Skip to main content

A Holistic Approach for Understanding the Role of Microorganisms in Marine Ecosystems

  • Chapter
  • First Online:
The Marine Microbiome

Abstract

Marine ecosystems are among the largest aquatic ecosystems on Earth. They harbor a wealth of biodiversity, provide essential ecosystem services, and are a rich source of bioproducts. Within these marine ecosystems, microorganisms play a crucial role in recycling chemical elements such as carbon, nitrogen, and sulfur. It has become increasingly recognized that microorganisms interact with marine macroorganisms, such as fish, corals, sponges, and seagrasses. Therefore, in order to obtain a comprehensive understanding of the role of microorganisms in marine ecosystems, a holistic scientific research approach is needed. This chapter will provide examples of studies that used systems biology to study the role of microorganisms in the cycling of chemical elements and nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Antich A, Palacín C, Cebrian E, Golo R, Wangensteen OS, Turon X (2020) Marine biomonitoring with eDNA: can metabarcoding of water samples cut it as a tool for surveying benthic communities? Mol Ecol. https://doi.org/10.1111/mec.15641

  • Aylward FO, Santoro AE (2020) Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems 5:e00415–20

    Google Scholar 

  • Azam A, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol 10:257–263

    Article  Google Scholar 

  • Baker BJ, Saw JH, Lind AE et al (2016) Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat Microbiol 1:16002

    Article  CAS  PubMed  Google Scholar 

  • Baker BJ, Appler KE, Gong X (2020) New microbial biodiversity in marine sediments. Ann Rev Mar Sci 13:161–175

    Article  PubMed  Google Scholar 

  • Banos S, Lentendu G, Kopf A et al (2018) A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiol 18:190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbier EB (2017) Marine ecosystems services. Curr Biol 27:R507–R510

    Article  CAS  PubMed  Google Scholar 

  • Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK et al (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35:725–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos A, Freitas M, de Almeida AM, Martins JC, Domínguez-Pérez D, Osório H, Vasconcelos V, Reis Costa P (2020) OMICs approaches in diarrhetic shellfish toxins research. Toxins 12:493

    Article  CAS  PubMed Central  Google Scholar 

  • Cooney EC, Okamoto N, Cho A, Hehenberger E, Richards TA, Santoro AE, Worden AZ, Leander BS, Keelin PJ (2020) Single-cell transcriptomics of Abedinium reveals a new early-branching dinoflagellate lineage. Genome Biol Evol 12:2417–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen CM, Aneja KK, Beyhan S, Cho CE, Woloszynek S, Convertino M, McCoy SJ, Zhang Y, Anderson MZ, Alvarez-Ponce D, Smirnova E, Karstens L, Dorrestein PC, Li H, Gupta AS, Cheung K, Gloeckner Powers J, Zhao Z, Rosen GL (2020) Emerging priorities for microbiome research. Front Microbiol 11:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Czajka JJ, Abernathy MH, Benites VT, Baidoo EEK, Deming JW, Tang YJ (2018) Model metabolic strategy for heterotrophic bacteria in the cold ocean based on Colwellia psychrerythraea 34H. Proc Natl Acad Sci USA 11:12507–12512

    Article  CAS  Google Scholar 

  • Davidov K, Iankelevich-Kounio E, Yakovenko I et al (2020) Identification of plastic-associated species in the Mediterranean Sea using DNA metabarcoding with Nanopore MinION. Sci Rep 10:17533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson K, Bresnan E (2009) Shellfish toxicity in UK waters: a threat to human health? Environ Health 8(S12):1–4

    Google Scholar 

  • Decho AW, Gutierrez T (2017) Microbial extracellular polymeric substances (EPSs) in Ocean systems. Front Microbiol 8:922

    Article  PubMed  PubMed Central  Google Scholar 

  • Dombrowski N, Teske AP, Baker BJ (2018) Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat Commun 9:4999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duarte CM, Ngugi DK, Alam I, Pearman J, Kamau A, Eguiluz VM, Gojobori T, Acinas SG, Gasol JM, Bajic V, Irigoien X (2020) Sequencing effort dictates gene discovery in marine microbial metagenomes. Environ Microbiol 22:4589–4603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyksma S, Bischof K, Fuchs BM et al (2016) Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J 8:1939–1953

    Article  CAS  Google Scholar 

  • Eloe-Fadrosh EA (2019) Genome gazing in ammonia-oxidizing archaea. Nat Rev Microbiol 17:531

    Article  CAS  PubMed  Google Scholar 

  • Eloe-Fadrosh EA, Ivanova NN, Woyke T, Kyrpides NC (2016) Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nat Microbiol 1:15032

    Article  CAS  PubMed  Google Scholar 

  • Ettinger CL, Vann LE, Eisen JA (2021) The global diversity of the Zostera marina microbiome. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02795-20

  • Falkowski PG, Fenchel T, DeLong EF (2008) The microbial engines that drive the Earth’s biogeochemical cycles. Science 320:1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Fondi M, Fani R (2017) Constraint-based metabolic modelling of marine microbes and communities. Mar Genom 34:1–10

    Article  Google Scholar 

  • Gardner JJ, Boyle NR (2017) The use of genome-scale metabolic network reconstruction to predict fluxes and equilibrium composition of N-fixing versus C-fixing cells in a diazotrophic cyanobacterium, Trichodesmium erythraeum. BMC Syst Biol 11:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graf JS, Schorn S, Kitzonger K, Ahmerkamp S, Woehle C, Huettel B, Schubert CJ, Kuypers MMM, Milucka J (2021) Anaerobic endosymbiont generates energy for ciliate host by denitrification. Nature 591:445–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosskopf T, Soyer OS (2014) Synthetic microbial communities. Curr Op Microbiol 18:72–77

    Article  CAS  Google Scholar 

  • Haro-Moreno JM, Rodriguez-Valera F, Rosselli R, Martinez-Hernandez F, Roda-Garcia JJ, Gomez ML, Fornas O, Martinez-Garcia M, López-Pérez M (2020) Ecogenomics of the SAR11 clade. Environ Microbiol 22:1748–1763

    Article  CAS  PubMed  Google Scholar 

  • Henson MW, Lanclos VC, Pitre DM, Weckhorst JL, Lucchesi AM, Cheng C, Temperton B, Thrash JC (2020) Expanding the diversity of bacterioplankton isolates and modeling isolation efficacy with large-scale dilution-to-extinction cultivation. Appl Environ Microbiol 86:e00943–e00920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera M, Klein SG, Schmidt-Roach E, Campana S, Cziesielski MJ, Chen JC, Duarte CM, Aranda M (2020) Unfamiliar partnership limit cnidarian holobiont acclimation to warming. Global Change Biol 26:5539–5553

    Article  Google Scholar 

  • Holterman M, Schratzberger M, Helder J (2019) Nematodes as evolutionary commuters between marine, freshwater and terrestrial habitats. Biol J Linnean Soc 128:756–767

    Article  Google Scholar 

  • Hu B, Xu P, Ma L, Chen D, Wang J, Dai X, Huang L, Du W (2021) One cell at a time: droplet-based microbial cultivation, screening and sequencing. Mar Life Sci Technol 3:169–188

    Article  Google Scholar 

  • Imachi H, Nobu MK, Nakahara N et al (2020) Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577:519–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jégousse C, Vannier P, Groben R, Glöckner FO, Marteinsson V (2021) A total of 219 metagenome-assembled genomes of microorganisms from Icelandic marine waters. PeerJ 2021:9:e11112. Published 2021 Apr 2. https://doi.org/10.7717/peerj.11112

  • Kamentsky LA (1973) “Cytology automation”. Adv Biol Med Phys 14:93–161. https://doi.org/10.1016/B978-0-12-005214-1.50007-8. ISBN 9780120052141. PMID 4579761

  • Karsenti E, Acinas SG, Bork P et al (2011) A holistic approach to marine eco-system biology. PLoS Biol 9:e1001177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashtan N, Roggensack SE, Berta-Thompson JW, Grinberg M, Stepanauskas R, Chisholm SW (2017) Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus. ISME J 11:1997–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaster A-K, Sobol MS (2020) Microbial single-cell omics: the crux of the matter. Appl Microbiol Biotechnol 104:8209–8220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerou M, Ponce-Toledo R, Zhao R, Abby SS, Hirai M, Nomaki H, Takaki Y, Nunoura T, Jøorgensen SL, Schleper C (2021) Genomes of Thaumarchaeota from deep sea sediments reveal specific adaptations of three independently evolved lineages. ISME J. https://doi.org/10.1038/s41396-021-00962-6

  • Kvist T, Ahring BK, Lasken RS, Westermann P (2007) Specific single-cell isolation and genomic amplification of uncultured microorganisms. Appl Microbiol Biotechnol 74:926–935

    Article  CAS  PubMed  Google Scholar 

  • Labonté JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, Sullivan MB, Woyke T, Wommack KE, Stepanauskas R (2015) Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton. ISME J 9:2386–2399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Landry Z, Swan BK, Herndl GJ, Stepanauskas R, Giovannoni SJ (2017) SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. mBio 8:e00413-17

    Google Scholar 

  • Levy S, Elek A, Grau-Bové X, Menéndez-Bravo S, Iglesias M, Tanay A, Mass T, Sebé-Pedrós A (2021) A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity. Cell 184:1–15

    Article  CAS  Google Scholar 

  • Lewis WH, Tahon G, Geesink P, Sousa DZ, Ettema TJG (2021) Innovations to culturing the uncultured microbial majority. Nat Rev Microbiol 19:225–240

    Article  CAS  PubMed  Google Scholar 

  • Li F, Xie W, Yuan Q, Luo H, Li P, Chen T, Zhao X, Wang Z, Ma H (2018) Genome-scale metabolic model analysis indicates low energy production efficiency in marine ammonia-oxidizing archaea. AMB Express 27:106

    Article  CAS  Google Scholar 

  • Liu Z, Hu SK, Campbell V, Tatters AO, Heidelberg KB, Caron DA (2017) Single-cell transcriptomics of small microbial eukaryotes: limitations and potential. ISME J 11:1282–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Xue Y, Stirling E, Ye S, Xu J, Ma B (2021) FACS-iChip: a high-efficiency iChip system for microbial ‘dark matter’ mining. Mar Life Sci Technol 3:162–168

    Article  Google Scholar 

  • Martinez-Garcia M, Brazel D, Poulton NJ, Swan BK, Gomez ML, Masland D, Sieracki ME, Stepanauskas R (2012) Unveiling in situ interactions between marine protists and bacteria through single cell sequencing. ISME J 6:703–707

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Hernandez F, Fornas O, Lluesma Gomez M, Bolduc B, de la Cruz Peña MJ, Martínez Martínez J, Anton J, Gasol JM, Rosselli R, Rodriguez-Valera F, Sullivan MB, Acinas SG, Martinez-Garcia M (2017) Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat Commun 8:15892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez Martínez J, Martinez-Hernandez F, Martinez-Garcia M (2020) Single-virus genomics and beyond. Nat Rev Microbiol 18:705–716

    Article  PubMed  CAS  Google Scholar 

  • Mock T, Daines SJ, Geider R, Collins S, Metodiev M, Millar AJ, Moulton V, Lenton TM (2017) Bridging the gap between omics and earth system science to better understand how environmental change impacts marine microbes. Global Change Biol 22:61–67

    Article  Google Scholar 

  • Murawski SA, Ainsworth CH, Gilbert S, Hollander DJ, Paris CB, Schlüter M, Wetzel DL (2020) Scenarios and responses to future deep oil spills: fighting the next war. Springer, Berlin, 881 p

    Book  Google Scholar 

  • Muyzer G (2016) Marine microbial systems ecology: microbial networks in the sea. In: Stal LJ, Cretoiu MS (eds) The marine microbiome. Springer, Cham, pp 335–344

    Chapter  Google Scholar 

  • Nayfach S, Roux S et al (2021) A genomic catalog of Earth’s microbiomes. Nat Biotechnol 39:499–509

    Article  CAS  PubMed  Google Scholar 

  • Olson RJ, Zettler ER, DuRand MD (1993) Phytoplankton analysis using flow cytometry. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis, Boca Raton, pp 175–186

    Google Scholar 

  • Pachiadaki MG, Brown JM, Brown J, Bezuidt O, Berube PM, Biller SJ, Poulton NJ, Burkart MD, La Clair JJ, Chisholm SW, Stephanauskas R (2019) Charting the complexity of the marine microbiome through single-cell genomics. Cell 179:1623–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paez-Espino D, Eloe-Fadrosh E, Pavlopoulos G et al (2016) Uncovering Earth’s virome. Nature 536:425–430

    Article  CAS  PubMed  Google Scholar 

  • Paez-Espino D, Chen IA, Palaniappan K, Ratner A, Chu K, Szeto E, Pillay M, Huang J, Markowitz VM, Nielsen T, Huntemann M, Reddy TBK, Pavlopoulos GA, Sullivan MB, Campbell BJ, Chen F, McMahon K, Hallam SJ, Denef V, Cavicchioli R, Caffrey SM, Streit WR, Webster J, Handley KM, Salekdeh GH, Tsesmetzis N, Setubal JC, Pope PB, Liu WT, Rivers AR, Ivanova NN, Kyrpides NC (2017) IMG/VR: a database of cultured and uncultured DNA viruses and retroviruses. Nucleic Acids Res 45:D457–D465

    Google Scholar 

  • Perkovic M, Harsch R, Ferraro G (2016) Oil spills in the Adriatic Sea. In: Carpenter A, Kostianoy A (eds) Oil pollution in the Mediterranean Sea: Part II. The handbook of environmental chemistry, vol 84. Springer, Cham

    Google Scholar 

  • Queiroz LL, Bendia AG, Duarte RTD et al (2020) Bacterial diversity in deep-sea sediments under influence of asphalt seep at the São Paulo Plateau. Ant Leeuwenhoek 113:707–717

    Article  CAS  Google Scholar 

  • Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35:833–844

    Article  CAS  PubMed  Google Scholar 

  • Raes J, Bork P (2008) Molecular eco-systems biology: towards an understanding of community function. Nat Rev Microbiol 6:693–699

    Article  CAS  PubMed  Google Scholar 

  • Roux S, Hawley AK, Torres Beltran M, Scofield M, Schwientek P, Stepanauskas R, Woyke T, Hallam SJ, Sullivan MB (2014) Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single cell- and metagenomics. Elife 3:e03125

    Article  PubMed  PubMed Central  Google Scholar 

  • Saito MA, Bertrand EM, Duffy ME, Gaylord DA, Held NA, Hervey WJ, Hettich RL, Jagtap PD, Janech MG, Kinkade DB, Leary DH, McIlvin MR, Moore EK, Morris RM, Neely BA, Nunn BL, Saunders JK, Shepherd AI, Symmonds NI, Walsh DA (2019) Progress and challenges in ocean metaproteomics and proposed best practices for data sharing. J Proteome Res 18:1461–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salazar G, Paoli L, Alberti A et al (2019) Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179:1068–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sczyrba A, Hofmann P, Belmann P et al (2017) Critical assessment of metagenome interpretation—a benchmark of metagenomics software. Nat Methods 14:1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahzad K, Loor JJ (2012) Application of top-down and bottom-up systems approaches in ruminant physiology and metabolism. Curr Genomics 13:379–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakya M, Lo C-C, Chain PSG (2019) Advances and challenges in metatranscriptomic analysis. Front Genet 10:904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieracki CK, Sieracki ME, Yentsch CS (1998) An imaging-in-flow system for automated analysis of marine microplankton. Mar Ecol Prog Ser 168:285–296

    Article  Google Scholar 

  • Staley JT, Konopka A (1985) Measurements of in situ activities of non-photosynthetic microorganisms in aquatic and terrestrial habitats. Ann Rev Microbiol 39:321–346

    Article  CAS  Google Scholar 

  • Stepanauskas R (2012) Single cell genomics: an individual look at microbes. Curr Opin Microbiol 15:613–620

    Article  CAS  PubMed  Google Scholar 

  • Swan SC, Turner AD, Bresnan E, Whyte C, Paterson RF, McNeill S, Mitchell E, Davidson K (2018) Dinophysis acuta in Scottish coastal waters and its influence on diarrhetic shellfish toxin profiles. Toxins 28:399

    Google Scholar 

  • Thompson LR, Haroon MF, Shibl AA, Cahill MJ, Ngugi DK, Williams GJ, Morton JT, Knight R, Goodwin KD, Stingl U (2019) Red Sea SAR11 and Prochlorococcus single-cell genomes reflect globally distributed pangenomes. Appl Environ Microbiol 85:e00369–e00319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thrash JC, Temperton B, Swan BK, Landry ZC, Woyke T, DeLong EF, Stepanauskas R, Giovannoni SJ (2014) Single-cell enables comparative genomics of a deep ocean SAR11 bathtype. ISMEJ 8:1440–1451

    Article  CAS  Google Scholar 

  • Ustick LJ, Larkin AA, Garcia CA, Garcia NS, Brock ML, Lee JA, Wiseman NA, Moore JK, Martiny AC (2021) Metagenomic analysis reveals global-scale patterns of oceanic nutrient limitation. Science 372:287–291

    Article  CAS  PubMed  Google Scholar 

  • van Oevelen D, Van den Meersche K, Meysman FJR, Soetaert K, Middelburg JJ, Vezina A (2010) Quantifying food web flows using linear inverse models. Ecosystems 13:32–45

    Article  Google Scholar 

  • Wang J, Chen L, Chen Z, Zhang W (2015) RNA-seq based transcriptomic analysis of single bacterial cells. Integr Biol (Camb) 7:1466–1476

    Article  CAS  Google Scholar 

  • Waterworth SC, Kalinski J-CJ, Madonsela LS, Parker-Nance S, Kwan JC, Dorrington RA (2020) Family matters: the genomes of conserved bacterial symbionts provide insight into specialized metabolic relationships with their sponge host. bioRxiv. https://doi.org/10.1101/2020.12.09.417808

  • Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. BioScience 49:781–788

    Article  Google Scholar 

  • Wilson WH, Gilg IC, Moniruzzaman M, Field EK, Koren S, LeCleir GR, Martínez Martínez J, Poulton NJ, Swan BK, Stepanauskas R, Wilhelm SW (2017) Genomic exploration of individual giant ocean viruses. ISME J 11:1736–1745

    Article  PubMed  PubMed Central  Google Scholar 

  • Woyke T, Doud DFR, Schulz F (2017) The trajectory of microbial single-cell sequencing. Nat Meth 14:1045–1054. https://doi.org/10.1038/nmeth.4469

    Article  CAS  Google Scholar 

  • Yadav L, Tamene F, Göös H, Van Drogen A, Katainen R, Aebersold R, Gstaiger M, Varjosalo M (2017) Systematic analysis of human protein phosphatase interactions and dynamics. Cell Syst 4:430–444

    Article  CAS  PubMed  Google Scholar 

  • Yentsch CS, Yentsch CM (2008) Single cell analysis in biological oceanography and its evolutionary implications. J Plankton Res 30:107–117

    Article  CAS  Google Scholar 

  • Yilmaz P, Kottman R, Field D et al (2011) Minimum information about a marker gene sequence (MiMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat Biotechnol 29:415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon HS, Price DC, Stepanauskas R, Rajah VD, Sieracki ME, Wilson WH, Yang EC, Duffy S, Bhattacharya D (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332:714–717

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-H, Ahmad W, Zhu X-Y, Chen J, Austin B (2021) Viable but nonculturable bacteria and their resuscitation: implications for cultivating uncultured marine microorganisms. Mar Life Sci Technol 3:189–203

    Article  Google Scholar 

  • Zhou Z, Liu Y, Lloyd K, Pan J, Yang Y, Gu J-D, Li M (2019) Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). ISME J 13:885–901

    Article  CAS  PubMed  Google Scholar 

  • Zou D, Liu H, Li M (2020) Community, distribution and ecological roles of estuarine Archaea. Front Microbiol 11:2060

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Gerard Muyzer was financially supported by the Research Priority Area Systems Biology of the University of Amsterdam. We thank Alex Valm for the micrograph of a microbial community that was used in the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Muyzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muyzer, G., Cretoiu, M.S. (2022). A Holistic Approach for Understanding the Role of Microorganisms in Marine Ecosystems. In: Stal, L.J., Cretoiu, M.S. (eds) The Marine Microbiome. The Microbiomes of Humans, Animals, Plants, and the Environment, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-90383-1_16

Download citation

Publish with us

Policies and ethics