Skip to main content

The Nature and Functions of Vertebrate Skin Microbiota

  • Chapter
  • First Online:
Evolution, Biodiversity and a Reassessment of the Hygiene Hypothesis

Part of the book series: Progress in Inflammation Research ((PIR,volume 89))

  • 784 Accesses

Abstract

The skin is the first layer of protection from the environment, preventing pathogens from entering the body. Although the skin is often considered to be a hostile microenvironment for microbes, numerous microbes have adapted and thrived as colonizers of the skin in different animal species. Several intrinsic and extrinsic factors can contribute to the diversity and composition of the skin microbiome including skin biology, the environment, health status, and lifestyle. Despite its highly variable morphology across different animal species, the skin microbiome plays important roles that are conserved across the vertebrate phylogenetic tree. Along the evolutionary process, the microbial communities evolved with the host, building a symbiotic relationship that allowed the survival of both microbes and the host. This intricate balanced relationship between microbes inhabiting the skin and the host may easily be disrupted by damage to the skin barrier leading to microbial dysbiosis and often times development of skin lesions in the host. We are now recognizing the need to use these symbiotic microbes colonizing the skin to recover dysbiosis and improve skin health. These different aspects that can influence the cutaneous microbiome in humans and animals will be covered within this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gallo RL, Nakatsuji T. Microbial symbiosis with the innate immune defense system of the skin. J Invest Dermatol. 2011;131:1974–80. https://doi.org/10.1038/jid.2011.182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9:244–53. https://doi.org/10.1038/nrmicro2537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ángeles Esteban M. An overview of the immunological defenses in fish skin. ISRN Immunol. 2012;2012:853470. https://doi.org/10.5402/2012/853470.

    Article  Google Scholar 

  4. Grice EA, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324:1190–2. https://doi.org/10.1126/science.1171700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chu DM, et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23:314–26. https://doi.org/10.1038/nm.4272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oh J, Conlan S, Polley EC, Segre JA, Kong HH. Shifts in human skin and nares microbiota of healthy children and adults. Genome Med. 2012;4:77. https://doi.org/10.1186/gm378.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Clemente JC, et al. The microbiome of uncontacted Amerindians. Sci Adv. 2015;1:e1500183. https://doi.org/10.1126/sciadv.1500183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fyhrquist N, et al. Acinetobacter species in the skin microbiota protect against allergic sensitization and inflammation. J Allergy Clin Immunol. 2014;134:1301–1309.e1311. https://doi.org/10.1016/j.jaci.2014.07.059.

    Article  CAS  PubMed  Google Scholar 

  9. Peng M, Biswas D. Environmental influences of high-density agricultural animal operation on human forearm skin microflora. Microorganisms. 2020;8:1481. https://doi.org/10.3390/microorganisms8101481.

    Article  CAS  PubMed Central  Google Scholar 

  10. Wu Y, et al. Microbiome in healthy women between two districts with different air quality index. Front Microbiol. 2020;11:548618. https://doi.org/10.3389/fmicb.2020.548618.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tronnier H, Wiebusch M, Heinrich U. Change in skin physiological parameters in space--report on and results of the first study on man. Skin Pharmacol Physiol. 2008;21:283–92. https://doi.org/10.1159/000148045.

    Article  CAS  PubMed  Google Scholar 

  12. Voorhies AA, et al. Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome. Sci Rep. 2019;9:9911. https://doi.org/10.1038/s41598-019-46303-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Selway CA, et al. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environ Int. 2020;145:106084. https://doi.org/10.1016/j.envint.2020.106084.

    Article  PubMed  Google Scholar 

  14. Roslund MI, et al. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci Adv. 2020;6:eaba2578. https://doi.org/10.1126/sciadv.aba2578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krotman Y, Yergaliyev TM, Alexander Shani R, Avrahami Y, Szitenberg A. Dissecting the factors shaping fish skin microbiomes in a heterogeneous inland water system. Microbiome. 2020;8:9. https://doi.org/10.1186/s40168-020-0784-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sehnal L, et al. Microbiome composition and function in aquatic vertebrates: small organisms making big impacts on aquatic animal health. Front Microbiol. 2021;12:567408. https://doi.org/10.3389/fmicb.2021.567408.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chiarello M, et al. Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet. Microbiome. 2018;6:147. https://doi.org/10.1186/s40168-018-0530-4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bierlich KC, et al. Temporal and regional variability in the skin microbiome of humpback whales along the Western Antarctic Peninsula. Appl Environ Microbiol. 2018;84:e02574. https://doi.org/10.1128/AEM.02574-17.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nielsen MC, Wang N, Jiang SC. Acquisition of antibiotic resistance genes on human skin after swimming in the ocean. Environ Res. 2021;197:110978. https://doi.org/10.1016/j.envres.2021.110978.

    Article  CAS  PubMed  Google Scholar 

  20. Torres S, et al. Diverse bacterial communities exist on canine skin and are impacted by cohabitation and time. PeerJ. 2017;5:e3075. https://doi.org/10.7717/peerj.3075.

    Article  PubMed  PubMed Central  Google Scholar 

  21. O’Shaughnessy-Hunter LC, Yu A, Rousseau JD, Foster RA, Weese JS. Longitudinal study of the cutaneous microbiota of healthy horses. Vet Dermatol. 2021;32:467. https://doi.org/10.1111/vde.12983.

    Article  PubMed  Google Scholar 

  22. Xu H, Li H. Acne, the skin microbiome, and antibiotic treatment. Am J Clin Dermatol. 2019;20:335–44. https://doi.org/10.1007/s40257-018-00417-3.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oh J, et al. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res. 2013;23:2103–14. https://doi.org/10.1101/gr.159467.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kong HH, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850–9. https://doi.org/10.1101/gr.131029.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Song SJ, et al. Cohabiting family members share microbiota with one another and with their dogs. elife. 2013;2:e00458. https://doi.org/10.7554/eLife.00458.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ross AA, Muller KM, Weese JS, Neufeld JD. Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class Mammalia. Proc Natl Acad Sci U S A. 2018;115:E5786–95. https://doi.org/10.1073/pnas.1801302115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Apostolopoulos N, et al. Description and comparison of the skin and ear canal microbiota of non-allergic and allergic German shepherd dogs using next generation sequencing. PLoS One. 2021;16:e0250695. https://doi.org/10.1371/journal.pone.0250695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bouslimani A, et al. The impact of skin care products on skin chemistry and microbiome dynamics. BMC Biol. 2019;17:47. https://doi.org/10.1186/s12915-019-0660-6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bouslimani A, et al. Molecular cartography of the human skin surface in 3D. Proc Natl Acad Sci U S A. 2015;112:E2120–9. https://doi.org/10.1073/pnas.1424409112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mukherjee PK, et al. Effect of alcohol-based hand rub on hand microbiome and hand skin health in hospitalized adult stem cell transplant patients: a pilot study. J Am Acad Dermatol. 2018;78:1218–1221.e1215. https://doi.org/10.1016/j.jaad.2017.11.046.

    Article  PubMed  Google Scholar 

  31. Rinaldi F, Giuliani G, Pinto D. Importance of preserving the resident microflora of the skin to improve immunological response. J Investig Med. 2021;69:1386. https://doi.org/10.1136/jim-2021-001823.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Callewaert C, Hutapea P, Van de Wiele T, Boon N. Deodorants and antiperspirants affect the axillary bacterial community. Arch Dermatol Res. 2014;306:701–10. https://doi.org/10.1007/s00403-014-1487-1.

    Article  CAS  PubMed  Google Scholar 

  33. Callewaert C, Lambert J, Van de Wiele T. Towards a bacterial treatment for armpit malodour. Exp Dermatol. 2017;26:388–91. https://doi.org/10.1111/exd.13259.

    Article  PubMed  Google Scholar 

  34. Kim MJ, et al. Effect of a bioconverted product of Lotus corniculatus seed on the axillary microbiome and body odor. Sci Rep. 2021;11:10138. https://doi.org/10.1038/s41598-021-89606-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Callewaert C, et al. Microbial odor profile of polyester and cotton clothes after a fitness session. Appl Environ Microbiol. 2014;80:6611–9. https://doi.org/10.1128/AEM.01422-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Broadhead R, Craeye L, Callewaert C. The future of functional clothing for an improved skin and textile microbiome relationship. Microorganisms. 2021;9:1192. https://doi.org/10.3390/microorganisms9061192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meason-Smith C, et al. Novel association of Psychrobacter and Pseudomonas with malodour in bloodhound dogs, and the effects of a topical product composed of essential oils and plant-derived essential fatty acids in a randomized, blinded, placebo-controlled study. Vet Dermatol. 2018;29:465.e158. https://doi.org/10.1111/vde.12689.

    Article  PubMed  Google Scholar 

  38. Oh J, et al. Temporal stability of the human skin microbiome. Cell. 2016;165:854–66. https://doi.org/10.1016/j.cell.2016.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hillebrand GG, et al. Temporal variation of the facial skin microbiome: a 2-year longitudinal study in healthy adults. Plast Reconstr Surg. 2021;147:50S–61S. https://doi.org/10.1097/PRS.0000000000007621.

    Article  CAS  PubMed  Google Scholar 

  40. Costello EK, et al. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–7. https://doi.org/10.1126/science.1177486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grice EA, et al. A diversity profile of the human skin microbiota. Genome Res. 2008;18:1043–50. https://doi.org/10.1101/gr.075549.107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rodrigues Hoffmann A. The cutaneous ecosystem: the roles of the skin microbiome in health and its association with inflammatory skin conditions in humans and animals. Vet Dermatol. 2017;28:60–e15. https://doi.org/10.1111/vde.12408.

    Article  PubMed  Google Scholar 

  43. Older CE, et al. The feline skin microbiota: the bacteria inhabiting the skin of healthy and allergic cats. PLoS One. 2017;12:e0178555. https://doi.org/10.1371/journal.pone.0178555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Porcellato D, Meisal R, Bombelli A, Narvhus JA. A core microbiota dominates a rich microbial diversity in the bovine udder and may indicate presence of dysbiosis. Sci Rep. 2020;10:21608. https://doi.org/10.1038/s41598-020-77054-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zinicola M, et al. Altered microbiomes in bovine digital dermatitis lesions, and the gut as a pathogen reservoir. PLoS One. 2015;10:e0120504. https://doi.org/10.1371/journal.pone.0120504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Engel K, et al. Family matters: skin microbiome reflects the social group and spatial proximity in wild zebra finches. BMC Ecol. 2020;20:58. https://doi.org/10.1186/s12898-020-00326-2.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kueneman JG, et al. The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol. 2014;23:1238–50. https://doi.org/10.1111/mec.12510.

    Article  PubMed  Google Scholar 

  48. Bataille A, Lee-Cruz L, Tripathi B, Kim H, Waldman B. Microbiome variation across amphibian skin regions: implications for chytridiomycosis mitigation efforts. Microb Ecol. 2016;71:221–32. https://doi.org/10.1007/s00248-015-0653-0.

    Article  PubMed  Google Scholar 

  49. Apprill A, Mooney TA, Lyman E, Stimpert AK, Rappe MS. Humpback whales harbour a combination of specific and variable skin bacteria. Environ Microbiol Rep. 2011;3:223–32. https://doi.org/10.1111/j.1758-2229.2010.00213.x.

    Article  CAS  PubMed  Google Scholar 

  50. Apprill A, et al. Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals? PLoS One. 2014;9:e90785. https://doi.org/10.1371/journal.pone.0090785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hooper R, et al. Host-derived population genomics data provides insights into bacterial and diatom composition of the killer whale skin. Mol Ecol. 2019;28:484–502. https://doi.org/10.1111/mec.14860.

    Article  PubMed  Google Scholar 

  52. Chiarello M, Villeger S, Bouvier C, Auguet JC, Bouvier T. Captive bottlenose dolphins and killer whales harbor a species-specific skin microbiota that varies among individuals. Sci Rep. 2017;7:15269. https://doi.org/10.1038/s41598-017-15220-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lokesh J, Kiron V. Transition from freshwater to seawater reshapes the skin-associated microbiota of Atlantic salmon. Sci Rep. 2016;6:19707. https://doi.org/10.1038/srep19707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Minniti G, et al. The skin-mucus microbial community of farmed Atlantic Salmon (Salmo salar). Front Microbiol. 2017;8:2043. https://doi.org/10.3389/fmicb.2017.02043.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Uren Webster TM, Consuegra S, Hitchings M, Garcia de Leaniz C. Interpopulation variation in the Atlantic salmon microbiome reflects environmental and genetic diversity. Appl Environ Microbiol. 2018;84:e00691. https://doi.org/10.1128/AEM.00691-18.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mohammed HH, Arias CR. Potassium permanganate elicits a shift of the external fish microbiome and increases host susceptibility to columnaris disease. Vet Res. 2015;46:82. https://doi.org/10.1186/s13567-015-0215-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chiarello M, et al. Environmental conditions and neutral processes shape the skin microbiome of European catfish (Silurus glanis) populations of Southwestern France. Environ Microbiol Rep. 2019;11:605–14. https://doi.org/10.1111/1758-2229.12774.

    Article  PubMed  Google Scholar 

  58. Gomez JA, Primm TP. A slimy business: the future of fish skin microbiome studies. Microb Ecol. 2021;82:275. https://doi.org/10.1007/s00248-020-01648-w.

    Article  PubMed  Google Scholar 

  59. Grosser S, et al. Fur seal microbiota are shaped by the social and physical environment, show mother-offspring similarities and are associated with host genetic quality. Mol Ecol. 2019;28:2406–22. https://doi.org/10.1111/mec.15070.

    Article  CAS  PubMed  Google Scholar 

  60. Apprill A, et al. Marine mammal skin microbiotas are influenced by host phylogeny. R Soc Open Sci. 2020;7:192046. https://doi.org/10.1098/rsos.192046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xia X, et al. Staphylococcal LTA-Induced miR-143 Inhibits Propionibacterium acnes-Mediated Inflammatory Response in Skin. J Invest Dermatol. 2016;136:621–30. https://doi.org/10.1016/j.jid.2015.12.024.

    Article  CAS  PubMed  Google Scholar 

  62. Stacy A, Belkaid Y. Microbial guardians of skin health. Science. 2019;363:227–8. https://doi.org/10.1126/science.aat4326.

    Article  CAS  PubMed  Google Scholar 

  63. Swaney MH, Kalan LR. Living in your skin: microbes, molecules, and mechanisms. Infect Immun. 2021;89:e00695. https://doi.org/10.1128/IAI.00695-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Baker BS. The role of microorganisms in atopic dermatitis. Clin Exp Immunol. 2006;144:1–9. https://doi.org/10.1111/j.1365-2249.2005.02980.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lin YT, et al. Skin-homing CD4+ Foxp3+ T cells exert Th2-like function after staphylococcal superantigen stimulation in atopic dermatitis patients. Clin Exp Allergy. 2011;41:516–25. https://doi.org/10.1111/j.1365-2222.2010.03681.x.

    Article  CAS  PubMed  Google Scholar 

  66. Nakatsuji T, et al. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. J Invest Dermatol. 2016;136:2192–200. https://doi.org/10.1016/j.jid.2016.05.127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30:492–506. https://doi.org/10.1038/s41422-020-0332-7.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Scharschmidt TC, et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity. 2015;43:1011–21. https://doi.org/10.1016/j.immuni.2015.10.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Scharschmidt TC, et al. Commensal microbes and hair follicle morphogenesis coordinately drive treg migration into neonatal skin. Cell Host Microbe. 2017;21:467–477.e465. https://doi.org/10.1016/j.chom.2017.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Leech JM, et al. Toxin-triggered interleukin-1 receptor signaling enables early-life discrimination of pathogenic versus commensal skin bacteria. Cell Host Microbe. 2019;26:795–809.e795. https://doi.org/10.1016/j.chom.2019.10.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ege MJ, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011;364:701–9. https://doi.org/10.1056/NEJMoa1007302.

    Article  CAS  PubMed  Google Scholar 

  72. Sanford JA, Gallo RL. Functions of the skin microbiota in health and disease. Semin Immunol. 2013;25:370–7. https://doi.org/10.1016/j.smim.2013.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Biedermann T, Skabytska Y, Kaesler S, Volz T. Regulation of T cell immunity in atopic dermatitis by microbes: the yin and yang of cutaneous inflammation. Front Immunol. 2015;6:353. https://doi.org/10.3389/fimmu.2015.00353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cogen AL, et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol. 2010;130:192–200. https://doi.org/10.1038/jid.2009.243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cogen AL, et al. Staphylococcus epidermidis antimicrobial delta-toxin (phenol-soluble modulin-gamma) cooperates with host antimicrobial peptides to kill group A Streptococcus. PLoS One. 2010;5:e8557. https://doi.org/10.1371/journal.pone.0008557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nakatsuji T, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9:eaah4680. https://doi.org/10.1126/scitranslmed.aah4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity. 2017;46:562–76. https://doi.org/10.1016/j.immuni.2017.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Naik S, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature. 2015;520:104–8. https://doi.org/10.1038/nature14052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zepeda Mendoza ML, et al. Protective role of the vulture facial skin and gut microbiomes aid adaptation to scavenging. Acta Vet Scand. 2018;60:61. https://doi.org/10.1186/s13028-018-0415-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pawlowski D, et al. Identification of hylemonella gracilis as an antagonist of Yersinia pestis persistence. J Bioterror Biodefense. 2011;S3:004. https://doi.org/10.4172/2157-2526.S3-004.

    Article  Google Scholar 

  81. Bredholt S, Nesbakken T, Holck A. Industrial application of an antilisterial strain of Lactobacillus sakei as a protective culture and its effect on the sensory acceptability of cooked, sliced, vacuum-packaged meats. Int J Food Microbiol. 2001;66:191–6. https://doi.org/10.1016/s0168-1605(00)00519-5.

    Article  CAS  PubMed  Google Scholar 

  82. Bomar L, Brugger SD, Yost BH, Davies SS, Lemon KP. Corynebacterium accolens releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols. MBio. 2016;7:e01725–15. https://doi.org/10.1128/mBio.01725-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen YE, Fischbach MA, Belkaid Y. Skin microbiota-host interactions. Nature. 2018;553:427–36. https://doi.org/10.1038/nature25177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jani AJ, et al. The amphibian microbiome exhibits poor resilience following pathogen-induced disturbance. ISME J. 2021;15:1628–40. https://doi.org/10.1038/s41396-020-00875-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brucker RM, et al. Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus. J Chem Ecol. 2008;34:1422–9. https://doi.org/10.1007/s10886-008-9555-7.

    Article  CAS  PubMed  Google Scholar 

  86. Hoyt JR, et al. Bacteria isolated from bats inhibit the growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome. PLoS One. 2015;10:e0121329. https://doi.org/10.1371/journal.pone.0121329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu CH, et al. Study of the antifungal activity of Acinetobacter baumannii LCH001 in vitro and identification of its antifungal components. Appl Microbiol Biotechnol. 2007;76:459–66. https://doi.org/10.1007/s00253-007-1010-0.

    Article  CAS  PubMed  Google Scholar 

  88. Lemieux-Labonte V, Dorville NAS, Willis CKR, Lapointe FJ. Antifungal potential of the skin microbiota of hibernating big brown bats (Eptesicus fuscus) infected with the causal agent of white-nose syndrome. Front Microbiol. 2020;11:1776. https://doi.org/10.3389/fmicb.2020.01776.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lemieux-Labonte V, Simard A, Willis CKR, Lapointe FJ. Enrichment of beneficial bacteria in the skin microbiota of bats persisting with white-nose syndrome. Microbiome. 2017;5:115. https://doi.org/10.1186/s40168-017-0334-y.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lauer A, Simon MA, Banning JL, Lam BA, Harris RN. Diversity of cutaneous bacteria with antifungal activity isolated from female four-toed salamanders. ISME J. 2008;2:145–57. https://doi.org/10.1038/ismej.2007.110.

    Article  CAS  PubMed  Google Scholar 

  91. Lowrey L, Woodhams DC, Tacchi L, Salinas I. Topographical mapping of the rainbow trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Appl Environ Microbiol. 2015;81:6915–25. https://doi.org/10.1128/aem.01826-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Federici E, et al. Characterization of the skin microbiota in Italian stream frogs (Rana italica) infected and uninfected by a cutaneous parasitic disease. Microbes Environ. 2015;30:262–9. https://doi.org/10.1264/jsme2.ME15041.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lam BA, Walke JB, Vredenburg VT, Harris RN. Proportion of individuals with anti-Batrachochytrium dendrobatidis skin bacteria is associated with population persistence in the frog Rana muscosa. Biol Conserv. 2010;143:529–31. https://doi.org/10.1016/j.biocon.2009.11.015.

    Article  Google Scholar 

  94. Christensen GJ, Bruggemann H. Bacterial skin commensals and their role as host guardians. Benefic Microbes. 2014;5:201–15. https://doi.org/10.3920/BM2012.0062.

    Article  CAS  Google Scholar 

  95. Wu G, et al. Genus-wide comparative genomics of malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PLoS Genet. 2015;11:e1005614. https://doi.org/10.1371/journal.pgen.1005614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Iwase T, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010;465:346–9. https://doi.org/10.1038/nature09074.

    Article  CAS  PubMed  Google Scholar 

  97. Kobayashi T, et al. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity. 2015;42:756–66. https://doi.org/10.1016/j.immuni.2015.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Matsui K, Nishikawa A. Peptidoglycan-induced T helper 2 immune response in mice involves interleukin-10 secretion from Langerhans cells. Microbiol Immunol. 2013;57:130–8. https://doi.org/10.1111/j.1348-0421.2012.12006.x.

    Article  CAS  PubMed  Google Scholar 

  99. Cau L, et al. Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis. J Allergy Clin Immunol. 2021;147:955–966.e916. https://doi.org/10.1016/j.jaci.2020.06.024.

    Article  CAS  PubMed  Google Scholar 

  100. Schommer NN, Gallo RL. Structure and function of the human skin microbiome. Trends Microbiol. 2013;21:660–8. https://doi.org/10.1016/j.tim.2013.10.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gao Z, Tseng CH, Strober BE, Pei Z, Blaser MJ. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One. 2008;3:e2719. https://doi.org/10.1371/journal.pone.0002719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Alekseyenko AV, et al. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome. 2013;1:31. https://doi.org/10.1186/2049-2618-1-31.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jahns AC, et al. An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: a case-control study. Br J Dermatol. 2012;167:50–8. https://doi.org/10.1111/j.1365-2133.2012.10897.x.

    Article  CAS  PubMed  Google Scholar 

  104. Fitz-Gibbon S, et al. Propionibacterium acnes Strain Populations in the Human Skin Microbiome Associated with Acne. J Invest Dermatol. 2013;133:2152. https://doi.org/10.1038/jid.2013.21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wolcott RD, et al. Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA pyrosequencing. Wound Repair Regen. 2015;24:163. https://doi.org/10.1111/wrr.12370.

    Article  PubMed  Google Scholar 

  106. van Rensburg JJ, et al. The human skin microbiome associates with the outcome of and is influenced by bacterial infection. MBio. 2015;6:e01315. https://doi.org/10.1128/mBio.01315-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang G, et al. Bacteria induce skin regeneration via IL-1beta signaling. Cell Host Microbe. 2021;29:777–791.e776. https://doi.org/10.1016/j.chom.2021.03.003.

    Article  CAS  PubMed  Google Scholar 

  108. Boxberger M, Cenizo V, Cassir N, La Scola B. Challenges in exploring and manipulating the human skin microbiome. Microbiome. 2021;9:125. https://doi.org/10.1186/s40168-021-01062-5.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Nakatsuji T, et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat Med. 2021;27:700–9. https://doi.org/10.1038/s41591-021-01256-2.

    Article  CAS  PubMed  Google Scholar 

  110. Zipperer A, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016;535:511–6. https://doi.org/10.1038/nature18634.

    Article  CAS  PubMed  Google Scholar 

  111. Harris RN, et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 2009;3:818–24. https://doi.org/10.1038/ismej.2009.27.

    Article  CAS  PubMed  Google Scholar 

  112. Vargason AM, Anselmo AC. Clinical translation of microbe-based therapies: current clinical landscape and preclinical outlook. Bioeng Transl Med. 2018;3:124–37. https://doi.org/10.1002/btm2.10093.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Trevelline BK, Fontaine SS, Hartup BK, Kohl KD. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc Biol Sci. 2019;286:20182448. https://doi.org/10.1098/rspb.2018.2448.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Jamal M, et al. Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields. J Basic Microbiol. 2019;59:123–33. https://doi.org/10.1002/jobm.201800412.

    Article  PubMed  Google Scholar 

  115. Vieira A, et al. Phage therapy to control multidrug-resistant Pseudomonas aeruginosa skin infections: in vitro and ex vivo experiments. Eur J Clin Microbiol Infect Dis. 2012;31:3241–9. https://doi.org/10.1007/s10096-012-1691-x.

    Article  CAS  PubMed  Google Scholar 

  116. Huh H, Wong S, St Jean J, Slavcev R. Bacteriophage interactions with mammalian tissue: therapeutic applications. Adv Drug Deliv Rev. 2019;145:4–17. https://doi.org/10.1016/j.addr.2019.01.003.

    Article  CAS  PubMed  Google Scholar 

  117. Castillo DE, Nanda S, Keri JE. Propionibacterium (Cutibacterium) acnes bacteriophage therapy in acne: current evidence and future perspectives. Dermatol Ther (Heidelb). 2019;9:19–31. https://doi.org/10.1007/s13555-018-0275-9.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Josh Neufeld for allowing us to include Fig. 2 in this chapter, which was previously published in Ross, A. A.; Muller, K. M.; Weese, J. S.; and Neufeld, J. D. Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class Mammalia. Proc Natl Acad Sci U S A 115, E5786-E5795, doi: 10.1073/pnas.1801302115 (2018). Copyright © 2018 the Author(s).

Funding

This work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. A. Rodrigues Hoffmann was supported, in part, by the National Institute of Environmental Health Sciences (NIEHS) (ES028866).

Ethics Declaration

Ethics approval and consent to participate are not applicable.

Competing Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Rodrigues Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodrigues Hoffmann, A., Older, C.E., Faccin, M. (2022). The Nature and Functions of Vertebrate Skin Microbiota. In: Rook, G.A.W., Lowry, C.A. (eds) Evolution, Biodiversity and a Reassessment of the Hygiene Hypothesis. Progress in Inflammation Research, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-030-91051-8_9

Download citation

Publish with us

Policies and ethics