Skip to main content

Advertisement

Log in

Analysis of complex time series based on EMD energy entropy plane

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Empirical mode decomposition (EMD) is a self-adaptive signal processing method that can be applied to nonlinear and non-stationary processes perfectly. In view of this good ability of EMD, in this paper, we propose a new method—EMD energy entropy plane—which combines two different tools—EMD energy entropy and complexity-entropy causality plane—to analyze time series. Firstly, we apply EMD energy entropy plane to synthetic data, such as logistic map, Hénon map, ARFIMA model and so on, finding that the EMD energy entropy plane presents different trends and distributions when the map is in periodic cycles and chaos. Then we demonstrate the application of EMD energy entropy plane in stock markets. Results show that it is an effective tool of distinguishing two kinds of financial markets. In addition, the introduction of multi-scale reveals the variation law of EMD energy entropy plane at different scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Machado, J.A.T.: Entropy analysis of integer and fractional dynamical systems. Nonlinear Dyn. 62(1–2), 371–378 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Machado, J.A.T., Duarte, F.B., Duarte, G.M.: Analysis of financial data series using fractional Fourier transform and multidimensional scaling. Nonlinear Dyn. 65(3), 235–245 (2011)

    Article  Google Scholar 

  3. Arqub, O.A., Al-Smadi, M.: Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painlevé equations in Hilbert space. Chaos, Solitons Fractals 117, 161–167 (2018)

    Article  MathSciNet  Google Scholar 

  4. Arqub, O.A.: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numer. Methods Partial Differ. Equ. 34(5), 1759–1780 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nagao, K., Yanagisawa, D., Nishinari, K.: Estimation of crowd density applying wavelet transform and machine learning. Phys. A 510, 145–163 (2018)

    Article  Google Scholar 

  6. Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66(1), 51–83 (1978)

    Article  Google Scholar 

  7. Lin, J., Qu, L.: Feature extraction based on morlet wavelet and its application for mechanical fault diagnosis. J. Sound Vib. 234(1), 135–148 (2000)

    Article  Google Scholar 

  8. Li, Y.F., Chen, K.F.: Eiminating the picket fence effect of the fast fourier transform. Comput. Phys. Commun. 78(7), 486–490 (2008)

    Article  MATH  Google Scholar 

  9. Zedda, M., Singh, R.: Gas turbine engine and sensor fault diagnosis using optimization techniques. J. Propuls. Power. 18(5), 1019–1025 (2002)

    Article  Google Scholar 

  10. Tewfiki, A.H.: On the optimal choice of a wavelet for signal representation. IEEE Trans. Inf. Theory. 38(2), 747–765 (1992)

    Article  Google Scholar 

  11. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. Math. Phys. Eng. Sci. 454, 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Malik, H., Pandya, Y., Parashar, A., Sharma, R.: Feature extraction using EMD and classifier through artificial neural networks for gearbox fault diagnosis. In: Applications of Artificial Intelligence Techniques in Engineering. pp. 309–317 (2019)

  13. Shaikh, M.H.N., Farooq, O., Chandel, G.: EMD analysis of EEG signals for seizure detection. In: Advanced System Optimizer Control. pp. 189–196 (2018)

  14. Zhu, B., Yuan, L., Ye, S.: Examining the multi-timescales of European carbon market with grey relational analysis and empirical mode decomposition. Phys. A 517, 392–399 (2019)

    Article  Google Scholar 

  15. Zhang, Y., Li, M.: Analysis and dynamic forecast on supply and demand of China’s energy based on EMD. Geogr. Geogr. Inf. Sci. 3, 67–70 (2008)

    Google Scholar 

  16. Guhathakurta, K., Mukherjee, I., Chowdhury, A.R.: Empirical mode decomposition analysis of two different financial time series and their comparison. Chaos Solitons Fractals 37, 1214–1227 (2008)

    Article  Google Scholar 

  17. Hong, L.: Decomposition and forecast for financial time series with high-frequency based on empirical mode decomposition. Energy Procedia 5, 1333–1340 (2011)

    Article  Google Scholar 

  18. Wang, J., Shang, P., Xia, J., Shi, W.: EMD based refined composite multiscale entropy analysis of complex signals. Phys. A 421, 583–593 (2015)

    Article  Google Scholar 

  19. Yin, Y., Shang, P.: Multiscale detrended cross-correlation analysis of traffic time series based on empirical mode decomposition. Fluct. Noise Lett. 14(3), 1550023 (2015)

    Article  Google Scholar 

  20. Yang, Y., Yu, D., Cheng, J.: A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Sound Vib. 294, 269–277 (2006)

    Article  Google Scholar 

  21. Xiao, Y.H., Chen, L.W., Feng, C., Zhang, M.Y.: Gas turbine blades fault diagnosis method with EMD energy entropy and related vector machine. J. Inf. Hiding Multimed. Signal Process. 6(4), 806–814 (2015)

    Google Scholar 

  22. Huang, Y., Wang, K., Zhou, Q., Fang, J., Zhou, Z.: Feature extraction for gas metal arc welding based on EMD and time-frequency entropy. Int. J. Adv. Manuf. Technol. 92(1–4), 1439–1448 (2017)

    Article  Google Scholar 

  23. Wei, Y., Meng, Q., Zhang, Q., Wang, D.: Detecting ventricular fibrillation and ventricular tachycardia for small samples based on EMD and symbol entropy. In: International Conference Intelligent Computing. ICIC 2016: Intelligent Computing Theories and Application. pp. 18–27 (2016)

  24. Zunino, L., Zanin, M., Tabak, B.M., Pérez, D.G., Rosso, O.A.: Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency. Phys. A 389, 1891–1901 (2010)

    Article  Google Scholar 

  25. Lamberti, P.W., Martin, M.T., Plastino, A., Rosso, O.A.: Intensive entropic non-triviality measure. Phys. A 334, 119–131 (2004)

    Article  MathSciNet  Google Scholar 

  26. Arqub, O.A., Maayah, B.: Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator. Chaos, Solitons Fractals 117, 117–124 (2018)

    Article  MathSciNet  Google Scholar 

  27. Arqub, O.A., Al-Smadi, M.: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions. Numer. Methods Partial Differ. Equ. 34(5), 1577–1597 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wikipedia: Logistic map. https://en.wikipedia.org/wiki/Logistic_map. Accessed 27 Oct 2018

  29. Hénon, M., Pomeau, Y.: Two strange attractors with a simple structure. Lect. Notes Math. 565, 29–68 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lozi, R.: Un attracteur étrange du type attracteur de Hénon. J. Phys. 39, 9–10 (1978)

    Google Scholar 

  31. Granger, C.W.J., Joyeux, R.: Introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1(1), 15 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hosking, J.R.M.: Fractional differencing. Biometrika 68(1), 165–176 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Geweke, J., Porter-Hudak, S.: The estimation and application of long memory time series model. J. Time Ser. Anal. 4(4), 221–238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hosking, J.R.M.: Modeling persistence in hydrological time series using fractional differencing. Water Resour. Res. 20(12), 1898–1908 (1984)

    Article  Google Scholar 

  35. Podobnik, B., Horvatic, D., Ng, A.L., Stanley, H.E., Ivanov, P.C.: Modeling long-range cross-correlations in two-component ARFIMA and FIARCH processes. Phys. A 387, 3954–3959 (2008)

    Article  MathSciNet  Google Scholar 

  36. Mcleod, A.I., Hipel, K.W.: Preservation of the rescaled adjusted range: 1. A reassessment of the hurst phenomenon. Water Resour. Res 14(3), 491–508 (1978)

    Article  Google Scholar 

  37. Botella-Soler, V., Castelo, J.M., Oteo, J.A., Ros, J.: Bifurcations in the Lozi map. Phys. A Math. Theor. 44(30), 305101 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The financial supports from the funds of the Fundamental Research Funds for the Central Universities (2018JBZ104), the China National Science (61771035) and the Beijing National Science (4162047) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Gao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Shang, P. Analysis of complex time series based on EMD energy entropy plane. Nonlinear Dyn 96, 465–482 (2019). https://doi.org/10.1007/s11071-019-04800-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04800-5

Keywords

Navigation