponomarev, A., Ponomareva, O.: Development of the theory of discrete Fourier transform for solving problems of functional diagnostic of mechanical objects. In: 2020 International Conference on Dynamics and Vibroacoustics of Machines (DVM), Samara, pp. 1–7 (2020). https://doi.org/10.1109/DVM49764.2020.9243916.

  37. Ponomareva, O., Ponomarev, A.: Determining the envelope of real finite discrete signal via parametric discrete Fourier transform. In: 2020 International Conference on Dynamics and Vibroacoustics of Machines (DVM), Samara, pp. 1–6 (2020). https://doi.org/10.1109/DVM49764.2020.9243923.

  38. Yoon, Y., Brahma, A.: Air–fuel ratio imbalance diagnostic of spark-ignited engines with modulated sliding discrete Fourier transform. J. Dyn. Syst. Measurement Control 142(8), 081003 (2020). https://doi.org/10.1115/1.4046550

  39. Kumar, G.K., Parimalasundar, E., Elangovan, D., Sanjeevikumar, P., Lannuzzo, F., Holm-Nielsen, J.B.: Fault investigation in cascaded H-bridge multilevel inverter through fast fourier transform and artificial neural network approach. Energies 13(6), 1299 (2020). https://doi.org/10.3390/en13061299

  40. Liaposhchenko, O., Pavlenko, I., Monkova, K., Demianenko, М, Starynskyi, O.: Numerical simulation of aeroelastic interaction between gas-liquid flow and deformable elements in modular separation devices. In: Ivanov, V., et al. (eds.) DSMIE 2019. LNME, pp. 765–774. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_76

    Chapter  Google Scholar 

  41. Khovanskyi, S., Pavlenko, I., Pitel, J., Mizakova, J., Ochowiak, M., Grechka, I.: Solving the coupled aerodynamic and thermal problem for modeling the air distribution devices with perforated plates. Energies 12(18), 3488 (2019). https://doi.org/10.3390/en12183488

  42. Altaf, S., Mehmood, M.S., Imran, M.: Implementation of efficient artificial neural network data fusion classification technique for induction motor fault detection. J. Eng. Sci. 5(2), E16–E21 (2018). https://doi.org/10.21272/jes.2018.5(2).e4

    Article  Google Scholar 

  43. Kotliar, A., Gasanov, M., Basova, Y., Panamariova, O., Gubskyi, S.: Ensuring the reliability and performance criterias of crankshafts. Diagnostyka 20(1), 23–32 (2019). https://doi.org/10.29354/diag/99605

    Article  Google Scholar 

  44. Dobrotvorskiy, S., Basova, Y., Ivanova, M., Kotliar, A., Dobrovolska, L.: Forecasting of the productivity of parts machining by high-speed milling with the method of half-overlap. Diagnostyka 19(3), 37–42 (2018). https://doi.org/10.29354/diag/93136

    Article  Google Scholar 

  45. Pylypaka, S., Zaharova, T., Zalevska, O., Kozlov, D., Podliniaieva, O.: Determination of the effort for flexible strip pushing on the surface of a horizontal cylinder. In: Tonkonogyi, V., et al. (eds.) InterPartner 2019. LNME, pp. 582–590. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40724-7_59

    Chapter  Google Scholar 

  46. Pylypaka, S., Volina, T., Mukvich, M., Efremova, G., Kozlova, O.: Gravitational relief with spiral gutters, formed by the screw movement of the sinusoid. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds.) DSMIE 2020. LNME, pp. 63–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50491-5_7

    Chapter  Google Scholar 

  47. Kushnirov, P., Zhyhylii, D., Ivchenko, O., Yevtukhov, A., Dynnyk, O.: Investigation of the dynamic state of adjustable milling heads. In: Ivanov, V., et al. (eds.) DSMIE 2019. LNME, pp. 169–179. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_17

    Chapter  Google Scholar 

  48. Kolesnyk, V., et al.: Experimental study of drilling temperature, geometrical errors and thermal expansion of drill on hole accuracy when drilling cfrp/ti alloy stacks. Materials 13(14), 3232 (2020). https://doi.org/10.3390/ma13143232

  49. Liu, Y., Fu, Y., Zhuan, Y., Zhong, K., Guan, B.: High dynamic range real-time 3D measurement based on Fourier transform profilometry. Optics Laser Technol. 138, 106833 (2021). https://doi.org/10.1016/j.optlastec.2020.106833

  50. Tarasevych, Y., Savchenko, I., Sovenko, N.: Estimation of random flow-rate characteristics of the automatic balancing device influence on centrifugal pump efficiency. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds.) DSMIE 2020. LNME, pp. 105–115. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50491-5_11

    Chapter  Google Scholar 

  51. Lawlor, G.R.: L’Hôpital’s rule for multivariable functions. Am. Math. Monthly 127(8), 717–725 (2020). https://doi.org/10.1080/00029890.2020.1793635

    Article  MATH  Google Scholar 

  52. Li, Q.-F., Huang, S.-R., Huang, H.-J.: Noise and torque characteristics of permanent magnet synchronous motor with unequal pole arc structure. J. Zhejiang Univ. (Eng. Sci.) 52(11), 2210–2217 (2018). https://doi.org/10.3785/j.issn.1008-973X.2018.11.020

    Article  Google Scholar 

  53. Martsynkovskyy, V.A., Pozovnyi, O.O.: The impact of the multi-gap seals on rotor dynamics. J. Eng. Sci. 4(1), C7–C12 (2017). https://doi.org/10.21272/jes.2017.4(1).c2

    Article  Google Scholar 

  54. Pozovnyi, O., Zahorulko, A., Krmela, J., Artyukhov, A., Krmelová, V.: Calculation of the characteristics of the multi-gap seal of the centrifugal pump, in dependence on the chambers’ sizes. Manuf. Technol. 20(3), 361–367 (2020). https://doi.org/10.21062/mft.2020.048

    Article  Google Scholar 

  55. Wang, H., Wu, Y., Wang, Y., Deng, S.: Evolution of the flow instabilities in an axial compressor rotor with large tip clearance: an experimental and URANS study. Aerospace Sci. Technol. 96, 105557 (2020). https://doi.org/10.1016/j.ast.2019.105557

  56. Nemec, M., Jelinek, T., Uher, J., Milcak, P.: Effect of stage reaction and shaft labyrinth seal in a stage of an axial steam turbine. In: Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, vol. 9: Oil and Gas Applications; Organic Rankine Cycle Power Systems; Steam Turbine. ASME, GT2020–14741 (2020). https://doi.org/10.1115/GT2020-14741.

  57. Srivastav, O.P., Pandu, K.R., Gupta, K.: Effect of radial gap between impeller and diffuser on vibration and noise in a centrifugal pump. J. Inst. Eng. (India): Mech. Eng. Division 84(1 SEP), 36–39 (2003)

    Google Scholar 

  58. Kodnyanko, V., Shatokhin, S., Kurzakov, A., Pikalov, Y.: Theoretical analysis of compliance and dynamics quality of a lightly loaded aerostatic journal bearing with elastic orifices. Precis. Eng. 68, 72–81 (2021). https://doi.org/10.1016/j.precisioneng.2020.11.012

    Article  Google Scholar 

  59. Neuwirth, J., Antonyuk, S., Heinrich, S., Jacob, M.: CFD-DEM study and direct measurement of the granular flow in a rotor granulator. Chem. Eng. Sci. 86, 151–163 (2013). https://doi.org/10.1016/j.ces.2012.07.005

    Article  Google Scholar 

  60. Pavlenko, I., et al.: Effect of superimposed vibrations on droplet oscillation modes in prilling process. Processes 8(5), 566 (2020). https://doi.org/10.3390/PR8050566

Download references

Acknowledgments

The research has been carried out because of cooperation between Sumy State University (Ukraine) and the Technical University of Košice (Slovak Republic).

The main scientific results have been obtained within the research project “Fulfillment of tasks of the perspective plan of development of a scientific direction “Technical sciences” Sumy State University” ordered by the Ministry of Education and Science of Ukraine (State Reg. No. 0121U112684).

The results have also been partially obtained within the research project “Creation of new granular materials for nuclear fuel and catalysts in the active hydrodynamic environment” ordered by the Ministry of Education and Science of Ukraine (State Reg. No. 0120U102036).

The authors appreciate the International Association for Technological Development and Innovations for the support while conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Pavlenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pavlenko, I., Savchenko, I., Pitel, J., Ivanov, V., Ruban, A. (2022). Diagnostics of the Rotor-Stator Contact by Spectral Analysis of the Vibration State for Rotor Machines. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes III. InterPartner 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-91327-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91327-4_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91326-7

  • Online ISBN: 978-3-030-91327-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics