Skip to main content

Global Plant Invasions on the Rise

  • Chapter
  • First Online:
Global Plant Invasions

Abstract

The data available on the extent of global plant invasion shows a sharp increase in cases and associated costs over the last several decades. Indeed, most of the mixing of the planet’s flora due to human agency has occurred in the last 200 years. As in the case of rapidly emerging human pandemics that demand timely action, there have been urgent calls to stem the tide of plant invasions and prevent further spread and associated environmental and socioeconomic impacts. However, the response to most actual and potential plant invasions is far from simple. Naturalized plants have a broad range of impacts, such that a response specific to the particular plant species and habitat is often advisable, along with a meaningful dialog among stakeholders. Given the massive scale in changes of the flora in various regions, many naturalized species with minimal impacts are best left alone, whereas other naturalized species that have massive impacts warrant management to prevent further, often irreversible, effects on ecosystems. There exists a considerable array of invasive plants in this category, most of which are truly global, distributed on multiple continents. Of these high-impact invasive plant species, 37 are on the list of the International Union for Conservation of Nature (IUCN) 100 worst invasive alien species. Most of these high-impact species continue to spread in their non-native ranges, including sensitive island and mountain habitats. They also cause a range of socioeconomic impacts on agriculture, forestry, transportation, infrastructure, and cultural values. If current trends in plant invasions continue and are exacerbated by increasing global trade and climate change, many challenges lie ahead. We cannot turn back the clock to recover natural habitats free of invasive plants in most cases, but there are still ways of promoting ecosystem health through reducing populations of high-impact invasive plants and promoting holistic approaches to planet healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins S, Shabbir A (2014) Biology, ecology and management of the invasive parthenium weed (Parthenium hysterophorus L.). Pest Manag Sci 70:1023–1029

    Article  CAS  PubMed  Google Scholar 

  • Anderson NO (2019) Throwing out the bathwater but keeping the baby: lessons learned from purple loosestrife and reed canarygrass. HortTechnology 29:539–548

    Article  Google Scholar 

  • Anderson NO, Gomez N, Galatowitsch SM (2006) A non-invasive crop ideotype to reduce invasive potential. Euphytica 148:185–202

    Article  Google Scholar 

  • Bacher S, Blackburn TM, Essl F et al (2018) Socio-economic impact classification of alien taxa (SEICAT). Methods Ecol Evol 9:159–168

    Article  Google Scholar 

  • Barbier E, Gwatipedza J, Knowler D et al (2011) The North American horticultural industry and the risk of plant invasion. Agric Econ 42(s1):113–130

    Article  Google Scholar 

  • Barrett LG, Legros M, Kumaran N et al (2019) Gene drives in plants: opportunities and challenges for weed control and engineered resilience. Proc Royal Soc B 286(1911):20191515

    Article  CAS  Google Scholar 

  • Baruch Z, Nozawa S, Johnson E et al (2019) Ecosystem dynamics and services of a paired Neotropical montane forest and pine plantation. Rev Biol Trop. https://doi.org/10.15517/rbt.v67i1.33445

  • Bassett IJ, Crompton CW (1975) The biology of Canadian weeds 11. Ambrosia artemisiifolia L. and A. psilostachya DC. Can J Plant Sci 55:463–476

    Article  Google Scholar 

  • Becerra PI, Cavieres L, Bustamante RO (2020) Effect of the invasive exotic herb Centaurea solstitialis on plant communities of a semiarid ecosystem. Plant Ecol Divers 13:267–275

    Article  Google Scholar 

  • Bellard C, Cassey P, Blackburn TM (2016) Alien species as a driver of recent extinctions. Biol Lett 12:20150623

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellard C, Rysman JF, Leroy B et al (2017) A global picture of biological invasion threat on islands. Nat Ecol Evol 1:1862–1869

    Article  PubMed  Google Scholar 

  • Bergstrom DM, Lucieer A, Kiefer K et al (2009) Indirect effects of invasive species removal devastate world heritage island. J Appl Ecol 46:73–81

    Google Scholar 

  • Blackburn TM, Pyšek P, Bacher S et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    Article  PubMed  Google Scholar 

  • Blackburn TM, Essl F, Evans T et al (2014) A unified classification of alien taxa based on the magnitude of their environmental impacts. PLoS Biol 12:e1001850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn TM, Bellard C, Ricciardi A (2019) Alien versus native species as drivers of recent extinctions. Front Ecol Environ 17:203–207

    Article  Google Scholar 

  • Blondel B, Hoffmann B, Courchamp F (2014) The end of invasion biology: intellectual debate does not equate to nonsensical science. Biol Invasions 16:977–979

    Article  Google Scholar 

  • Bolpagni R (2021) Towards global dominance of invasive alien plants in freshwater ecosystems: the dawn of the Exocene? Hydrobiologia 848:2259–2279

    Article  Google Scholar 

  • Bonnett GD, Kushner JNS, Saltonstall K (2014) The reproductive biology of Saccharum spontaneum L.: implications for management of this invasive weed in Panama advancing research on alien species and biological invasions. NeoBiota 20:61–79. https://doi.org/10.3897/neobiota.20.6163

    Article  Google Scholar 

  • Brondizio ES, Settele J, Díaz S et al (eds) (2019) Global assessment report on biodiversity and ecosystem Services of the Intergovernmental Science-Policy Platform on biodiversity and ecosystem services. IPBES Secretariat, Bonn

    Google Scholar 

  • Burke M, Grime J (1996) An experimental study of plant community invasibility. Ecology 77:776–790

    Article  Google Scholar 

  • Burnett K, Kaiser B, Roumasset J (2007) Economic lessons from control efforts for an invasive species: Miconia calvescens in Hawaii. J For Econ 13:151–167

    Google Scholar 

  • Canavan S, Richardson DM, Visser V et al (2017) The global distribution of bamboos: assessing correlates of introduction and invasion. AoB PLANTSs 9:plw078. https://doi.org/10.1093/aobpla/plw078

    Article  Google Scholar 

  • Cassini MH (2020) A review of the critics of invasion biology. Biol Rev 95:1467–1478

    Article  PubMed  Google Scholar 

  • Chacón G, Gagnon D, Paré D (2009) Comparison of soil properties of native forests, Pinus patula plantations and adjacent pastures in the Andean highlands of southern Ecuador: land use history or recent vegetation effects? Soil Use Manag 25:427–433. https://doi.org/10.1111/j.1475-2743.2009.00233.x

    Article  Google Scholar 

  • Chacón-Madrigal E (2009) Las plantas invasoras en Costa Rica: ¿Cuáles acciones debemos realizar? Biocenosis 22:31–40

    Google Scholar 

  • Chen J, Burns E, Fleming M et al (2020) Impact of climate change on population dynamics and herbicide resistance in kochia (Bassia scoparia (L.) A.J. Scott). Agron 10:1700. https://doi.org/10.3390/agronomy10111700

    Article  CAS  Google Scholar 

  • Christenhusz MJM, Toivonen TK (2008) Giants invading the tropics: the oriental vessel fern, Angiopteris evecta (Marattiaceae). Biol Invasions 10:1215–1228. https://doi.org/10.1007/s10530-007-9197-7

    Article  Google Scholar 

  • Chytrý M, Maskell LC, Pino J et al (2008) Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol 45:448–458

    Article  Google Scholar 

  • Clements DR (2017) Invasive weed species and their effects. In: Zimdahl R (ed) Integrated weed management for sustainable agriculture. Burleigh Dodds Science Publishing, Cambridge, UK, pp 65–88

    Google Scholar 

  • Clements DR, Corapi WV (2005) Paradise lost? Setting the boundaries around invasive species. Perspect Sci Christ Faith 57:44–54

    Google Scholar 

  • Clements DR, Daehler CC (2007) Introducing a new series: Biology and Impacts of Pacific Island Invasive Species. Pac Sci 61:1

    Google Scholar 

  • Clements DR, DiTommaso A (2011) Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res 51:227–240

    Article  Google Scholar 

  • Clements DR, Jones VL (2021a) Ten ways that weed evolution defies human management efforts amidst a changing climate. Agron 11:284. https://doi.org/10.3390/agronomy11020284

    Article  CAS  Google Scholar 

  • Clements DR, Jones VL (2021b) Rapid evolution of invasive weeds under climate change: present evidence and future research needs. Front Agron 3:10. https://doi.org/10.3389/fagro.2021.664034

    Article  Google Scholar 

  • Clements DR, Larsen T, Grenz J (2016) Knotweed management strategies in North America with the advent of widespread hybrid Bohemian knotweed, regional differences, and the potential for biocontrol via the psyllid Aphalara itadori Shinji. Invasive Plant Sci Manage 9:60–70

    Article  Google Scholar 

  • Clements DR, Day MD, Oeggerli V et al (2019) Site-specific management is crucial to control of a global weed, Mikania micrantha. Weed Res 59:155–169

    Article  Google Scholar 

  • Coetzee JA, Hill MP, Ruiz-Téllez T et al (2017) Monographs on invasive plants in Europe N° 2: Eichhornia crassipes (Mart.) Solms. Bot Lett 164:303–326

    Article  Google Scholar 

  • Colautti RI, MacIsaac HJ (2004) A neutral terminology to define ‘invasive’ species. Divers Distrib 10:135–141

    Article  Google Scholar 

  • Colleran BP, Goodall KE (2015) Extending the timeframe for rapid response and best management practices of flood-dispersed Japanese knotweed (Fallopia japonica). Invasive Plant Sci Manage 8:250–254

    Article  CAS  Google Scholar 

  • Courchamp F, Fournier A, Bellard C et al (2017) Invasion biology: specific problems and possible solutions. Trends Ecol Evol 32:13–22

    Article  PubMed  Google Scholar 

  • Courchamp F, Hulme P, Pyšek P (2020) Uncertainty in native range definitions and invasion biology: response to Pereyra. Conserv Biol 34:1041–1043. https://doi.org/10.1111/cobi.13528

    Article  PubMed  Google Scholar 

  • Crooks J (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Écoscience 12:316–329

    Article  Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211

    Article  Google Scholar 

  • Daehler CC, Denslow JS, Ansari S et al (2004) A risk-assessment system for screening out invasive pest plants from Hawaii and other Pacific islands. Conserv Biol 18:360–368

    Article  Google Scholar 

  • Daniel TF, Rodríguez D (2016) New distribution records for Acanthaceae in El Salvador with a list of native and naturalized species noting occurrences by department. Phyton 31:1–8

    Google Scholar 

  • Davis MA (2006) Invasion biology 1958-2005: the pursuit of science and conservation. In: Cadotte MW, McMahon SM, Fukami T (eds) Conceptual ecology and invasion biology: reciprocal approaches to nature. Springer, Dordrecht, pp 35–64

    Chapter  Google Scholar 

  • Davis MA (2020) Let’s welcome a variety of voices to invasion biology. Cons Biol 34:1329–1330

    Article  Google Scholar 

  • Davis M, Thompson K (2000) Eight ways to be a colonizer; two ways to be an invader: a proposed nomenclature scheme for invasion ecology. Bull Ecol Soc Am 81:226–230

    Google Scholar 

  • Davis MA, Thompson K (2001) Invasion terminology: should ecologists define their terms differently than others? No, not if we want to be of any help! Bull Ecol Soc Am 82:206

    Google Scholar 

  • Davis MA, Chew MK, Hobbs RJ et al (2011) Don’t judge species on their origins. Nature 474:153–154

    Article  CAS  PubMed  Google Scholar 

  • Dawson W, Moser D, van Kleunen M et al (2017) Global hotspots and correlates of alien species richness across taxonomic groups. Nat Ecol Evol 1:0186. https://doi.org/10.1038/s41559-017-0186

    Article  Google Scholar 

  • Day MD, Clements DR, Gile C et al (2016) Biology and impacts of Pacific Island invasive species. 13. Mikania micrantha, mile-a-minute (Magnoliopsida: Asteraceae). Pacific Sci 70:257–285

    Article  Google Scholar 

  • Dechoum MS, Sampaio AB, Ziller SR et al (2018) Invasive species and the global strategy for plant conservation: how close has Brazil come to achieving target 10? Rodriguésia 69:1567–1576. https://doi.org/10.1590/2175-7860201869407

  • Dehnen-Schmutz K, Boivin T, Essl F et al (2018) Alien futures: what is on the horizon for biological invasions? Divers Distrib 24:1149–1157

    Article  Google Scholar 

  • Dextrase AJ, Mandrak NE (2006) Impacts of alien invasive species on freshwater fauna at risk in Canada. Biol Invasions 8:13–24

    Article  Google Scholar 

  • di Castri F (1989) History of biological invasions with special emphasis on the Old World. In: Drake JA, Mooney HA, di Castri F et al (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 1–30

    Google Scholar 

  • Diagne C, Leroy B, Gozlan A-C et al (2020) InvaCost, a public database of economic costs of biological invasions worldwide. Sci Data 7:277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diagne C, Leroy B, Vaissière AC et al (2021) High and rising economic costs of biological invasions worldwide. Nature 1-6. https://doi.org/10.1038/s41586-021-03405-6

  • Diez JM, Williams PA, Randall RP et al (2009) Learning from failures: testing broad taxonomic hypotheses about plant naturalization. Ecol Lett 12:1174–1183

    Article  PubMed  Google Scholar 

  • Ding J, Mack RN, Lu P et al (2008) China’s booming economy is sparking and accelerating biological invasions. Bioscience 58:317–324

    Article  Google Scholar 

  • Dodd AJ (1940) The biological campaign against prickly-pear. The Commonwealth Prickly Pear Board. Government Printer, Brisbane

    Google Scholar 

  • Duenas MA, Hemming DJ, Roberts A et al (2021) The threat of invasive species to IUCN-listed critically endangered species: A systematic review. Glob Ecol Conserv:e01476

    Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, Grantham

    Book  Google Scholar 

  • Epanchin-Niell RS (2017) Economics of invasive species policy and management. Biol Invasions 19:3333–3354

    Article  Google Scholar 

  • Epanchin-Niell R, McAusland C, Liebhold A et al (2021) Biological invasions and international trade: managing a moving target. Rev Environ Econ Policy 15:180–190

    Article  Google Scholar 

  • Espeland E (2013) Predicting the dynamics of local adaptation in invasive species. J Arid Land 5:268–274

    Article  Google Scholar 

  • Fennell M, Gallagher T, Vintro L et al (2014) Using soil seed banks to assess temporal patterns of genetic variation in invasive plant populations. Ecol Evol 4:1648–1658

    Article  PubMed  PubMed Central  Google Scholar 

  • Flores-Moreno H, García-Treviño E, Letten A et al (2015) In the beginning: phenotypic change in three invasive species through their first two centuries since introduction. Biol Invasions 17:1215–1225

    Article  Google Scholar 

  • Foxcroft LC, Pyšek P, Richardson DM et al (2017) Plant invasion science in protected areas: progress and priorities. Biol Invasions 19:1353–1378

    Article  Google Scholar 

  • Fraterrigo JM, Rembelski MK (2021) Frequent fire reduces the magnitude of positive interactions between an invasive grass and soil microbes in temperate forests. Ecosystems 1–18. https://doi.org/10.1007/s10021-021-00615-x

  • Funk J, Matzek V, Bernhardt M et al (2014) Broadening the case for invasive species management to include impacts on ecosystem services. Bioscience 64:58–63

    Article  Google Scholar 

  • Gantchoff MG, Wilton CM, Belant JL (2018) Factors influencing exotic species richness in Argentina’s national parks. PeerJ 6:e5514. https://doi.org/10.7717/peerj.5514

    Article  PubMed  PubMed Central  Google Scholar 

  • Giljohann KM, Hauser CE, Williams NSG et al (2011) Optimizing invasive species control across space: willow invasion management in the Australian Alps. J Appl Ecol 48:1286–1294. https://doi.org/10.1111/j.1365-2664.2011.02016.x

    Article  Google Scholar 

  • Gillies S, Clements DR, Grenz J (2016) Knotweed (Fallopia sp.) invasion of North America utilizes hybridization, epigenetics, seed dispersal (unexpectedly) and an arsenal of physiological tactics. Invasive Plant Sci Manag 9:71–80

    Article  Google Scholar 

  • Goodwin B, McAllister A, Fahrig L (1999) Predicting invasiveness of plant species based on biological information. Cons Biol 13:422–426

    Article  Google Scholar 

  • Guo WY, van Kleunen M, Pierce S et al (2019) Domestic gardens play a dominant role in selecting alien species with adaptive strategies that facilitate naturalization. Ecol Biogeogr 28:628–639

    Article  Google Scholar 

  • Gurr MG, You M (2016) Conservation biological control of pests in the molecular era: new opportunities to address old constraints. Front Plant Sci 6:1255

    Article  PubMed  PubMed Central  Google Scholar 

  • Hager HD, Mccoy KD (1998) The implications of accepting untested hypotheses: a review of the effects of purple loosestrife (Lythrum salicaria) in North America. Biodivers Conserv 7:1069–1079

    Article  Google Scholar 

  • Harlan JR, deWet JM (1965) Some thoughts about weeds. Econ Bot 19:16–24

    Article  Google Scholar 

  • Harron P, Joshi O, Edgar CB et al (2020) Predicting Kudzu (Pueraria montana) spread and its economic impacts in timber industry: a case study from Oklahoma. PLoS One 15:e0229835. https://doi.org/10.1371/journal.pone.0229835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey AJ, Rew LJ, Prather TS et al (2020) Effects of elevated temperature and CO2 concentration on seedling growth of Ventenata dubia (Leers) Coss. and Bromus tectorum L. Agron 10:1718. https://doi.org/10.3390/agronomy10111718

    Article  CAS  Google Scholar 

  • Hawkins CL, Bacher S, Essl F et al (2015) Framework and guidelines for implementing the proposed IUCN environmental impact classification for alien taxa (EICAT). Divers Distrib 21:1360–1363

    Article  Google Scholar 

  • Heringer G, Thiele J, Meira-Neto JAA et al (2019) Biological invasion threatens the sandy-savanna Mussununga ecosystem in the Brazilian Atlantic Forest. Biol Invasions 21:2045–2057. https://doi.org/10.1007/s10530-019-01955-5

    Article  Google Scholar 

  • Herrera I, Nassar JM (2009) Reproductive and recruitment traits as indicators of the invasive potential of Kalanchoe daigremontiana (Crassulaceae) and Stapelia gigantea (Apocynaceae) in a Neotropical arid zone. J Arid Environ 73:978–986

    Article  Google Scholar 

  • Horvitz N, Wang R, Wan FH et al (2017) Pervasive human‐mediated large‐scale invasion: analysis of spread patterns and their underlying mechanisms in 17 of China’s worst invasive plants. J Ecol 105:85–94

    Google Scholar 

  • Hui C, Richardson DM (2017) Managing biological invasions in the Anthropocene. In: Invasions dynamics. Oxford University Press, Oxford, pp 294–308

    Chapter  Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

    Article  Google Scholar 

  • Hulme PE (2012) Weed risk assessment: a way forward or a waste of time? J Appl Ecol 49:10–19

    Article  Google Scholar 

  • Hulme PE (2020) Plant invasions in New Zealand: global lessons in prevention, eradication and control. Biol Invasions 22:1539–1562

    Article  Google Scholar 

  • Hulme PE (2021a) Unwelcome exchange: international trade as a direct and indirect driver of biological invasions worldwide. One Earth 4:666–679

    Article  Google Scholar 

  • Hulme PE (2021b) Advancing One Biosecurity to address the pandemic risks of biological invasions. Bioscience 71:708–721

    Google Scholar 

  • Hulme PE, Bacher S, Kenis M et al (2008) Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol 45:403–414. https://doi.org/10.1111/j.1365-2664.2007.01442.x

    Article  Google Scholar 

  • Hulme PE, Pyšek P, Jarošík V et al (2013) Bias and error in understanding plant invasion impacts. Trends Ecol Evol 28:212–218

    Article  PubMed  Google Scholar 

  • Hulme PE, Pauchard A, Pyšek P (2015) Challenging the view that invasive non-native plants are not a significant threat to the floristic diversity of Great Britain. Proc Natl Acad Sci U S A 112:E2988–E2989. https://doi.org/10.1073/pnas.1506517112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IUCN (International Union for Conservation of Nature) (2000) Guidelines for the prevention of biodiversity loss caused by alien invasive species. IUCN, Gland

    Google Scholar 

  • Jäger H, Alencastro MJ, Kaupenjohann M et al (2013) Ecosystem changes in Galápagos highlands by the invasive tree Cinchona pubescens. Plant Soil 371:629–640. https://doi.org/10.1007/s11104-013-1719-8

    Article  CAS  Google Scholar 

  • James K, Bradshaw K (2020) Detecting plant species in the field with deep learning and drone technology. Methods Ecol Evol 11:1509–1519

    Article  Google Scholar 

  • Jeschke J, Bacher S, Blackburn T et al (2014) Defining the impact of non-native species. Cons Biol 28:1188–1194

    Article  Google Scholar 

  • Kiruba-Sankar R, Raj JP, Saravanan K et al (2018) Invasive species in freshwater ecosystems–threats to ecosystem services. In: Sivaperuman C, Velmurugan A, Singh K et al (eds) Biodiversity and climate change adaptation in Tropical Islands. Academic Press, Cambridge, MA, pp 257–296

    Google Scholar 

  • Kowarik I, Pyšek P (2012) The first steps towards unifying concepts in invasion ecology were made one hundred years ago: revisiting the work of the Swiss botanist Albert Thellung. Divers Distrib 18:1243–1252

    Article  Google Scholar 

  • Krähmer H (2016) Weeds as crop companions. In: Krähmer H (ed) Atlas of weed mapping. Wiley, Hoboken, pp 133–138

    Chapter  Google Scholar 

  • Kuebbing SE, Nuñez MA (2018) Current understanding of invasive species impacts cannot be ignored: potential publication biases do not invalidate findings. Biodivers Conserv 27:1545–1548

    Article  Google Scholar 

  • Lambdon PW, Pyšek P, Basnou C et al (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149

    Google Scholar 

  • Larkin D (2012) Lengths and correlates of lag phases in upper-Midwest plant invasions. Biol Invasions 14:827–838

    Article  Google Scholar 

  • Lavoie C (2010) Should we care about purple loosestrife? The history of an invasive plant in North America. Biol Invasions 12:1967–1999

    Article  Google Scholar 

  • Leary J, Mahnken BV, Cox LJ et al (2014) Reducing nascent miconia (Miconia calvescens) patches with an accelerated intervention strategy utilizing herbicide ballistic technology. Invasive Plant Sci Manage 7:164–175

    Article  Google Scholar 

  • Lembrechts JJ, Alexander JM, Cavieres LA et al (2017) Mountain roads shift native and non-native plant species’ ranges. Ecography 40:353–364. https://doi.org/10.1111/ecog.02200

    Article  Google Scholar 

  • Lindgren CJ (2012) Biosecurity policy and the use of geospatial predictive tools to address invasive plants: updating the risk analysis toolbox. Risk Anal 32:9–15

    Article  PubMed  Google Scholar 

  • Lopez OR (2012) Introduced alien plant species in the Neotropics: the Panama case. Open Ecol J 5:84–89

    Article  Google Scholar 

  • Lowe S, Browne M, Boudjelas S et al (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database, vol 12. Invasive Species Specialist Group, Auckland

    Google Scholar 

  • Luque GM, Bellard C, Bertelsmeier C et al (2014) The 100th of the world’s worst invasive alien species. Biol Invasions 16:981–985

    Article  Google Scholar 

  • MacDougall AS, Turkington R (2005) Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86:42–55

    Article  Google Scholar 

  • Mack RN (1981) Invasion of Bromus tectorum L. into western North America: an ecological chronicle. Agro-Ecosystems 7:145–165

    Article  Google Scholar 

  • Mack RN, Lonsdale WM (2002) Eradicating invasive plants: hard-won lessons for islands. Turning the tide: the eradication of invasive species. In: Veitch CR, Clout MN (eds) IUCN SSC invasive species specialist group, Gland, pp 164–172

    Google Scholar 

  • Mack RN, Simberloff D, Lonsdale W et al (2000) Biotic invasions: causes, epidemiology, global consequences and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • McDougall KL, Alexander JM, Haider S et al (2011) Alien flora of mountains: global comparisons for the development of local preventive measures against plant invasions. Divers Distrib 17:103–111. https://doi.org/10.1111/j.1472-4642.2010.00713.x

    Article  Google Scholar 

  • McDougall KL, Lembrechts J, Rew LJ et al (2018) Running off the road: roadside non-native plants invading mountain vegetation. Biol Invasions 20:3461–3473. https://doi.org/10.1007/s10530-018-1787-z

    Article  Google Scholar 

  • McGregor K, Watt M, Hulme PE et al (2012) How robust is the Australian weed risk assessment protocol? A test using pine invasions in the Northern and Southern hemispheres. Biol Invasions 14:987–998

    Article  Google Scholar 

  • McKinney M, Lockwood J (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453

    Article  CAS  PubMed  Google Scholar 

  • Meyer JY, Florence J (1996) Tahiti’s native flora endangered by the invasion of Miconia calvescens DC. (Melastomataceae). J Biogeogr 23:775–781

    Article  Google Scholar 

  • Meyerson LA, Mooney HA (2007) Invasive alien species in an era of globalization. Front Ecol Environ 5:199–208

    Article  Google Scholar 

  • Morens DM, Holmes EC, Davis AS et al (2011) Global rinderpest eradication: lessons learned and why humans should celebrate too. J Infect Dis 204:502–505

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris C, Morris L, Leffler A et al (2013) Using long-term datasets to study exotic plant invasions on rangelands in the western United States. J Arid Environ 95:65–74

    Article  Google Scholar 

  • Mosena A, Steinlein T, Beyschlag W (2018) Reconstructing the historical spread of non-native plants in the North American West from herbarium specimens. Flora 242:45–52

    Article  Google Scholar 

  • Munro D, Steer J, Linklater W (2019) On allegations of invasive species denialism. Conserv Biol 33:797–802

    Article  PubMed  PubMed Central  Google Scholar 

  • Murren C, Purvis K, Glasgow D et al (2014) Investigating lag phase and invasion potential of Vitex rotundifolia: a coastal dune exotic. J Coastal Res 30:815–824

    Article  Google Scholar 

  • Nentwig W, Bacher S, Kumschick S et al (2018) More than “100 worst” alien species in Europe. Biol Invasions 20:1611–1621

    Article  Google Scholar 

  • Neve P (2018) Gene drive systems: do they have a place in agricultural weed management? Pest Manag Sci 74:2671–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novoa A, Le Roux JJ, Robertson MP et al (2015) Introduced and invasive cactus species: a global review. AoB Plants 7:plu078. https://doi.org/10.1093/aobpla/plu078

    Article  Google Scholar 

  • Novoa A, Shackleton R, Canavan S et al (2018) A framework for engaging stakeholders on the management of alien species. J Environ Manag 205:286–297

    Article  Google Scholar 

  • Ogden NH, Wilson JRU, Richardson DM et al (2019) Emerging infectious diseases and biological invasions: a call for a One Health collaboration in science and management. R Soc Open Sci 6:181577. https://doi.org/10.1098/rsos.181577

  • Pauchard A, Meyerson LA, Bacher S et al (2018) Biodiversity assessments: origin matters. PLoS Biol 16:e2006686. https://doi.org/10.1371/journal.pbio.2006686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pejchar L, Mooney HA (2009) Invasive species, ecosystem services and human well-being. Trends Ecol Evol 24:497–504

    Article  PubMed  Google Scholar 

  • Pergl J, Brundu G, Harrower CA et al (2020) Applying the Convention on Biological Diversity pathway classification to alien species in Europe. NeoBiota 62:333–363. https://doi.org/10.3897/neobiota.62.53796

  • Perkins T, Phillips B, Baskett M et al (2013) Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol Lett 16:1079–1087

    Article  PubMed  Google Scholar 

  • Pheloung P, Williams P, Halloy S (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manag 57:239–251

    Article  Google Scholar 

  • Pratt CF, Constantine KL, Murphy ST (2017) Economic impacts of invasive alien species on African smallholder livelihoods. Glob Food Sec 14:31–37. https://doi.org/10.1016/j.gfs.2017.01.011

    Article  Google Scholar 

  • Probert AF, Ward DF, Beggs JR et al (2020a) Conceptual risk framework: integrating ecological risk of introduced species with recipient ecosystems. Bioscience 70:71–79

    Google Scholar 

  • Probert AF, Volery L, Kumschick S et al (2020b) Understanding uncertainty in the impact classification for alien taxa (ICAT) assessments. NeoBiota 62:387–405

    Article  Google Scholar 

  • Pyšek P, Hulme PE (2011) Biological invasions in Europe 50 years after Elton: time to sound the ALARM. In: Richardson DM (ed) Fifty years of invasion ecology: the legacy of Charles Elton. Blackwell Publishing, Oxford, pp 73–88

    Google Scholar 

  • Pyšek P, Prach K (1993) Plant invasions and the role of riparian habitats: a comparison of four species alien to Central Europe. J Biogeogr 20:413–420

    Article  Google Scholar 

  • Pyšek P, Richardson DM, Jarošík V (2006) Who cites who in the invasion zoo: insights from an analysis of the most highly cited papers in invasion ecology. Preslia 78:437–468

    Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE et al (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci U S A 107:12157–12162. https://doi.org/10.1073/pnas.1002314107

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyšek P, Pergl J, Essl F et al (2017) Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89:203–274. https://doi.org/10.23855/preslia.2017.203

    Article  Google Scholar 

  • Pyšek P, Dawson W, Essl F et al (2019) Contrasting patterns of naturalized plant richness in the Americas: numbers are higher in the North but expected to rise sharply in the South. Glob Ecol Biogeogr. https://doi.org/10.1111/geb.12891

  • Pyšek P, Hulme PE, Simberloff D et al (2020) Scientists’ warning on invasive alien species. Biol Rev 95:1511–1534. https://doi.org/10.1111/brv.12627

    Article  PubMed  Google Scholar 

  • Quammen D (1998) Planet of weeds: tallying the losses of Earth’s animals and plants. Harper’s Magazine 282(10):57–69

    Google Scholar 

  • Radford I, Cousens R (2000) Invasiveness and comparative life-history traits of exotic and indigenous Senecio species in Australia. Oecologia 125:531–542

    Article  PubMed  Google Scholar 

  • Radosevich SR, Stubbs MM, Ghersa CM (2003) Plant invasions: process and patterns. Weed Sci 51:254–259

    Article  CAS  Google Scholar 

  • Randall RP (2017) A global compendium of weeds. 3rd Ed. Perth

    Google Scholar 

  • Reichard S, White P (2001) Horticulture as a pathway of invasive plant introductions in the United States: Most invasive plants have been introduced for horticultural use by nurseries, botanical gardens, and individuals. Bioscience 51:103–113

    Article  Google Scholar 

  • Rejmánek M, Simberloff D (2017) Origin matters. Environ Conserv 44:97–99

    Article  Google Scholar 

  • Renteria JL, Gardener MR, Panetta FD et al (2012) Management of the invasive hill raspberry (Rubus niveus) on Santiago Island, Galapagos: eradication or indefinite control? Invasive Plant Sci Manag 5:37–46. https://doi.org/10.1614/IPSM-D-11-00043.1

    Article  Google Scholar 

  • Rew LJ, Brummer TJ, Pollnac FW et al (2018) Hitching a ride: seed accrual rates on different types of vehicles. J Environ Manag 206:547–555. https://doi.org/10.1016/j.jenvman.2017.10.060

    Article  Google Scholar 

  • Rhodes LA, McCarl BA (2020) An analysis of climate impacts on herbicide, insecticide, and fungicide expenditures. Agron 10:745. https://doi.org/10.3390/agronomy10050745

    Article  Google Scholar 

  • Ricciardi A, Ryan R (2018) The exponential growth of invasive species denialism. Biol Invasions 20:549–553

    Article  Google Scholar 

  • Ricciardi A, Blackburn TM, Carlton JT et al (2017) Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol Evol 32:464–474. https://doi.org/10.1016/j.tree.2017.03.007

    Article  PubMed  Google Scholar 

  • Richardson DM, Pyšek P (2008) Fifty years of invasion ecology: the legacy of Charles Elton. Divers Distrib 14:161–168

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2004) Invasive conifers: a global survey and predictive framework. Divers Distrib 10:321–331

    Article  Google Scholar 

  • Richardson DM, Ricciardi A (2013) Misleading criticisms of invasion science: a field-guide. Divers Distrib 19:1461–1467. https://doi.org/10.1111/ddi.12150

    Article  Google Scholar 

  • Richardson DM, Pyšek P, Rejmánek M et al (2000) Naturalization and invasion of alien plants – concepts and definitions. Divers Distrib 6:93–107

    Article  Google Scholar 

  • Rumlerová Z, Vilà M, Pergl J et al (2016) Scoring environmental and socioeconomic impacts of alien plants invasive in Europe. Biol Invasions 18:3697–3711

    Article  Google Scholar 

  • Russell JC, Blackburn TM (2017) The rise of invasive species denialism. Trends Ecol Evol 32:3–6

    Article  PubMed  Google Scholar 

  • Sagoff M (2018) Invasive species denialism: a reply to Ricciardi and Ryan. Biol Invasions 10:2723–2729

    Article  Google Scholar 

  • Sakai AK, Wagner WL, Mehrhoff LA (2002) Patterns of endangerment in the Hawaiian flora. Syst Biol 51:276–302

    Article  PubMed  Google Scholar 

  • Sandoya V, Pauchard A, Cavieres LA (2017) Natives and non-natives plants show different responses to elevation and disturbance on the tropical high Andes of Ecuador. Ecol Evol 7:7909–7919. https://doi.org/10.1002/ece3.3270

    Article  PubMed  PubMed Central  Google Scholar 

  • Saul W-C, Roy HE, Booy O et al (2017) Assessing patterns in introduction pathways of alien species by linking major invasion data bases. J Appl Ecol 54:657–669. https://doi.org/10.1111/1365-2664.12819

    Article  Google Scholar 

  • Sax DF, Gaines SD (2008) Species invasions and extinction: the future of native biodiversity on islands. Proc Natl Acad Sci U S A 105:11490–11497. https://doi.org/10.1073/pnas.0802290105

    Article  PubMed  PubMed Central  Google Scholar 

  • Scriver M, Marinich A, Wilson C et al (2015) Development of species-specific environmental DNA (eDNA) markers for invasive aquatic plants. Aquat Bot 122:27–31

    Article  CAS  Google Scholar 

  • Seebens H, Essl F, Dawson W et al (2015) Global trade will accelerate plant invasions in emerging economies under climate change. Glob Change Biol 21:4128–4140

    Article  Google Scholar 

  • Seebens H, Blackburn TM, Dyer EE et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435. https://doi.org/10.1038/ncomms14435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seebens H, Blackburn TM, Dyer EE et al (2018) Global rise in emerging alien species results from increased accessibility of new source pools. PNAS 115:E2264–E2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seebens H, Bacher S, Blackburn TM et al (2021) Projecting the continental accumulation of alien species through to 2050. Glob Chang Biol 27:970–982. https://doi.org/10.1111/gcb.15333

    Article  Google Scholar 

  • Seipel T, Rew LJ, Taylor KT et al (2018) Disturbance type influences plant community resilience and resistance to Bromus tectorum invasion in the sagebrush steppe. Appl Veg Sci 21:385–394

    Article  Google Scholar 

  • Shackleton RT, Larson BM, Nova A et al (2019) The human and social dimensions of invasion science and management. J Environ Manag 229:1–9

    Article  Google Scholar 

  • Sheppard A, Shaw RH, Sforza R (2006) Top 20 environmental weeds for classical biological control in Europe: a review of opportunities, regulations and other barriers to adoption. Weed Res 46:93–117

    Article  Google Scholar 

  • Simberloff D, Martin JL, Genovesi P et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  PubMed  Google Scholar 

  • Smith EG, Harker NK, O’Donovan JT et al (2018) The profitability of diverse crop rotations and other cultural methods that reduce wild oat (Avena fatua). Can J Plant Sci 98:1094–1101

    Article  CAS  Google Scholar 

  • Srivastava V, Roe AD, Keena MA et al (2021) Oh the places they’ll go: improving species distribution modelling for invasive forest pests in an uncertain world. Biol Invasions 23:297–349

    Article  Google Scholar 

  • Taylor BW, Irwin RE (2004) Linking economic activities to the distribution of exotic plants. Proc Natl Acad Sci U S A 101:17725–17730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas G, Leeson J (2007) Tracking long-term changes in the arable weed flora of Canada. In: Clements D, Darbyshire S (eds) Invasive plants: inventories, strategies and action, Topics in Canadian Weed Science, Volume 5. Sainte Anne de Bellevue, Canadian Weed Science Society – Société canadienne de malherbologie, pp 43–69

    Google Scholar 

  • Valduga MO, Zenni RD, Vitule JRS (2016) Ecological impacts of non-native tree species plantations are broad and heterogeneous: a review of Brazilian research. An Acad Bras Cienc 88:1675–1688. https://doi.org/10.1590/0001-3765201620150575

    Article  PubMed  Google Scholar 

  • van Clef M, Stiles E (2001) Seed longevity in three pairs of native and non-native congeners: assessing invasive potential. Northeast Nat 8:301–310

    Article  Google Scholar 

  • Van der Wal R, Fischer A, Selge S et al (2015) Neither the public nor experts judge species primarily on their origins. Environ Conserv 42:349–355

    Article  Google Scholar 

  • van Kleunen M, Dawson W, Essl F et al (2015) Global exchange and accumulation of non-native plants. Nature 525:100–103

    Article  CAS  PubMed  Google Scholar 

  • van Kleunen M, Essl F, Pergl J et al (2018) The changing role of ornamental horticulture in alien plant invasions. Biol Rev 93:1421–1437

    Article  PubMed  Google Scholar 

  • van Kleunen M, Pyšek P, Dawson W et al (2019) The global naturalized alien flora (GloNAF) database. Ecology 100:1–2. https://doi.org/10.1002/ecy.2542

    Article  Google Scholar 

  • van Klinken RD, Panetta F, Coutts S (2013) Are high-impact species predictable? An analysis of naturalised grasses in Northern Australia. PLoS One 8(7):e68678. https://doi.org/10.1371/journal.pone.0068678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Klinken RD, Panetta F, Coutts S et al (2015) Learning from the past to predict the future: an historical analysis of grass invasions in northern Australia. Biol Invasions 17:565–579

    Article  Google Scholar 

  • van Rij V (2010) Joint horizon scanning: identifying common strategic choices and questions for knowledge. Sci Public Policy 37:7–18

    Article  Google Scholar 

  • van Wilgen BW, Measey J, Richardson DM et al (eds) (2020) Biological invasions in South Africa, Invading Nature Series. Springer, Berlin

    Google Scholar 

  • Vaz AS, Segura DA, Vicente JR et al (2019) The many roles of remote sensing in invasion science. Front Ecol Evol 7:370

    Article  Google Scholar 

  • Vilà M, Espinar JL, Hejda M et al (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  • Vilà M, Dunn AM, Essl F et al (2021) Viewing emerging human infectious epidemics through the lens of invasion biology. Bioscience 71:722–740

    Google Scholar 

  • Von Holle B, Delcourt H, Simberloff D (2003) The importance of biological inertia in plant community resistance to invasion. J Veg Sci 14:425–432

    Article  Google Scholar 

  • Weigelt P, Kissling WD, Kisel Y et al (2015) Global patterns and drivers of phylogenetic structure in island floras. Sci Rep 5:12213. https://doi.org/10.1038/srep12213

    Article  PubMed  PubMed Central  Google Scholar 

  • Westbrooks R (2004) New approaches for early detection and rapid response to invasive plants in the United States. Weed Technol 18:1468–1471

    Article  Google Scholar 

  • Williamson M (1996) Biological invasions (Population and Community Biology Series). Chapman and Hall, New York

    Google Scholar 

  • Wilson JRU, García-Díaz P, Cassey P et al (2016) Biological invasions and natural colonisations are different: the need for invasion science. NeoBiota 31:87–98. https://doi.org/10.3897/neobiota.31.9185

    Article  Google Scholar 

  • Wu H, Ding J (2019) Global change sharpens the double-edged sword effect of aquatic alien plants in China and beyond. Front Plant Sci 10:787. https://doi.org/10.3389/fpls.2019.00787

    Article  PubMed  PubMed Central  Google Scholar 

  • Young SL, Clements DR, DiTommaso A (2017) Climate dynamics, invader fitness, and ecosystem resistance in an invasion-factor framework. Invasive Plant Sci Manag 10:215–231. https://doi.org/10.1017/inp.2017.28

    Article  Google Scholar 

  • Zavaleta ES, Hobbs RJ, Mooney HA (2001) Viewing invasive species removal in a whole-ecosystem context. Trends Ecol Evol 16:454–459

    Article  Google Scholar 

  • Zenni RD (2015) The naturalized flora of Brazil: a step towards identifying future invasive non-native species. Rodriguésia 66:1137–1144. https://doi.org/10.1590/2175-7860201566413

    Article  Google Scholar 

  • Ziska LH (2020) Climate change and the herbicide paradigm: visiting the future. Agron 10:1953. https://doi.org/10.3390/agronomy10121953

    Article  CAS  Google Scholar 

  • Ziska LH, Blumenthal DM, Franks SJ (2019) Understanding the nexus of rising CO2, climate change, and evolution in weed biology. Invasive Plant Sci Manag 12:79–88

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Petr Pyšek and David Richardson for providing very helpful comments on the chapter manuscript and to all of the chapter authors contributing to this book for providing inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Clements .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clements, D.R., Upadhyaya, M.K., Joshi, S., Shrestha, A. (2022). Global Plant Invasions on the Rise. In: Clements, D.R., Upadhyaya, M.K., Joshi, S., Shrestha, A. (eds) Global Plant Invasions. Springer, Cham. https://doi.org/10.1007/978-3-030-89684-3_1

Download citation

Publish with us

Policies and ethics