Skip to main content

Marine Fungi

  • Chapter
  • First Online:
The Marine Microbiome

Abstract

Marine fungi are found in almost every marine habitat explored. From surface waters to kilometers below the seafloor fungi appear ubiquitous and contribute to global biogeochemical processes as saprotrophic degraders or parasites at numerous trophic levels. The purpose of this chapter is to review the increasing amount of knowledge on the diversity and adaptive capabilities of marine fungal communities along with their metabolic functions which can be hijacked and used for biotechnological applications. Specifically, the aim is to provide an overview of a number of innovative approaches to optimize the search for novel enzymes and bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agusman A, Dan-qing F (2017) Fungal community structure of macroalga Ulva intestinalis revealed by MiSeq sequencing. Squalen Bull Mar Fish Postharv Biotechnol 12:99–106

    Article  Google Scholar 

  • Al-Nasrawi H (2012) Biodegradation of crude oil by fungi isolated from the Gulf of Mexico. J Bioremed Biodegr 3:1–6

    Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang A, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alva PME, Pointing SB, Pena-Muralla R, Hyde KD (2002) Do sea grasses harbour endophytes? In: Hyde K (ed) Fungi in marine environments. Fungal Diversity Press, Hong Kong, pp 167–178

    Google Scholar 

  • Amaral-Zettler LA, Zettler ER, Mincer TJ (2020) Ecology of the plastisphere. Nat Rev Microbiol 18:139–151

    Article  CAS  PubMed  Google Scholar 

  • Amend A, Burgaud G, Cunliffe M, Edgcomb VP, Ettinger CL, Gutiérrez MH, Heitman J, Hom EFY, Ianiri G, Jones AC, Kagami M, Picard KT, Quandt CA, Raghukumar S, Riquelme M, Stajich J, Vargas-Muniz J, Walker AK, Yarden O, Gladfelter AS (2019) Fungi in the marine environment: open questions and unsolved problems. mBio 10:e01189–e01118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arfi Y, Marchand C, Wartel M, Record E (2012a) Fungal diversity in anoxic-sulfidic sediments in a mangrove soil. Fungal Ecol 5:282–285

    Article  Google Scholar 

  • Arfi Y, Buée M, Marchand C, Levasseur A, Record E (2012b) Multiple marker pyrosequencing reveals highly diverse and host-specific fungal communities on the mangrove trees Avicennia marina and Rhizophora stylosa. FEMS Microbiol Ecol 79:433–444

    Article  PubMed  Google Scholar 

  • Arifeen MZ, Ma YN, Xue YR, Liu CH (2020) Deep-sea fungi could be the new arsenal for bioactive compounds. Mar Drug 18:9

    Article  CAS  Google Scholar 

  • Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6:959–978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bachmann BO, Ravel J (2009) Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Method Enzymol 458:181–217

    Article  CAS  Google Scholar 

  • Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014) Cost effective technologies and renewable substrates for biosurfactants’ production. Front Microbiol 5:697

    Article  PubMed Central  PubMed  Google Scholar 

  • Bao E, Lan L (2017) HALC: high throughput algorithm for long read error correction. BMC Bioinformatics 18:204

    Article  PubMed Central  PubMed  Google Scholar 

  • Baral H, Rämä T (2015) Morphological update on Calycina marina (Pezizellaceae, Helotiales, Leotiomycetes), a new combination for Laetinaevia marina. Bot Mar 58:523–534

    Article  CAS  Google Scholar 

  • Barata M (2002) Fungi on the halophyte Spartina maritima in salt marshes. In: Hyde K (ed) Fungi in marine environments. Fungal Diversity Press, Hong Kong, pp 179–193

    Google Scholar 

  • Barghoorn ES, Linder DH (1944) Marine fungi: their taxonomy and biology. Farlowia 1:395–467

    Google Scholar 

  • Barkal LJ, Theberge AB, Guo CJ, Spraker J, Rappert L, Berthier J, Brakke KA, Wang CCC, Beebe DJ, Keller NP, Berthier E (2016) Microbial metabolomics in open microscale platforms. Nat Commun 7:10610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, Richards TA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc Royal Soc B 274:3069–3077

    Article  CAS  Google Scholar 

  • Bendtsen J, Mortensen J, Rysgaard S (2014) Seasonal surface layer dynamics and sensitivity to runoff in a high Arctic fjord (Young sound/Tyrolerfjord, 74oN). J Geophys Res Oceans 119:6461–6478

    Article  Google Scholar 

  • Bengtson S, Ivarsson M, Astolfo A, Belivanova V, Broman C, Marone F, Stampanoni M (2014) Deep-biosphere consortium of fungi and prokaryotes in Eocene subseafloor basalts. Geobiology 12:489–496

    Article  CAS  PubMed  Google Scholar 

  • Besitulo A, Moslem MA, Hyde KD (2010) Occurrence and distribution of fungi in a mangrove forest on Siargao Island, Philippines. Bot Mar 53:535–543

    Article  Google Scholar 

  • Bhakuni DS, Rawat DS (2005) Bioactive metabolites of marine algae, fungi and bacteria. In: Bioactive marine natural products. Anamaya Publishers and Springer, New Delhi, pp 1–25

    Chapter  Google Scholar 

  • Biabani MAF, Laatsch H (1998) Advances in chemical studies on low-molecular weight metabolites of marine fungi. J Prakt Chem 340:589–607

    Article  CAS  Google Scholar 

  • Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T (2013) antiSMASH 2.0 -a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41:204–212

    Article  Google Scholar 

  • Bluhm BA, Kosobokova KN, Carmack EC (2015) A tale of two basins: an integrated physical and biological perspective of the deep Arctic Ocean. Prog Oceanogr 139:89–121

    Article  Google Scholar 

  • Bluhm BA, Swadling KM, Gradinger R (2017) Sea ice as a habitat for macrograzers. In: Thomas DN (ed) Sea Ice, 3rd edn. Wiley-Blackwell, Oxford, pp 394–414

    Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2016) Marine natural products. Nat Prod Rep 33:382–431

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2018) Marine natural products. Nat Prod Rep 35:8–53

    Article  CAS  PubMed  Google Scholar 

  • Bochdansky AB, Clouse MA, Herndl GJ (2017) Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J 11:362–373

    Article  PubMed  Google Scholar 

  • Boddy CN (2014) Bioinformatics tools for genome mining of polyketide and non-ribosomal peptides. J Ind Microbiol Biotechnol 41:443–450

    Article  CAS  PubMed  Google Scholar 

  • Bok JW, Ye R, Clevenger KD, Mead D, Wagner M, Krerowicz A, Albright JC, Goering AW, Thomas PM, Kelleher NL, Keller NP, Wu CC (2015) Fungal artificial chromosomes for mining of the fungal secondary metabolome. BMC Genomics 16:343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonugli-Santos RC, dos Santos Vasconcelos MR, Passarini MR, Vieira GA, Lopes VC, Mainardi PH, dos Santos JA, de Azevedo DL, Otero IVR, da Silva Yoshida AM, Feitosa VA, Pessoa A, Sette LD (2015) Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol 6:269

    Article  PubMed Central  PubMed  Google Scholar 

  • Boonyuen N, Chuaseeharonnachai C, Suetrong S, Sri-Indrasutdhi V, Sivichai S, Jones EB, Pang KL (2011) Savoryellales (Hypocreomycetidae, Sordariomycetes): a novel lineage of aquatic ascomycetes inferred from multiple-gene phylogenies of the genera Ascotaiwania, Ascothailandia, and Savoryella. Mycologia 103:1351–1371

    Article  PubMed  Google Scholar 

  • Bowman JS, Rasmussen S, Blom N, Deming JW, Rysgaard S, Sicheritz-Ponten T (2012) Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene. ISME J 6:11–20

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32

    Article  CAS  PubMed  Google Scholar 

  • Buchan A, Lyons SY, Moreta JIL, Moran MA (2002) Analysis of internal transcribed spacer (ITS) regions of rRNA genes in fungal communities in a southeastern U.S. salt marsh. Microb Ecol 43:329–340

    Article  CAS  PubMed  Google Scholar 

  • Bucher VVC, Pointing SB, Hyde KD, Reddy CA (2004) Production of wood decay enzymes, loss of mass, and lignin solubilization in wood by diverse tropical freshwater fungi. Microb Ecol 48:331–337

    Article  CAS  PubMed  Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163

    Article  CAS  PubMed  Google Scholar 

  • Burgaud G, Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11:588–600

    Article  Google Scholar 

  • Burgaud G, Arzur D, Durand L, Cambon-Bonavita MA, Barbier G (2010) Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microb Ecol 73:121–133

    CAS  Google Scholar 

  • Burgaud G, Woehlke S, Redou V, Orsi W, Beaudoin D, Barbier G, Biddle JF, Edgcomb VP (2013) Deciphering the presence and activity of fungal communities in marine sediments using a model estuarine system. Aquat Microb Ecol 70:45–62

    Article  Google Scholar 

  • Burgaud G, Hué NTM, Arzur D, Coton M, Perrier-Cornet JM, Jebbar M, Barbier G (2015) Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents. Res Microbiol 166:700–709

    Article  PubMed  Google Scholar 

  • Calado ML, Barata M (2012) Salt marsh fungi. In: EBG J, Pang K-L (eds) Marine fungi and fungal-like organisms. De Gruyter, Berlin, pp 345–381

    Chapter  Google Scholar 

  • Calado MD, Carvalho L, Pang KL, Barata M (2015) Diversity and ecological characterization of sporulating higher filamentous marine fungi associated with Spartina maritima (Curtis) Fernald in two Portuguese salt marshes. Microb Ecol 70:612–633

    Article  Google Scholar 

  • Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Alvarado AS, Yandell M (2008) MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 18:188–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caron DA, Gast RJ (2010) Heterotrophic protists associated with sea ice. In: Thomas DN, Dieckmann GS (eds) Sea Ice, 2nd edn. Wiley-Blackwell, Oxford, pp 327–356

    Google Scholar 

  • Chakraborty M, Baldwin-Brown JG, Long AD, Emerson JJ (2016) Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids Res 44:e147

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen XW, Li CW, Cui CB, Hua W, Zhu TJ, Gu QQ (2014) Nine new and five known polyketides derived from a deep sea-sourced aspergillus sp. 16-02-1. Mar Drugs 12:3116–3137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chrismas N, Cunliffe M (2020) Depth-dependent mycoplankton glycoside hydrolase gene activity in the open ocean - evidence from the Tara oceans eukaryote metatranscriptomes. ISME J 14:2361–2365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ciobanu MC, Burgaud G, Dufresne A, Breuker A, Rédou V, Maamar SB, Vandenkoornhuyse P, Alain K (2014) Microorganisms persist at record depths in the subseafloor of the Canterbury basin. ISME J 8:1370–1380

    Article  PubMed Central  PubMed  Google Scholar 

  • Collins RE, Rocap G, Deming JW (2010) Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ Microbiol 12:1828–1841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Comeau AM, Vincent WF, Bernier L, Lovejoy C (2016) Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci Rep 6:30120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cosse A, Potin P, Leblanc C (2009) Patterns of gene expression induced by Oligoguluronates reveal conserved and environment-specific molecular defense responses in the brown alga Laminaria digitata. New Phytol 182:239–250

    Article  CAS  PubMed  Google Scholar 

  • Cotton AD (1907) Notes on marine pyrenomycetes. Trans Brit Mycol Soc 3:92–99

    Article  Google Scholar 

  • Cox GFN, Weeks WF (1983) Equations for determining the gas and brine volumes in sea-ice samples. J Glaciol 29:306–316

    Article  Google Scholar 

  • Cruz-Morales P, Martínez-Guerrero CE, Morales-Escalante MA, Yáñez-Guerra LA, Kopp JF, Feldmann J, Ramos-Aboites HE, Barona-Gomez F (2015) Recapitulation of the evolution of biosynthetic gene clusters reveals hidden chemical diversity on bacterial genomes. bioRxiv:020503

    Google Scholar 

  • Culligan EP, Sleator RD, Marchesi JR, Hill C (2013) Metagenomics and novel gene discovery: promise and potential for novel therapeutics. Virulence 5:1–14

    Google Scholar 

  • Cunliffe M, Hollingsworth A, Bain C, Sharma V, Taylor JD (2017) Algal polysaccharide utilisation by saprotrophic planktonic marine fungi. Fungal Ecol 30:135–138

    Article  Google Scholar 

  • Daletos G, Ebrahim W, Ancheeva E, El-Neketi M, Song W, Lin W, Proksch P (2018) Natural products from deep-sea-derived fungi - a new source of novel bioactive compounds? Curr Med Chem 25:186–207

    Article  CAS  PubMed  Google Scholar 

  • Damare S, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea sediments of the central Indian Basin. Deep Sea Res Part I Oceanogr Res Pap 53:14–27

    Article  Google Scholar 

  • Das P, Yang XP, Ma LZ (2014) Analysis of biosurfactants from industrially viable pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity. Front Microbiol 5:696

    Article  PubMed Central  PubMed  Google Scholar 

  • Dasanayaka SAHK, Nong XH, Liang X, Liang JQ, Amin M, Qi SH (2020) New dibenzodioxocinone and pyran-3, 5-dione derivatives from the deep-sea-derived fungus Penicillium canescens SCSIO z053. J Asian Nat Prod Res 22:338–345

    Article  CAS  PubMed  Google Scholar 

  • De Tender C, Schlundt C, Devriese LI, Mincer TJ, Zettler ER, Amaral-Zettler LA (2017) A review of microscopy and comparative molecular-based methods to characterize “Plastisphere” communities. Anal Methods 9:2132–2143

    Article  CAS  Google Scholar 

  • Debbab A, Aly A, Proksch P (2012) Endophytes and associated marine derived fungi—ecological and chemical perspectives. Fungal Diver 57:45–83

    Article  Google Scholar 

  • Decker RJ, Garbary DJ (2005) Ascophyllum and its symbionts. VIII. Interactions among Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli (ascomycetes) and Elachista fucicola (Phaeophyceae). Algae 20:363–368

    Article  Google Scholar 

  • Dekov V, Bindi L, Burgaud G, Petersen S, Asael D, Rédou V, Fouquet Y, Pracejus B (2013) Inorganic and biogenic as-sulfide precipitation at seafloor hydrothermal fields. Mar Geol 342:28–38

    Article  CAS  Google Scholar 

  • Demain AL (2014) Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biot 41:185–201

    Article  CAS  Google Scholar 

  • Devarajan P, Suryanarayanan T, Geetha V (2002) Endophytic fungi associated with the tropical seagrass Halophila ovalis (Hydrocharitaceae). Ind J Mar Sci 31:73–74

    Google Scholar 

  • Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, Dirk van Elsas J, Wick LY (2018) Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 42:335–352

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Zhang D, Zhou B, Ma Z (2017) Inhibitors of BRD4 protein from a marine-derived fungus Alternaria sp. NH-F6. Mar Drugs 15:76

    Article  PubMed Central  CAS  Google Scholar 

  • Doggett MS, Porter D (1994) Further evidence for host-specific variants in Zygorhizidium planktonicum. Mycologia 87:161–171

    Article  Google Scholar 

  • Drake H, Ivarsson M (2017) The role of anaerobic fungi in fundamental biogeochemical cycles in the deep biosphere. Fungal Biol Rev 32:20–25

    Article  Google Scholar 

  • Drake H, Ivarsson M, Bengtson S, Heim C, Siljeström S, Whitehouse MJ, Broman C, Belivanova V, Astrom ME (2017) Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures. Nat Commun 8:1–9

    Article  CAS  Google Scholar 

  • Du L, Li D, Zhu T, Cai S, Wang F, Xiao X, Gu Q (2009) New alkaloids and diterpenes from a deep ocean sediment derived fungus Penicillium sp. Tetrahedron 65:1033–1039

    Article  CAS  Google Scholar 

  • Duan YB, Xie ND, Song ZQ, Ward CS, Yung CM, Hunt DE, Johnson ZI, Wang GY (2018) High-resolution time-series reveals seasonal patterns of planktonic fungi at a temperate coastal ocean site (Beaufort, North Carolina, USA). Appl Environ Microbiol 84:1–14

    Article  CAS  Google Scholar 

  • Edgcomb VP, Beaudoin D, Gast R, Biddle J, Teske A (2010) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183

    Article  CAS  Google Scholar 

  • Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T (2013) The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiol Rev 37:462–476

    Article  CAS  PubMed  Google Scholar 

  • Ettinger CL, Eisen JA (2019) Characterization of the mycobiome of the seagrass, Zostera marina, reveals putative associations with marine chytrids. Front Microbiol 10:2476

    Article  PubMed Central  PubMed  Google Scholar 

  • Fan Z, Sun ZH, Liu Z, Chen YC, Liu HX, Li HH, Zhang WM (2016) Dichotocejpins A–C: new diketopiperazines from a deep-sea-derived fungus Dichotomomyces cejpii FS110. Mar Drugs 14:164

    Article  PubMed Central  CAS  Google Scholar 

  • Fell JW, Newell SY (1998) Biochemical and molecular methods for the study of marine fungi. In: Cooksey K (ed) Molecular approaches to the study of the ocean. Chapman & Hall, London, pp 259–283

    Chapter  Google Scholar 

  • Fell JW, Statzel AC, Hunter IL, Phaff HJ (1969) Leucosporidium gen. Nov. the heterobasidiomycetous stage of several yeasts of the genus Candida. Antonie Van Leeuwenhoek 35:433–462

    Google Scholar 

  • Fenical W, Jensen PR (1993) Marine microorganisms: a new biomedical resource. In: Attaway DH, Zaborsky OR (eds) Marine biotechnology, Pharmaceutical and bioactive natural products, vol 1. Plenum, New York, pp 419–457

    Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:222–230

    Article  CAS  Google Scholar 

  • Firth E, Carpenter SD, Sørensen HL, Collins RE, Deming JW (2016) Bacterial use of choline to tolerate salinity shifts in sea-ice brines. Elementa Science of the Anthropocene 4:000120

    Article  Google Scholar 

  • Flewelling AJ, Ellsworth KT, Sanford J, Forward E, Johnson JA, Gray CA (2013a) Macroalgal endophytes from the Atlantic Coast of Canada: a potential source of antibiotic natural products? Microorganisms 1:175–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flewelling AJ, Johnson JA, Gray CA (2013b) Isolation and bioassay screening of fungal endophytes from North Atlantic marine macroalgae. Bot Mar 56:287–297

    Article  Google Scholar 

  • Fraser CI, Morrison AK, Hogg AM, Macaya EC, van Sebille E, Ryan PG, Padovan A, Jack C, Valdivia N, Waters JM (2018) Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat Clim Chang 8:704–708

    Article  Google Scholar 

  • Fredimoses M, Zhou X, Ai W, Tian X, Yang B, Lin X, Xian JY, Liu Y (2015) Westerdijkin a, a new hydroxyphenylacetic acid derivative from deep sea fungus aspergillus westerdijkiae SCSIO 05233. Nat Prod Res 29:158–162

    Article  CAS  PubMed  Google Scholar 

  • Fries N (1979) Physiological characteristics of Mycosphaerella ascophylli, a fungal endophyte of the marine brown alga Ascophyllum nodosum. Physiol Plant 45:117–121

    Article  CAS  Google Scholar 

  • Gaboyer F, Burgaud G, Edgcomb V (2019) The deep subseafloor and biosignatures. In: Cavalazzi B, Westall F (eds) Biosignatures for astrobiology. Springer, Cham, pp 87–109

    Chapter  Google Scholar 

  • Gadanho M, Sampaio JP (2005) Occurrence and diversity of yeasts in the mid-Atlantic ridge hydrothermal fields near the Azores archipelago. Microb Ecol 50:408–417

    Article  CAS  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND et al (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  CAS  PubMed  Google Scholar 

  • Galindo LJ, López-Garcia P, Torroella G, Karpov S, Moreira D (2020) Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. BioRxiv. https://doi.org/10.1101/2020.11.19.389700

  • Ganesh Kumar A, Balamurugan K, Vijaya Raghavan R, Dharani G, Kirubagaran R (2019) Studies on the antifungal and serotonin receptor agonist activities of the secondary metabolites from piezotolerant deep-sea fungus Ascotricha sp. Mycology 10:92–108

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Johnson ZI, Wang GY (2010) Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J 4:111–120

    Article  PubMed  Google Scholar 

  • Gao XW, Liu HX, Sun ZH, Chen YC, Tan YZ, Zhang WM (2016) Secondary metabolites from the deep-sea derived fungus Acaromyces ingoldii FS121. Molecules 21:371

    Article  PubMed Central  CAS  Google Scholar 

  • Garbary DJ, London JF (1995) The Ascophyllum Polysiphonial Mycosphaerella symbiosis V. fungal infection protects a. nosodum from desiccation. Bot Mar 38:529–534

    Article  Google Scholar 

  • Garbary DJ, MacDonald KA (1995) The Ascophyllum/Polysiphonia/Mycosphaerella symbiosis. IV. Mutualism in the Ascophyllum/Mycosphaerella interaction. Bot Mar 38:221–225

    Google Scholar 

  • García-Lepe R, Nuero OM, Reyes F, Santamaría F (1997) Lipases in autolysed cultures of filamentous fungi. Lett Appl Microbiol 25:127–130

    Article  PubMed  Google Scholar 

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gladfelter AS, James TY, Amend AS (2019) Marine fungi. Curr Biol 29:191–195

    Article  CAS  Google Scholar 

  • Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya NS, Pupo D, Rosa LH (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Godinho VM, de Paula MTR, Silva DAS, Paresque K, Martins AP, Colepicolo P, Rosa CA, Rosa LH (2019) Diversity and distribution of hidden cultivable fungi associated with marine animals of Antarctica. Fungal Biol 123:507–516

    Article  PubMed  Google Scholar 

  • Goffeau A (2000) Four years of post-genomic life with 6,000 yeast genes. FEBS Lett 480:37–41

    Article  CAS  PubMed  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546–657

    Article  CAS  PubMed  Google Scholar 

  • Gomes NGM, Lefranc F, Kijjoa A, Kiss R (2015) Can some marine-derived fungal metabolites become actual anticancer agents? Mar Drugs 13:3950–3991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • González-Medina M, Prieto-Martínez FD, Naveja JJ, Méndez-Lucio O, El-Elimat T, Pearce CJ, Oberlies NH, Figueroa M, Medina-Franco JL (2016) Chemoinformatic expedition of the chemical space of fungal products. Future Med Chem 8:1399–1412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gradinger R (2009) Sea-ice algae: major contributors to primary production and algal biomass in the Chukchi and Beaufort seas during May/June 2002. Deep Sea Res Part II: Top Stud Oceanogr 56:1201–1212

    Article  CAS  Google Scholar 

  • Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–D704

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez MH, Pantoja S, Quiňones RA, González RR (2010) First record of filamentous fungi in the coastal upwelling ecosystem off Central Chile. Gayana 74:66–73

    Google Scholar 

  • Gutiérrez MH, Pantoja S, Tejos E, Quiñones RA (2011) The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile. Mar Biol 158:205–219

    Article  Google Scholar 

  • Gutiérrez MH, Jara AM, Pantoja S (2016) Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off Central Chile. Environ Microbiol 18:1646–1653

    Article  PubMed  Google Scholar 

  • Hackstein JHP, Baker SE, van Hellemond JJ, Tielens AGM (2019) Hydrogenosomes of anaerobic fungi: an alternative way to adapt to anaerobic environments. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, Cham, pp 159–175

    Chapter  Google Scholar 

  • Hansen FT, Gardiner DM, Lysøe E, Fuertes PR, Tudzynski B, Wiemann P, Sondergaard TE, Giese H, Bordersen DE, Sorensen JL (2014) An update to polyketide synthase and nonribosomal synthetase genes and nomenclature in fusarium. Fungal Genet Biol 75:20–29

    Article  CAS  PubMed  Google Scholar 

  • Harvey JBJ, Goff LJ (2010) Genetic covariation of the marine fungal symbiont Haloguignardia irritans (Ascomycota, Pezizomycotina) with its algal hosts Cystoseira and Halidrys (Phaeophyceae, Fucales) along the west coast of North America. Fungal Biol 114:82–95

    Article  CAS  PubMed  Google Scholar 

  • Hassani MA, Durán P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6:58

    Article  PubMed Central  PubMed  Google Scholar 

  • Hassett BT, Gradinger R (2016) Chytrids dominate arctic marine fungal communities. Environ Microbiol 18:2001–2009

    Article  CAS  PubMed  Google Scholar 

  • Hassett BT, Ducluzeau AL, Collins RE, Gradinger R (2017) Spatial distribution of aquatic marine fungi across the western arctic and sub-arctic. Environ Microbiol 19:475–484

    Article  CAS  PubMed  Google Scholar 

  • Hassett BT, Borrego EJ, Vonnahme TR, Rama T, Kolomiets MV, Gradinger R (2019) Arctic marine fungi: biomass, functional genes, and putative ecological roles. ISME J 13:1484–1496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hassett BT, Vonnahme TR, Peng X, Jones EBG, Heuze C (2020) Global diversity and geography of planktonic marine fungi. Bot Mar 63:121–139

    Article  CAS  Google Scholar 

  • Hautbergue T, Jamin EL, Debrauwer L, Puel O, Oswald IP (2018) From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Nat Prod Rep 35:147–173

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Matsumoto H, Akiyama K (2004) New insecticidal compounds, communesins C, D and E, from Penicillium expansum link MK-57. Biosci Biotechnol Biochem 68:753–756

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M (2001) Evolution of marine mushrooms. Biol Bull 201:319–322

    Article  CAS  PubMed  Google Scholar 

  • Hirayama H, Abe M, Miyazaki J, Sakai S, Takai K (2015) Data report: cultivation of microorganisms from basaltic rock and sediment cores from the north pond on the western flank of the mid-Atlantic ridge. IODP expedition 336. Sci Technol (JAMSTEC) 2:15

    Google Scholar 

  • Hoang TPT, Roullier C, Boumard MC, Robiou du Pont T, Nazih H, Gallard JF, Pouchus YF, Beniddir MA, Grovel O (2018) Metabolomics-driven discovery of meroterpenoids from a mussel-derived Penicillium ubiquetum. J Nat Prod 81:2501–2511

    Article  CAS  PubMed  Google Scholar 

  • Horner R, Schrader GC (1982) Relative contributions of ice algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 35:485–503

    Article  Google Scholar 

  • Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Dougherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madra M, Maslen J, McAnulla C, McDowall J, McMenamin C, Mi H, Mutowo-Muellnet P, Mulder N, Natale D, Orengo C, Pesseat S, Punta M, Quinn AF, Rivoire C, Sangrador-Vegas A, Selengut JD, Sigrist CJA, Scheremetjew M, Tate J, Thimmajanarthanan M, Thomas PD, Wu CH, Yeats C, Yong SY (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40:306–312

    Article  CAS  Google Scholar 

  • Hyde KD (1992) Fungi from decaying intertidal fronds of Nypa fruticans, including three new genera and four new species. Bot J Linn Soc 110:95–110

    Article  Google Scholar 

  • Hyde KD, Alias SA (2000) Biodiversity and distribution of fungi associated with decomposing Nypa palm. Biodivers Conserv 9:393–402

    Article  Google Scholar 

  • Hyde KDJE, Liu JK, Ariyawansha H, Boehm E, Boonmee S, Braun U, Chomnunti P, Crous PW, Dai D, Diederich P, Dissanayake A, Doilom M, Doveri F, Hongsanan S, Jayawardena R, Lawrey JD, Li YM, Liu YX, Lücking R, Monkai J, Muggia L, Nelsen MP, Pang KL, Phookamsak R, Senanayake I, Shearer CA, Suetrong S, Tanaka K, Thambugala KM, Wijayawardene N, Wikee S, Wu HX, Zhang Y, Aguirre-Hudson B, Alias SA, Aptroot A, Bahkali AH, Bezerra JL, Bhat JD, Camporesi E, Chukeatirote E, Gueidan C, Hawksworth DL, Hirayama K, De Hoog S, Kang JC, Knudsen K, Li WJ, Li XH, Liu ZY, Mapook A, McKenzie EHC, Miller AN, Mortimer PE, Phillips AJL, Raja HA, Scheuer C, Schumm F, Taylor J, Tian Q, Tibpromma S, Wanasinghe DN, Wang Y, Xu JC, Yacharoen S, Yan JY, Zhang M (2013) Families of dothideomycetes. Fungal Divers 63:1–313

    Article  Google Scholar 

  • Hynes MJ, Murray SL, Duncan A, Khew GS, Davis MA (2006) Regulatory genes controlling fatty acid catabolism and peroxisomal functions in the filamentous fungus aspergillus nidulans. Eukaryot Cell 5:794–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inagaki F, Hinrichs KU, Kubo Y, Boles MW, Heuer VB, Long WL, Hoshino T, Ijiri A, Imachi H, Ito M, Kaneko M, Lever MA, Lin YS, Methé BA, Morita A, Morono Y, Tanikawa W, Bihan M, Bowden SA, Elvert M, Glombitza C, Gross D, Harrington GJ, Hori T, Li K, Limmer D, Liu CH, Murayama M, Ohkouchi N, Ono S, Park YS, Phillips SC, Prieto-Mollar X, Pukey M, Riedinger N, Sanada Y, Sauvage J, Snyder G, Susilawati R, Takan OY, Tasumi E, Terada T, Tomaru H, Trembath-Reichert E, Wang DT, Yamada Y (2015) Exploring deep marine microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science 349:420–424

    Article  CAS  PubMed  Google Scholar 

  • Ivarsson M, Bengtson S, Belivanova V, Stampanoni M, Marone F, Tehler A (2012) Fossilized fungi in subseafloor Eocene basalts. Geology 40:163–166

    Article  CAS  Google Scholar 

  • Ivarsson M, Bengtson S, Skogby H, Lazor P, Broman C, Belivanova V, Marone F (2015a) A fungal-prokaryotic consortium at the basalt-zeolite interface in subseafloor igneous crust. PLoS One 10:e0140106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ivarsson M, Peckmann J, Tehler A, Broman C, Bach W, Behrens K, Reitner J, Bottcher ME, Ivarsson LN (2015b) Zygomycetes in vesicular basanites from Vesteris Seamount, Greenland Basin–a new type of cryptoendolithic fungi. PLoS One 10:e0133368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ivarsson M, Bengtson S, Neubeck A (2016) The igneous oceanic crust – Earth’s largest fungal habitat? Fungal Ecol 20:249–255

    Article  Google Scholar 

  • Jacquin J, Cheng J, Odobel C, Pandin C, Conan P, Pujo-Pay M, Barbe V, Meistertzheim L, Ghiglione JF (2019) Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the “plastisphere”. Front Microbiol 10:865

    Article  PubMed Central  PubMed  Google Scholar 

  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347:768–771

    Article  CAS  PubMed  Google Scholar 

  • Jebaraj CS, Raghukumar C (2010) Nitrate reduction by fungi in marine oxygen-depleted laboratory microcosms. Bot Mar 53:469–474

    Article  CAS  Google Scholar 

  • Jeffries TC, Curlevski NJ, Brown MV, Harrison DP, Doblin MA, Petrou K, Ralph PJ, Seymour JR (2016) Partitioning of fungal assemblages across different marine habitats. Environ Microbiol Rep 8:235–238

    Article  PubMed  Google Scholar 

  • Johnson TW Jr, Sparrow FK Jr (1961) Fungi in oceans and estuaries. Weinheim, J. Cramer, 668 pp

    Google Scholar 

  • Johnson MD, Edwards BR, Beaudoin DJ, Van Mooy BAS, Vardi A (2020) Nitric oxide mediates oxylipin production and grazing defense in diatoms. Environ Microbiol 22:629–645

    Article  CAS  PubMed  Google Scholar 

  • Jones EBG (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers 4:53–73

    Google Scholar 

  • Jones EBG (2011) Fifty years of marine mycology. Fungal Divers 50:73–112

    Article  Google Scholar 

  • Jones EBG, Pang KL (2012) Marine fungi and fungal-like organisms (marine and freshwater botany). Walter de Gruyter, Berlin, p 528

    Book  Google Scholar 

  • Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang KL (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 3:1–72

    Article  CAS  Google Scholar 

  • Jones EBG, Pang KL, Abdel-Wahab MA, Scholz B, Hyde KD, Boekhout T, Ebel R, Rateb ME, Henderson L, Sakayaroj J, Suetrong S, Dayarathne MC, Kumar V, Raghukumar S, Sridhar KR, Bahkali AHA, Gleason FH, Norphanphoun C (2019) An online resource for marine fungi. Fungal Divers 96:347–433

    Article  Google Scholar 

  • Kaiser K, Canedo-Oropeza M, McMahon R, Amon RMW (2017) Origins and transformations of dissolved organic matter in large Arctic rivers. Sci Rep 7:13064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:D355–D360

    Article  CAS  PubMed  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism - from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    Article  CAS  PubMed  Google Scholar 

  • Kettner MT, Rojas-Jimenez K, Oberbeckmann S, Labrenz M, Grossart HP (2017) Microplastics alter composition of fungal communities in aquatic ecosystems. Environ Microbiol 19:4447–4459

    Article  CAS  PubMed  Google Scholar 

  • Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolf KH, Fedorova ND (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47:736–741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim Y, Islam N, Moss BJ, Nandakumar MP, Marten MR (2011) Autophagy induced by rapamycin and carbon-starvation have distinct proteome profiles in aspergillus nidulans. Biotechnol Bioeng 108:2705–2715

    Article  CAS  PubMed  Google Scholar 

  • Kis-Papo T, Weig AR, Riley R, Peršoh D, Salamov A, Sun H, Lipzen A, Wasser SP, Rambold G, Grigoriev IV, Nevo E (2014) Genomic adaptations of the halophilic Dead Sea filamentous fungus Eurotium rubrum. Nat Commun 5:1–8

    Article  CAS  Google Scholar 

  • Knudsen T, Knudsen B (2013) CLC genomics Benchwork 6. CLC Genomic Work

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher Fung. Acad Press, New York

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (2003) Marine ascomycetes from algae and animal hosts. Bot Mar 46:285–306

    Article  Google Scholar 

  • Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Duenas M, Grebnc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martin MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Pintner U, Peterson M, Poldmaa K, Saag L, Saar I, Schubler A, Scott JA, Senes C, Smith ME, Suija A, Taylor DL, Telleria MT, Wiss M, Larsson KH (2013) Towards a unified paradigm for sequence based identification of fungi. Mol Ecol 22:5271–5277

    Article  CAS  PubMed  Google Scholar 

  • Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kramer A, Beck HC, Kumar A, Kristensen LP, Imhoff JF, Labes A (2015) Proteomic analysis of anti-cancerous scopularide production by a marine microascus brevicaulis strain and its UV-mutant. PLoS One 10:e0140047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar A, Congiu L, Lindstrom L, Piiroinen S, Vidotto M, Grapputo A (2014) Sequencing, de novo assembly and annotation of the Colorado potato beetle, Leptinotarsa decemlineata, transcriptome. PLoS One 9:e86012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar A, Henrissat B, Arvas M, Syed MF, Thieme N, Bnz JP, Sørensen JL, Record E, Pöggeler S, Kempken F (2015) De novo assembly and genome analyses of the marine-derived Scopulariopsis brevicaulis strain LF580 unravels life-style traits and anticancerous scopularide biosynthetic gene cluster. PLoS One 10:e0140398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar A, Sørensen JL, Hansen FT, Arvas M, Syed MF, Hassan L, Bnz JP, Record E, Henrissat B, Pöggeler S, Kempken F (2018) Genome sequencing and analyses of two marine fungi from the North Sea unraveled a plethora of novel biosynthetic gene clusters. Sci Rep 8:1–16

    Article  Google Scholar 

  • L’Haridon S, Markx GH, Ingham CJ, Paterson L, Duthoit F, Le Blay G (2016) New approaches for bringing the uncultured into culture. In: Stal LJ, Cretoiu MS (eds) The marine microbiome, an untapped source of biodiversity and biotechnological potential. Springer, Basel, pp 401–434

    Google Scholar 

  • Lacerda ALF, Proietti MC, Secchi ER, Taylor JD (2020) Diverse groups of fungi are associated with plastics in the surface waters of the Western South Atlantic and the Antarctic peninsula. Mol Ecol 29:1903–1918

    Article  PubMed  Google Scholar 

  • Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S (2007) Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J 1:756–762

    Article  CAS  PubMed  Google Scholar 

  • Lambert BS, Raina JB, Fernandez VI, Rinke C, Siboni N, Rubino F, Stocker R (2017) A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat Microbiol 2:1344–1349

    Article  CAS  PubMed  Google Scholar 

  • Le Calvez T, Burgaud G, Mahe S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lenassi M, Gostinčar C, Jackman S, Turk M, Sadowski I, Nislow C, Jones S, Birol I, Cimerman NG, Plemenitaš A (2013) Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii. PLoS One 8:e71328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Ye D, Shao Z, Cui C, Che Y (2012) A sterol and spiroditerpenoids from a Penicillium sp. isolated from a deep sea sediment sample. Mar Drugs 10:497–508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li L, Singh P, Liu Y, Pan S, Wang G (2014) Diversity and biochemical features of culturable fungi from the coastal waters of southern China. AMB Express 4:60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li W, Wang MM, Bian XM, Guo JJ, Cai L (2016a) A high-level fungal diversity in the intertidal sediment of Chinese seas presents the spatial variation of community composition. Front Microbiol 7:2098

    Article  PubMed Central  PubMed  Google Scholar 

  • Li W, Wang MM, Wang XG, Cheng XL, Guo JJ, Bian XM, Cai L (2016b) Fungal communities in sediments of subtropical Chinese seas as estimated by DNA metabarcoding. Sci Rep 6:26528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li W, Wang MM, Pan HQ, Burgaud G, Liang SK, Guo JJ, Luo T, Li Z, Zhang S, Cai L (2018) Highlighting patterns of fungal diversity and composition shaped by ocean currents using the East China Sea as a model. Mol Ecol 27:564–576

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wang MM, Burgaud G, Yu HM, Cai L (2019) Fungal community composition and potential depth-related driving factors impacting distribution pattern and trophic modes from epi- to abyssopelagic zones of the Western Pacific Ocean. Microbial Ecol 78:820–831

    Article  Google Scholar 

  • Lima JMS, Pereira JO, Batista IH, Neto PDQC, dos Santos JC, de Araújo SP, de Azevedo JL (2016) Potential biosurfactant producing endophytic and epiphytic fungi, isolated from macrophytes in the Negro River in Manaus, Amazonas, Brazil. Afr J Biotechnol 15:1217–1223

    Article  CAS  Google Scholar 

  • Liu CH, Huang X, Xie TN, Duan N, Xue YR, Zhao TX, Lever MA, Hinrichs KU, Inagaki F (2017) Exploration of cultivable fungal communities in deep coal-bearing sediments from ∼1.3 to 2.5 km below the ocean floor. Environ Microbiol 19:803–818

    Article  CAS  PubMed  Google Scholar 

  • Loilong A, Sakayaroj J, Rungjindamai N, Choeyklin R, Jones EBG (2012) Biodiversity of fungi on the palm Nypa fruticans. In: Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co. KG, Berlin, p 273

    Chapter  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:490–495

    Article  CAS  Google Scholar 

  • Loque CP, Medeiros AO, Pellizzari FM, Oliveira EC, Rosa CA, Rosa LH (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648

    Article  Google Scholar 

  • Lorenz R, Molitoris HP (1997) Cultivation of fungi under simulated deep-sea conditions. Mycol Res 101:1355–1365

    Article  Google Scholar 

  • Lukassen MB, Saei W, Sondergaard TE, Tamminen A, Kumar A, Kempken F, Wiebe MG, Sørensen JL (2015) Identification of the Scopularide biosynthetic gene cluster in Scopulariopsis brevicaulis. Mar Drugs 13:4331–4343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo ZH, Pang KL (2014) Fungi on substrates in marine environment. In: Misra JK, Tewari JP, Deshmukh SK, Vágvölgyi C (eds) Progress in mycological research, Fungi in/on various substrates, vol III. CRC Press, Baca Raton, pp 97–114

    Google Scholar 

  • Luo Y, Wei X, Yang S, Gao YH, Luo ZH (2020) Fungal diversity in deep-sea sediments from the Magellan seamounts as revealed by a metabarcoding approach targeting the ITS2 regions. Mycology 11:214–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyons JI, Newell SY, Buchan A, Moran MA (2003) Diversity of ascomycete laccase gene sequences in a southeastern US salt marsh. Microb Ecol 45:270–281

    Article  CAS  PubMed  Google Scholar 

  • Manohar CS, Menezes LD, Ramasamy KP, Meena RM (2014) Phylogenetic analyses and nitrate-reducing activity of fungal cultures isolated from the permanent, oceanic oxygen minimum zone of the Arabian Sea. Can J Microbiol 61:217–226

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchloer GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:225–229

    Article  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martín-Rodríguez AJ, Reyes F, Martín J, Pérez-Yépez J, León-Barrios M, Couttolenc A, Espinoza C, Trigos A, Martin VS, Norte M, Fernandez JJ (2014) Inhibition of bacterial quorum sensing by extracts from aquatic fungi: first report from marine endophytes. Mar Drugs 12:5503–5526

    Article  PubMed Central  PubMed  Google Scholar 

  • McClelland JW, Holmes RM, Dunton KH, Macdonald RW (2012) The Arctic Ocean estuary. Estuar Coasts 35:353–368

    Article  CAS  Google Scholar 

  • Medema MH, Fischbach MA (2015) Computational approaches to natural product discovery. Nat Chem Biol 11:639–648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB et al (2015) Minimum information about a biosynthetic gene cluster. Nat Chem Biol 11:625–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Megan ND, Kathryn LVA, David OD (2001) Spatial patterns in macroalgal chemical defenses. In: JB MC, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, FL, pp 301–324

    Google Scholar 

  • Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Mitchison-Field LM, Vargas-Muñiz JM, Stormo BM, Vogt EJ, Van Dierdonck S, Pelletier JF, Ehrlich C, Lew DJ, Field CM, Gladfelter AS (2019) Unconventional cell division cycles from marine-derived yeasts. Curr Biol 29:3439–3456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohamed DJ, Martiny JB (2011) Patterns of fungal diversity and composition along a salinity gradient. ISME J 5:379–388

    Article  PubMed  Google Scholar 

  • Montaser R, Luesch H (2011) Marine natural products: a new wave of drugs? Future Med Chem 3:1475–1489

    Article  CAS  PubMed  Google Scholar 

  • Muehlstein LK, Amon JP, Leffler DL (1987) Phototaxis in the marine fungus Rhizophycium littoreum. Appl Environ Microbiol 53:1819–1821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab M, Miyazaki M (2011) Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ Microbiol 13:2359–2370

    Article  CAS  PubMed  Google Scholar 

  • Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J, Takai K, Horikoshi K (2010) Fungal diversity in deep-sea sediments – the presence of novel fungal groups. Fungal Ecol 3:316–325

    Article  Google Scholar 

  • Nagano Y, Miura T, Nishi S, Lima AO, Nakayama C, Pellizari VH, Fujikura K (2017) Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo plateau. Deep Sea Res Part II Top Studies Oceanogr 146:59–67

    Article  Google Scholar 

  • Nagano Y, Miura T, Tsubouchi T, Lima AO, Kawato M, Fujiwara Y, Fujikura K (2020) Cryptic fungal diversity revealed in deep-sea sediments associated with whale-fall chemosynthetic ecosystems. Mycology 11:263–278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naranjo-Ortiz MA, Gabaldón T (2019) Fungal evolution: diversity, taxonomy and phylogeny of the fungi. Bio Rev 94:2101–2137

    Article  Google Scholar 

  • Navarri M, Jégou C, Meslet-Cladière L, Brillet B, Barbier G, Burgaud G, Fleury Y (2016) Deep subseafloor fungi as an untapped reservoir of amphipathic antimicrobial compounds. Mar Drugs 14:50

    Article  PubMed Central  CAS  Google Scholar 

  • Newell SY (2001) Spore-expulsion rates and extents of blade occupation by ascomycetes of the smooth-cordgrass standing-decay system. Bot Mar 44:277–285

    Article  Google Scholar 

  • Newell S, Porter D (2000) Microbial secondary production from salt marsh-grass shoots, and its known and potential fates. In: Weinstein M, Kreeger D (eds) Concepts and controversies in tidal marsh ecology. Springer, Netherlands, pp 159–185

    Google Scholar 

  • Newell SY, Wasowski J (1995) Sexual productivity and spring intramarsh distribution of a key saltmarsh microbial secondary producer. Estuaries 18:241–249

    Article  Google Scholar 

  • Newell SY, Porter D, Lingle WL (1996) Lignocellulolysis by ascomycetes (fungi) of a saltmarsh grass (smooth cordgrass). Microsc Res Tech 33:32–46

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770–803

    Article  CAS  PubMed  Google Scholar 

  • Nicoletti R, Trincone A (2016) Bioactive compounds produced by strains of Penicillium and Talaromyces of marine origin. Mar Drugs 14:37

    Article  PubMed Central  CAS  Google Scholar 

  • Niu S, Liu D, Hu X, Proksch P, Shao Z, Lin W (2014) Spiromastixones A–O, antibacterial chlorodepsidones from a deep-sea-derived Spiromastix sp. fungus. J Nat Prod 77:1021–1030

    Article  CAS  PubMed  Google Scholar 

  • Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One 10:e0133085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nowrousian M, Stajich JE, Chu M, Engh I, Espagne E, Halliday K, Kamerewerd J, Kempken F, Knab B, Kuo HC (2010) De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genet 6:e100891

    Google Scholar 

  • Numata A, Takahashi C, Ito Y, Takada T, Kawai K, Usami Y, Matsumura E, Imachi M, Ito T, Hasegawa T (1993) Communesins, cytotoxic metabolites of a fungus isolated from a marine alga. Tet Lett 34:2355–2358

    Article  CAS  Google Scholar 

  • Oberbeckmann S, Osborn AM, Duhaime MB (2016) Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One 11:e0159289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogaki MB, de Paula MT, Ruas D, Pellizzari FM, García-Laviña CX, Rosa LH (2019) Marine fungi associated with Antarctic macroalgae. In: Castro-Sowinski S (ed) The ecological role of micro-organisms in the Antarctic environment. Springer polar science. Springer, Cham, pp 239–255

    Chapter  Google Scholar 

  • Oppong-Danquah E, Parrot D, Blümel M, Labes A, Tasdemir D (2018) Molecular networking-based metabolome and bioactivity analyses of marine-adapted fungi co-cultivated with phytopathogens. Front Microbiol 9:2072

    Article  PubMed Central  PubMed  Google Scholar 

  • Orsi WD (2018) Ecology and evolution of seafloor and subseafloor microbial communities. Nat Rev Microbiol 16:671–683

    Article  CAS  PubMed  Google Scholar 

  • Orsi WD, Edgcomb VP, Christman GD, Biddle JF (2013a) Gene expression in the deep biosphere. Nature 499:205–208

    Article  CAS  PubMed  Google Scholar 

  • Orsi W, Biddle JF, Edgcomb V (2013b) Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS One 8:e56335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Overy DP, Rämä T, Oosterhuis R, Walker AK, Pang KL (2019) The neglected marine fungi, sensu stricto, and their isolation for natural products’ discovery. Mar Drugs 17:42

    Article  CAS  PubMed Central  Google Scholar 

  • Pachiadaki MG, Rédou V, Beaudoin DJ, Burgaud G, Edgcomb VP (2016) Fungal and prokaryotic activities in the marine subsurface biosphere at Peru margin and Canterbury Basin inferred from RNA-based analyses and microscopy. Front Microbiol 7:846

    Article  PubMed Central  PubMed  Google Scholar 

  • Paço A, Duarte K, da Costa JP, Santos PSM, Pereira R, Pereira ME, Freitas AC, Duarte AC, Rocha-Santos TAP (2017) Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci Total Environ 586:10–15

    Article  CAS  PubMed  Google Scholar 

  • Pang KL (2002) Systematics of the Halosphaeriales: which morphological characters are important? In: Hyde K (ed) Fungi in marine environments. Fungal Diversity Press, Hong Kong, pp 35–57

    Google Scholar 

  • Pang KL, Chiang MWL, Vrijmoed LLP (2008) Havispora longyearbyenensis gen. et sp. nov.: an arctic marine fungus from Svalbard, Norway. Mycologia 100:291–295

    Google Scholar 

  • Pang KL, Jheng JS, Jones EBG (2011) Marine mangrove fungi of Taiwan. National Taiwan Ocean University Press, Keelung, pp 1–131

    Google Scholar 

  • Pang KL, Overy DP, Jones EG, da Luz CM, Burgaud G, Walker AK et al (2016) ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: toward a new consensual definition. Fungal Biol Rev 30:163–175

    Article  Google Scholar 

  • Pang K, Guo SY, Chen IA, Burgaud G, Luo ZH, Dahms HU, Hwang JS, Lin YL, Huang JS, Ho TW, Tsang LM, Chiang MWL, Cha HJ (2019) Insights into fungal diversity of a shallow-water hydrothermal vent field at Kueishan Island, Taiwan by culture-based and metabarcoding analyses. PLoS One 14:e0226616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pang KL, Chiang MWL, Guo SY, Shih CY, Dahms HU, Hwang JS, Cha HJ (2020) Growth study under combined effects of temperature, pH and salinity and transcriptome analysis revealed adaptations of aspergillus terreus NTOU4989 to the extreme conditions at Kueishan Island hydrothermal vent Field, Taiwan. PLoS One 15:e0233621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panzer K, Yilmaz P, Weiss M, Reich L, Richter M, Wiese J, Schmaljohann R, Labes A, Imhoff JF, Glöckner FO, Reich M (2015) Identification of habitat-specific biomes of aquatic fungal communities using a comprehensive nearly full-length 18S rRNA dataset enriched with contextual data. PLoS One 10:e0134377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Passarini MRZ, Rodrigues MVN, da Silva M, Sette LD (2011) Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar Pollut Bull 62:364–370

    Article  CAS  PubMed  Google Scholar 

  • Perini L, Gostinčar C, Gunde-Cimerman N (2019) Fungal and bacterial diversity of Svalbard subglacial ice. Sci Rep 9:20230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petersen LE, Kellermann MY, Schupp PJ (2020) Secondary metabolites of marine microbes: from natural products chemistry to chemical ecology. In: Jungblut S, Liebich V, Bode-Dalby M (eds) YOUMARES 9 – the oceans: our research, our future: proceedings of the 2018 conference for YOUng MArine RESearcher in Oldenburg, Germany. Springer International Publishing, Cham, pp 159–180

    Chapter  Google Scholar 

  • Picard KT (2017) Coastal marine habitats harbor novel early-diverging fungal diversity. Fungal Ecol 25:1–13

    Article  Google Scholar 

  • Pilantanapak A, Jones EBG, Eaton Rod A (2005) Marine fungi on Nypa fruticans in Thailand. Bot Mar 48:365–373

    Article  Google Scholar 

  • Poli A, Bovio E, Ranieri L, Varese GC, Prigione V (2020) Fungal diversity in the Neptune Forest: comparison of the mycobiota of Posidonia oceanica, Flabellia petiolata, and Padina pavonica. Front Microbiol 11:933

    Article  PubMed Central  PubMed  Google Scholar 

  • Polinski JM, Bucci JP, Gasser M, Bodnar AG (2019) Metabarcoding assessment of prokaryotic and eukaryotic taxa in sediments from Stellwagen Bank national marine sanctuary. Sci Rep 9:1–8

    Article  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  CAS  PubMed  Google Scholar 

  • Porter DF, Springer SR, Padman L, Fricker HA, Tinto KJ, Riser SC, Bell RE, Ice Team ROSETTA (2019) Evolution of the seasonal surface mixed layer of the Ross Sea, Antarctica, observed with autonomous profiling floats. J Geophys Res Oceans 124:4934–4953

    Article  Google Scholar 

  • Priest T, Fuchs B, Amann R, Reich M (2020) Diversity and biomass dynamics of unicellular marine fungi during a spring phytoplankton bloom. Environ Microbiol 23:448–463

    Article  CAS  PubMed  Google Scholar 

  • Prince RC (2005) The microbiology of marine oil spill bioremediation. In: Oliver B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 317–335

    Google Scholar 

  • Qin M, Wu S, Li A, Zhao F, Feng H et al (2019) LRScaf: improving draft genomes using long noisy reads. BMC Genomics 20:955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quémener M, Mara P, Schubotz F, Beaudoin D, Li W, Pachiadaki M, Sehein TR, Sylvan JB, Li J, Barbier G, Edgcomb VP, Burgaud G (2020) Meta-omics highlights the diversity, activity and adaptations of fungi in deep ocean crust. Environ Microbiol 22:3950–3967

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar C, Raghukumar S, Sheelu G, Gupta SM, Nath BN, Rao BR (2004) Buried in time: culturable fungi in a deep-sea sediment core from the Chagos trench. Indian Ocean Deep-Sea Res Part 1 51:1759–1768

    Article  CAS  Google Scholar 

  • Raghukumar C, Damare S, Singh P (2010) A review on deep-sea fungi: occurrence, diversity and adaptations. Bot Mar 53:479–492

    Article  Google Scholar 

  • Rai PK, Lee J, Brown RJ, Kim KH (2020) Micro-and nanoplastic pollution: behavior, microbial ecology, and remediation technologies. J Clean Prod 291:125240

    Article  CAS  Google Scholar 

  • Rämä T, Nordén J, Davey ML, Mathiassen GH, Spatafora JW, Kauserud H (2014) Fungi ahoy! Diversity on marine wooden substrata in the high north. Fungal Ecol 8:46–58

    Article  Google Scholar 

  • Rämä T, Hassett BT, Bubnova E (2017) Arctic marine fungi: from filaments and flagella to operational taxonomic units and beyond. Bot Mar 60:433–452

    Article  CAS  Google Scholar 

  • Rao TE, Imchen M, Kumavath R (2017) Marine enzymes: production and applications for human health. Adv Food Nut Res 80:149–163

    Article  CAS  Google Scholar 

  • Rapp JZ, Fernández-Méndez M, Bienhold C, Boetius A (2018) Effects of ice-algal aggregate export on the connectivity of bacterial communities in the Central Arctic Ocean. Front Microbiol 9:1035

    Article  PubMed Central  PubMed  Google Scholar 

  • Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344

    Article  CAS  PubMed  Google Scholar 

  • Rédou V, Ciobanu MC, Pachiadaki MG, Edgcomb V, Alain K, Barbier G, Burgaud G (2014) In-depth analyses of deep subsurface sediments using 454-pyrosequencing reveals a reservoir of buried fungal communities. FEMS Microbiol Ecol 90:908–921

    Article  CAS  PubMed  Google Scholar 

  • Rédou V, Navarri M, Meslet-Cladière L, Barbier G, Burgaud G (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 81:3571–3583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rédou V, Vallet M, Meslet-Cladière L, Kumar A, Pang KL, Pouchus YF et al (2016a) Marine fungi. In: Stal LJ, Cretoiu MS (eds) The marine microbiome: an untapped source of biodiversity and biotechnological potential. Springer International Publishing, Cham, pp 99–153

    Chapter  Google Scholar 

  • Rédou V, Kumar A, Hainaut M, Henrissat B, Record E et al. (2016b) Draft genome sequence of the deep-sea ascomycetous filamentous fungus Cadophora malorum Mo12 from the mid-Atlantic ridge reveals its biotechnological potential. Genome Announc 4(4), e00467–16.

    Google Scholar 

  • Rédou V, Kumar A, Hainaut M, Henrissat B, Record E et al. (2016c). Draft genome sequence of the deep-sea basidiomycetous yeast Cryptococcus sp. strain Mo29 reveals its biotechnological potential. Genome Announc 4(4), e00461–16.

    Google Scholar 

  • Richards TA, Jones MDM, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522

    Article  Google Scholar 

  • Richards TA, Leonard G, Mahé F, del Campo J, Romac S, Jones MDM et al (2015) Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc R Soc B 282:2015–2243

    Article  CAS  Google Scholar 

  • Richards TA, Leonard G, Wideman JG (2017) What defines the “kingdom” fungi? The Fungal Kingdom, pp. 57–77

    Google Scholar 

  • Rojas-Jimenez K, Rieck A, Wurzbacher C, Jürgens K, Labrenz M, Grossart HP (2019) A salinity threshold separating fungal communities in the Baltic Sea. Front Microbiol 10:680

    Article  PubMed Central  PubMed  Google Scholar 

  • Roullier C, Guitton Y, Valery M, Amand S, Prado S, Robiou du Pont T, Grovel O, Pouchus YF (2016) Automated detection of natural halogenated compounds from LC-MS profiles–application to the isolation of bioactive chlorinated compounds from marine-derived fungi. Anal Chem 88:9143–9150

    Article  CAS  PubMed  Google Scholar 

  • Sajna KV, Sukumaran RK, Gottumukkala LD, Pandey A (2015) Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. Bioresour Technol 191:133–139

    Article  CAS  PubMed  Google Scholar 

  • Sakayaroj JPS, Supaphon O, Jones EBG, Phongpaichit S (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers 42:27–45

    Article  Google Scholar 

  • Sakayaroj J, Preedanon S, Phongpaichit S, Buatong J, Chaowalit P, Rukachaisirikul V (2012) Diversity of endophytic and marine-derived fungi associated with marine plants and animals. In Marine Fungi (pp. 291–328). Chapter 16. De Gruyter.

    Google Scholar 

  • Sánchez C (2020) Fungal potential for the degradation of petroleum-based polymers: an overview of macro-and microplastics biodegradation. Biotechnol Adv 40:107501

    Article  CAS  PubMed  Google Scholar 

  • Sander T, Freyss J, von Korff M, Rufener C (2015) DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 55:460–473

    Article  CAS  PubMed  Google Scholar 

  • Schmit JP, Shearer CA (2004) Geographical and host distribution of lignicolous mangrove microfungi. Bot Mar 47:496–500

    Article  Google Scholar 

  • Scholthof KBG (2007) The disease triangle: pathogens, the environment and society. Nat Rev Microbiol 5:152–156

    Article  CAS  PubMed  Google Scholar 

  • Scholz B, Küpper FC, Vyverman W, Ólafsson HG, Karsten U (2017) Chytridiomycosis of marine diatoms-the role of stress physiology and resistance in parasite-host recognition and accumulation of defense molecules. Mar Drugs 15:26

    Article  PubMed Central  CAS  Google Scholar 

  • Sen S, Borah SN, Bora A, Deka S (2017) Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3. Microb Cell Factories 16:95

    Article  CAS  Google Scholar 

  • Shekhar S, Sundaramanickam A, Balasubramanian T (2015) Biosurfactant producing microbes and their potential applications: a review. Crit Rev Env Sci Tech 45:1522–1554

    Article  CAS  Google Scholar 

  • Sheridan KJ, Dolan SK, Doyle S (2015) Endogenous cross-talk of fungal metabolites. Front Microbiol 5:732

    Article  PubMed Central  PubMed  Google Scholar 

  • Silva RDCF, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2014) Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 15:12523–12542

    Article  PubMed Central  CAS  Google Scholar 

  • Singh RP, Reddy CR (2015) Unraveling the functions of the macroalgal microbiome. Front Microbiol 6:1488

    PubMed  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2010) Phylogenetic diversity of culturable fungi from the deep-sea sediments of the central Indian Basin and their growth characteristics. Fungal Divers 40:89–102

    Article  Google Scholar 

  • Singh RP, Raghukumar C, Verma P, Shouche Y (2012) Assessment of fungal diversity in deep-sea sediments by multiple primer approach. World J Microbiol Biotechnol 28:659–667

    Article  CAS  PubMed  Google Scholar 

  • Sparrow FK (1973) Three monocentric chytrids. Mycologia 65:1331–1336

    Article  Google Scholar 

  • Spatafora JW, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Am J Bot 85:1569–1580

    Article  CAS  PubMed  Google Scholar 

  • Stanke M, Morgenstern B (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33:465–467

    Article  CAS  Google Scholar 

  • Stanley SJ (1991) The autecology and ultrastructure interaction between Mycosphaerella ascophylli Cotton, Lautitia danica (Berlese) Schatz, Mycaureola dilsea Maire et Chemin and their respective marine algal hosts. PhD Thesis, University of Portsmouth, UK

    Google Scholar 

  • Steliga T, Jakubowicz P, Kapusta P (2012) Changes in toxicity during in situ bioremediation of weathered drill wastes contaminated with petroleum hydrocarbons. Bioresour Technol 125:1–10

    Article  CAS  PubMed  Google Scholar 

  • Suetrong S, Jones EBG (2006) Marine discomycetes: a review. Indian J Mar Sci 35:291–296

    Google Scholar 

  • Svahn KS, Göransson U, El-Seedi H, Bohlin L, Larsson DJ, Olsen B, Chryssanthou E (2012) Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment. Infect Ecol Epidemiol 2:11591

    Google Scholar 

  • Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana trench. FEMS Microbiol Lett 152:279–285

    Article  CAS  PubMed  Google Scholar 

  • Takami H, Kobata K, Nagahama T, Kobayashi H, Inoue A, Horikoshi K (1999) Biodiversity in deep-sea sites located near the south part of Japan. Extremophiles 3:97–102

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Yu L, Xu W, Zhang X, Xu X, Wang Q, Wei S, Qiu Y (2020) Fungal diversity of deep-sea sediments in mid-oceanic ridge area of the East Pacific and the south Indian oceans. Bot Mar 63:183–196

    Article  Google Scholar 

  • Tao Y, Wolinska J, Hölker F, Agha R (2020) Light intensity and spectral distribution affect chytrid infection of cyanobacteria via modulation of host fitness. Parasitology 147:1206–1215

    Article  CAS  PubMed  Google Scholar 

  • Taylor JD, Cunliffe M (2016) Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J 10:2118–2128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Terrado R, Medrinal E, Dasilva C, Thaler M, Vincent WF, Lovejob C (2011) Protist community composition during spring in an Arctic flaw lead polynya. Polar Biol 34:1901–1914

    Article  Google Scholar 

  • Thomas F, Cosse A, Le Panse S, Kloareg B, Potin P, Leblanc C (2014) Kelps feature systemic defense responses: insights into the evolution of innate immunity in multicellular eukaryotes. New Phytol 204:567–576

    Article  CAS  PubMed  Google Scholar 

  • Tisthammer KH, Cobian GM, Amend AS (2016) Global biogeography of marine fungi is shaped by the environment. Fungal Ecol 19:39–46

    Article  Google Scholar 

  • Torzilli AP, Sikaroodi M, Chalkley D, Gillevet PM (2006) A comparison of fungal communities from four salt marsh plants using automated ribosomal intergenic spacer analysis (ARISA). Mycologia 98:690–698

    Article  CAS  PubMed  Google Scholar 

  • Tourneroche A, Lami R, Hubas C, Blanchet E, Vallet M, Escoubeyrou K, Paris A, Prado S (2019) Bacterial-fungal interactions in the kelp Endomicrobiota drive autoinducer-2 quorum sensing. Front Microbiol 10:1693

    Article  PubMed Central  PubMed  Google Scholar 

  • Tourneroche A, Lami R, Burgaud G, Coulon-Dommart I, Li X, Gachon C, Gèze M, Boeuf D, Prado S (2020) The bacterial and fungal microbiota of Saccharina latissima (Laminariales, Phaeophyceae). Front Mar Sci 7:587566

    Article  Google Scholar 

  • Urbanek AK, Rymowicz W, Mirończuk AM (2018) Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl Microbiol Biotechnol 102:7669–7678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vallet M, Strittmatter M, Murúa P, Lacoste S, Dupont J, Hubas C, Genta-Jouve G, Gachon CMM, Kim GH, Prado S (2018) Chemically-mediated interactions between macroalgae, their fungal endophytes, and protistan pathogens. Front Microbiol 9:3161

    Article  PubMed Central  PubMed  Google Scholar 

  • Vallet M, Chong YM, Tourneroche A, Genta-Jouve G, Hubas C, Lami R, Gachon C, Klochkova T, Chan KG, Prado S (2020) Novel α-hydroxy γ-butenolides of kelp endophytes disrupt bacterial cell-to-cell signaling. Front Mar Sci 7:601

    Article  Google Scholar 

  • Van de Vossenberg BTLH, Warris S, Nguyen HDT, van Gent-Pelzer MPE, Joly DL, van de Geest HC, Bonants PJM, Smith DS, Lévesque A, van der Lee TAJ (2019) Comparative genomics of chytrid fungi reveal insights into the obligate biotrophic and pathogenic lifestyle of Synchytrium endobioticum. Sci Rep 9:8672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Santen JA, Jacob G, Singh AL, Aniebok V, Balunas MJ, Bunsko D, Neto FC, Castaño-Espriu L, Chang C, Clark TN, Cleary Little JL, Delgadillo DA, Dorrestein PC, Duncan KR, Egan JM, Galey MM, Haeckl FPJ, Hua A, Hughes AH, Iskakova D, Khadilkar A, Lee JH, Lee S, LeGrow N, Liu DY, Macho JM, McCaughey CS, Medema MH, Neupane RP, O’Donnell TJ, Paula JS, Sanchez JM, Shaikh AF, Soldatou S, Terlouw BR, Tran TA, Valentine M, van der Hooft JJJ, Vo DA, Wang M, Wilson D, Zink KE, Linington RG (2019) The natural products atlas: an open access knowledge base for microbial natural products discovery. ACS Cent Sci 5:1824–1833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Venkatachalam A, Thirunavukkarasu N, Suryanarayanan TS (2015) Distribution and diversity of endophytes in seagrasses. Fungal Ecol 13:60–65

    Article  Google Scholar 

  • Vrijmoed LLP (2000) Isolation and culture of higher filamentous fungi. In: Hyde KD, Pointing SB (eds) Marine mycology—a practical approach. Fungal Diversity Press, Hong Kong, pp 1–20

    Google Scholar 

  • Wadham JL, Hawkings JR, Tarasov L, Gregoire LJ, Spencer RGM, Gutjahr M, Ridgwell A, Kohfeld KE (2019) Ice sheets matter for the global carbon cycle. Nature Comm 10:3567

    Article  CAS  Google Scholar 

  • Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F (2012) The second skin: ecological role of epibiotic biofilms on marine organisms. Front Microbiol 3:292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wainwright BJ, Zahn GL, Zushi J, Lee NLY, Ooi JLS, Lee JN, Huang D (2019a) Seagrass-associated fungal communities show distance decay of similarity that has implications for seagrass management and restoration. Ecol Evol 9:11288–11297

    Article  PubMed Central  PubMed  Google Scholar 

  • Wainwright BJ, Bauman AG, Zahn GL, Todd PA, Huang D (2019b) Characterization of fungal biodiversity and communities associated with the reef macroalga Sargassum ilicifolium reveals fungal community differentiation according to geographic locality and algal structure. Mar Biodivers 49:2601–2608

    Article  Google Scholar 

  • Walker AK, Campbell J (2010) Marine fungal diversity: a comparison of natural and created salt marshes of the north-Central Gulf of Mexico. Mycologia 102:513–521

    Article  PubMed  Google Scholar 

  • Wang YT, Xue YR, Liu CH (2015) A brief review of bioactive metabolites derived from deep-sea fungi. Mar Drugs 13:4594–4616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, He W, Huang X, Tian X, Liao S, Yang B, Wang F, Zhou X, Liu Y (2016) Antifungal new oxepine-containing alkaloids and xanthones from the deep-sea-derived fungus aspergillus versicolor SCSIO 05879. J Agric Food Chem 64:2910–2916

    Article  CAS  PubMed  Google Scholar 

  • Wang YP, Guo XH, Zheng PF, Zou SB, Li GH, Gong J (2017) Distinct seasonality of chytrid-dominated benthic fungal communities in the neritic oceans (Bohai Sea and North Yellow Sea). Fungal Ecol 30:55–66

    Article  Google Scholar 

  • Wang YQ, Sen B, He YD, Xie ND, Wang GY (2018) Spatiotemporal distribution and assemblages of planktonic fungi in the coastal waters of the Bohai Sea. Front Microbiol 9:584

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang YQ, Sen K, He YD, Xie YX, Wang GY (2019) Impact of environmental gradients on the abundance and diversity of planktonic fungi across coastal habitats of contrasting trophic status. Sci Total Environ 683:822–833

    Article  CAS  PubMed  Google Scholar 

  • Weber T (2014) In silico tools for the analysis of antibiotic biosynthetic pathways. Int J Med Microbiol 304:230–235

    Article  CAS  PubMed  Google Scholar 

  • Wichard T, Charrier B, Mineur F, Bothwell JH, Clerck OD, Coates JC (2015) The green seaweed Ulva: a model system to study morphogenesis. Front Plant Sci 6:72

    Article  PubMed Central  PubMed  Google Scholar 

  • Wright RJ, Erni-Cassola G, Zadjelovic V, Latva M, Christie-Oleza JA (2020) Marine plastic debris: a new surface for microbial colonization. Environ Sci Technol 54:11657–11672

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Chen R, Liu M, Liu D, Li X, Wang S, Niu S, Guo P, Lin W (2015) Spiromastixones inhibit foam cell formation via regulation of cholesterol efflux and uptake in RAW264.7 macrophages. Mar Drugs 13:6352–6365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu Z, Wang Y, Liu D, Proksch P, Yu S, Lin W (2016) Antioxidative phenolic compounds from a marine-derived fungus aspergillus versicolor. Tetrahedron 72:50–57

    Article  CAS  Google Scholar 

  • Xu W, Pang KL, Luo ZH (2014) High fungal diversity and abundance recovered in the deep-sea sediments of the Pacific Ocean. Microb Ecol 68:688–698

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Xu GM, Li XM, Li CS, Wang BG (2015) Characterization of a newly isolated marine fungus aspergillus dimorphicus for optimized production of the anti-tumor agent wentilactones. Mar Drugs 13:7040–7054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu W, Luo ZH, Guo S, Pang KL (2016) Fungal community analysis in the deep-sea sediments of the Pacific Ocean assessed by comparison of ITS, 18S and 28S ribosomal DNA regions. Deep Sea Res Part I Oceanogr Res Pap 109:51–60

    Article  CAS  Google Scholar 

  • Xu W, Guo S, Pang KL, Luo ZH (2017) Fungi associated with chimney and sulfide samples from a south mid-Atlantic ridge hydrothermal site: distribution, diversity and abundance. Deep Sea Res Part I Oceanogr Res Pap 123:48–55

    Article  CAS  Google Scholar 

  • Xu W, Gao Y, Gong L, Li M, Pang KL, Luo ZH (2019) Fungal diversity in the deep-sea hadal sediments of the yap trench by cultivation and high throughput sequencing methods based on ITS rRNA gene. Deep Sea Res Part I Oceanogr Res Pap 145:125–136

    Article  CAS  Google Scholar 

  • Yao Q, Wang J, Zhang X, Nong X, Xu X, Qi S (2014) Cytotoxic polyketides from the deep-sea-derived fungus Engyodontium album DFFSCS021. Mar Drugs 12:5902–5915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin Y, Mao X, Yang J, Chen X, Mao F et al (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:445–451

    Article  CAS  Google Scholar 

  • Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostinčar C, Gunde-Cimerman N (2013) Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics 14:1–21

    Article  CAS  Google Scholar 

  • Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47:7137–7146

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Feng X, Wang F (2016) Diversity and metabolic potentials of subsurface crustal microorganisms from the western flank of the mid-Atlantic ridge. Front Microbiol 7:363

    PubMed Central  PubMed  Google Scholar 

  • Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E, Yeo WL, Cobb RE, Enghiad B, Ang EL, Zhao H (2017) CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol 13:607–609

    Article  CAS  Google Scholar 

  • Zhang X, Li SJ, Li JJ, Liang ZZ, Zhao CQ (2018) Novel natural products from extremophilic fungi. Mar Drugs 16:194

    Article  CAS  PubMed Central  Google Scholar 

  • Zhou Y, Li YH, Yu HB, Liu XY, Lu XL, Jiao BH (2017) Furanone derivative and sesquiterpene from Antarctic marine-derived fungus Penicillium sp. S-1-18. J Asian Nat Prod Res 20:1108–1115

    Article  CAS  PubMed  Google Scholar 

  • Zuccaro A, Mitchell JI (2005) Fungal communities of seaweeds. Mycol Ser 23:533

    Article  CAS  Google Scholar 

  • Zuccaro A, Schulz B, Mitchell JI (2003) Molecular detection of ascomycetes associated with Fucus serratus. Mycol Res 107:1451–1466

    Article  CAS  PubMed  Google Scholar 

  • Zuccaro A, Summerbell RC, Gams W, Schroers HJ, Mitchell JI (2004) A new Acremonium species associated with Fucus spp., and its affinity with a phylogenetically distinct marine Emericellopsis clade. Stud Mycol 50:283–297

    Google Scholar 

  • Zuccaro A, Schoch CL, Spatafora JW, Kohlmeyer J, Draeger S, Mitchell JI (2008) Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol 74:931–941

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AK is a recipient of Ramalingaswami Re-Retry Faculty Fellowship (Grant; BT/RLF/Re-entry/38/2017) from Department of Biotechnology (DBT), Government of India (GOI). BTH is supported by the Seasonal Ice Zone Ecology Project (SIZE). VE acknowledges funding from the National Science Foundation grants OCE-1658031 and OCE-1829903. GB and AP acknowledge funding from the French National Research Agency grant ANR-19-CE04–0001-01 (MycoPLAST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëtan Burgaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burgaud, G. et al. (2022). Marine Fungi. In: Stal, L.J., Cretoiu, M.S. (eds) The Marine Microbiome. The Microbiomes of Humans, Animals, Plants, and the Environment, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-90383-1_5

Download citation

Publish with us

Policies and ethics