Skip to main content

An Evaluation of Intrinsic Mode Function Characteristic of Non-Gaussian Autorregresive Processes

  • Conference paper
  • First Online:
Applied Informatics (ICAI 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1455))

Included in the following conference series:

  • 569 Accesses

Abstract

Empirical mode decomposition (EMD) is a suitable transformation to analyse non-linear time series. This work presents a empirical study of intrinsic mode functions (IMFs) provided by the empirical mode decomposition. We simulate several non-gaussian autoregressive processes to characterize this decomposition. Firstly, we studied the probability density distribution, Fourier spectra and the cumulative relative energy to each IMF as part of the study of empirical mode decomposition. Then, we analyze the capacity of EMD to characterize, both the autocorrelation dynamics and the marginal distribution of each simulated stochastic process. Results show that EMD seems not to only discriminate autocorrelation but also the marginal distribution of simulated processes. Results also show that entropy based EMD is a promising estimator as it is capable to distinguish between correlation and probability distribution. However, the EMD entropy does not reach its maximum value in stochastic processes with uniform probability distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Google Scholar 

  2. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. Wiley, Hoboken (2015)

    Google Scholar 

  3. Chernick, M.R.: A limit theorem for the maximum of autoregressive processes with uniform marginal distributions. The Annals of Probability, pp. 145–149 (1981)

    Google Scholar 

  4. Davidson, E.J.: Evaluation Methodology Basics: The Nuts and Bolts of Sound Evaluation. Sage, Thousand Oaks (2005)

    Google Scholar 

  5. Engle, R.F., Russell, J.R.: Autoregressive conditional duration: a new model for irregularly spaced transaction data. Econometrica, pp. 1127–1162 (1998)

    Google Scholar 

  6. Farashi, S.: Spike sorting method using exponential autoregressive modeling of action potentials. World Acad. Sci. Eng. Technol. Int. J. Med. Health Biomed. Bioeng. Pharmaceutical Eng. 8(12), 864–870 (2015)

    Google Scholar 

  7. Gao, J., Shang, P.: Analysis of complex time series based on EMD energy entropy plane. Nonlinear Dyn. 96(1), 465–482 (2019)

    Article  Google Scholar 

  8. Hafner, C.: Nonlinear time series analysis with applications to foreign exchange rate volatility. Springer Science & Business Media (2013)

    Google Scholar 

  9. Huang, N.E., Shen, Z., Long, S., Wu, M., Shih, H., Zheng, Q., Tung, C., Liu, H.: he empirical mode decomposition and hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. Roy. Soc. A 545(1971), 903–995 (1998)

    Article  Google Scholar 

  10. Huang, N.E., et al.: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London. Series A: Math. Phys. Eng. Sci. 454(1971), 903–995 (1998)

    Google Scholar 

  11. Lawrance, A.: Uniformly distributed first-order autoregressive time series models and multiplicative congruential random number generators. J. Appl. Probability 29, 896–903 (1992)

    Google Scholar 

  12. Lawrance, A., Lewis, P.: A new autoregressive time series model in exponential variables (near (1)). Advances in Applied Probability, pp. 826–845 (1981)

    Google Scholar 

  13. Lopez-Ruiz, R.: Complexity in some physical systems. Int. J. Bifurcation Chaos 11(10), 2669–2673 (2001)

    Article  Google Scholar 

  14. Lopez-Ruiz, R., Mancini, H., Calbet, X.: A statistical measure of complexity. arXiv preprint nlin/0205033 (2002)

    Google Scholar 

  15. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2020). https://www.R-project.org/

  16. Rilling, G., Flandrin, P., Goncalves, P., et al.: On empirical mode decomposition and its algorithms. In: IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, vol. 3, pp. 8–11. NSIP-03, Grado (I) (2003)

    Google Scholar 

  17. Rosso, O., Larrondo, H., Martin, M., Plastino, A., Fuentes, M.: Distinguishing noise from chaos. Phys. Rev. Lett. 99(15), 154102 (2007)

    Google Scholar 

  18. Rosso, O.A., Carpi, L.C., Saco, P.M., Ravetti, M.G., Plastino, A., Larrondo, H.A.: Causality and the entropy-complexity plane: Robustness and missing ordinal patterns. Physica A 391(1), 42–55 (2012)

    Article  Google Scholar 

  19. Rosso, O.A., Olivares, F., Zunino, L., De Micco, L., Aquino, A.L., Plastino, A., Larrondo, H.A.: Characterization of chaotic maps using the permutation bandt-pompe probability distribution. Eur. Phys. J. B 86(4), 1–13 (2013)

    Article  Google Scholar 

  20. Schlotthauer, G., Torres, M.E., Rufiner, H.L., Flandrin, P.: Emd of gaussian white noise: effects of signal length and sifting number on the statistical properties of intrinsic mode functions. Adv. Adapt. Data Anal. 1(04), 517–527 (2009)

    Article  Google Scholar 

  21. Sengupta, D., Kay, S.: Efficient estimation of parameters for non-gaussian autoregressive processes. IEEE Trans. Acoust. Speech Signal Process. 37(6), 785–794 (1989)

    Article  Google Scholar 

  22. Traversaro, F., Redelico, F.O.: Characterization of autoregressive processes using entropic quantifiers. Physica A 490, 13–23 (2018)

    Article  Google Scholar 

  23. Wu, Z., Huang, N.E.: A study of the characteristics of white noise using the empirical mode decomposition method. Proc. Roy. Soc. London. Series A: Math. Phys. Eng. Sci. 460(2046), 1597–1611 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Redelico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pose, F., Zelechower, J., Risk, M., Redelico, F. (2021). An Evaluation of Intrinsic Mode Function Characteristic of Non-Gaussian Autorregresive Processes. In: Florez, H., Pollo-Cattaneo, M.F. (eds) Applied Informatics. ICAI 2021. Communications in Computer and Information Science, vol 1455. Springer, Cham. https://doi.org/10.1007/978-3-030-89654-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89654-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89653-9

  • Online ISBN: 978-3-030-89654-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics