Skip to main content

Electrochemical Corrosion Behavior of Heat Treated Inconel 718 Superalloy Manufactured by Direct Metal Laser Sintering (DMLS) in 3.5% NaCl Solution

  • Chapter
  • First Online:
Innovations in Additive Manufacturing

Part of the book series: Springer Tracts in Additive Manufacturing ((STAM))

  • 1626 Accesses

Abstract

Additive Manufacturing enables the design of element with complicated geometrics which can be fabricated with less time when compared with traditional manufacturing. The complex geometries of high performance materials can be easily fabricated through additive manufacturing technologies will be the main focus in industries. Nickel based superalloy are specifically compelling due to their extraordinary mechanical strength, wear and known for its oxidation and corrosion resistance at both ambience and higher temperatures. The outcomes of heat treatment of additively manufactured DMLS alloy and commercial alloy is studied. The DMLS and commercial IN718 were solutionized at 980 and 1100 ˚C followed by double ageing at 620 and 720 ˚C for 8 h and 845 ˚C at 24 h respectively. The microstructures and X-ray diffraction pattern of the DMLS and commercial alloy were investigated with the optical microscope and X-ray diffractometer. The strengthening phase such as γ’ and γ” intention is very low for the commercial alloy. It was also found that, HT 1 (980 ˚C) DMLS alloy have good tensile load. The impact strength of the DMLS alloy is decreased after the heat treatment and this is due to the brittleness of the heat treated alloy. The electrochemical corrosion at 3.5% NaCl solution was carried out for DMLS and commercial alloy. The corrosion potential difference in the DMLS and commercial alloy is the key factor for galvanic corrosion. The corrosion resistance of the DMLS alloy is very high when evaluated to commercial alloy and it was found that, the HT 2 DMLS alloy have the high corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Proctor, C.L.: Internal combustion engines. Encycl. Phys. Sci. Technol. 33–44 (2003).https://doi.org/10.1016/b0-12-227410-5/00350-1

  2. Harman, R.T.C.: Applications for gas turbine engines. In: Gas Turbine Engineering. Palgrave, London (1981). https://doi.org/10.1007/978-1-349-16484-4_2

  3. Craveiroa, F., Duartec, J.P., Bartoloa, H., Bartolod, P.J.: Additive manufacturing as an enabling technology for digital construction: a perspective on construction 4.0. Sustain. Dev. 4, 6 (2019). https://doi.org/10.1016/j.autcon.2019.03.011

  4. Tofail, S.A.M., Koumoulos, E.P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., Charitidis, C.: Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater. Today 21(1), 22–37 (2018). https://doi.org/10.1016/j.mattod.2017.07.001

    Article  Google Scholar 

  5. Breaz, R.E., Bologa, O., Racz, S.G.: Selecting between CNC milling, robot milling and DMLS processes using a combined AHP and fuzzy approach. Procedia Comput. Sci. 122, 796–803 (2017)

    Article  Google Scholar 

  6. Prakash, K.S., Nancharaih, T., Rao, V.S.: Additive manufacturing techniques in manufacturing—an overview. Mater. Today Proc. 5(2), 3873–3882 (2018)

    Article  Google Scholar 

  7. Prakash, K.S., Nancharaih, T., Rao, V.V.S.: Additive manufacturing techniques in manufacturing—an overview. Mater. Today Proc. 5, 3873–3882 (2018)

    Google Scholar 

  8. Zhong, C., Kittel, J., Gasser, A., Schleifenbaum, J.H.: Study of nickel-based super-alloys Inconel 718 and Inconel 625 in high-deposition-rate laser metal deposition. Opt. Laser Technol. 109, 352–360 (2019). https://doi.org/10.1016/j.optlastec.2018.08.003

    Article  Google Scholar 

  9. ASTM Committee F42 on additive manufacturing technologies, and ASTM committee F42 on additive manufacturing technologies. Subcommittee F42. 91 on Terminology (2012)

    Google Scholar 

  10. Srivatsa, S.: Additive manufacturing (AM) design and simulation tools study, p. 45433. Air Force Research Laboratory, Wright-Patterson Air Force Base, OH (2014)

    Google Scholar 

  11. King, W.E., Anderson, A.T., Ferencz, R.M., Hodge, N.E., Kamath, C., Khairallah, S.A., Rubenchik, A.M.: Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl. Phys. Rev. 2(4), 041304 (2015). https://doi.org/10.1063/1.4937809

    Article  Google Scholar 

  12. Delgado, J., Sereno, L., Ciurana, J., Hernandez, L.: Methodology for Analyzing the Depth of Sintering in the Building Platform, p. 266. CRC PressTaylor & Francis Group, Boca Raton (2012)

    Google Scholar 

  13. Kalpakjian, S., Schmid, S.: Manufacturing Engineering and Technology, 7th edn. Prentice Hall, Upper Saddle River, NJ (2014)

    Google Scholar 

  14. Kumar, S., Sudhakar Rao, G., Chattopadhyay, K., Mahobia, G.S., Santhi Srinivas, N.C., Singh, V.: Effect of surface nanostructure on tensile behavior of superalloy IN718. Mater. Des. 1980–2015(62), 76–82 (2014). https://doi.org/10.1016/j.matdes.2014.04.084

    Article  Google Scholar 

  15. Byun, T.S., Farrell, K.: Tensile properties of Inconel 718 after low temperature neutron irradiation. J. Nucl. Mater. 318, 292–299 (2003). https://doi.org/10.1016/s0022-3115(03)00006-0

    Article  Google Scholar 

  16. Special Metals Corporation: INCONEL® Alloy 718, 2007. Available from http://www.specialmetals.com/assets/smc/documents/inconel_alloy_718.pdf. Last accessed on 12.12.2020

  17. Retima, M., Bouyegh, S., Chadli, H.: Effect of the heat treatment on the microstructural evolution of the nickel based superalloy. Metalurgija 17, 71–77 (2011)

    Google Scholar 

  18. Silva, C., Song, M., Leonard, K., Wang, M., Was, G., Busby, J.: Characterization of alloy 718 subjected to different thermomechanical treatments. Mater. Sci. Eng. A 691, 195–202 (2017)

    Article  Google Scholar 

  19. Devaux, A., Nazé, L., Molins, R., Pineau, A., Organista, A., Guédou, J.Y., Héritier, P., et al.: Gamma double prime precipitation kinetic in Alloy 718. Mater. Sci. Eng. A 486(1–2), 117–122 (2008).https://doi.org/10.1016/j.msea.2007.08.046

  20. Dong, J.X., Xie, X.S., Zhang, S.H.: Enhancements of thermal structure stability in a Ni-Base superalloy. Scr. Metall. Mater. 28(12), 1477–1482 (1993). https://doi.org/10.1016/0956-716x(93)90578-g

    Article  Google Scholar 

  21. Sharpe, H.J., Saxena, A.: Effect of Microstructure on High-temperature Mechanical Behavior of Nickel-base Superalloys for Turbine Disc Applications, vol. 278, pp. 259–264. Trans Tech Publications Ltd. (2011)

    Google Scholar 

  22. Azadian, S., Wei, L.-Y., Warren, R.: Delta phase precipitation in Inconel 718. Mater. Charact. 53(1), 7–16 (2004). https://doi.org/10.1016/j.matchar.2004.07.004

    Article  Google Scholar 

  23. Dehmas, M., Lacaze, J., Niang, A., Viguier, B.: TEM study of high-temperature precipitation of delta phase in Inconel 718 alloy. Adv. Mater. Sci. Eng. 2011, 1–9 (2011). https://doi.org/10.1155/2011/940634

    Article  Google Scholar 

  24. Huang, Y., Langdon, T.G.: The evolution of delta-phase in a superplastic Inconel 718 alloy. J. Mater. Sci. 42(2), 421–427 (2007). https://doi.org/10.1007/s10853-006-0483-z

    Article  Google Scholar 

  25. Diltemiz, S.F., Zhang, S.: Superalloys for super jobs. In: Aerospace Material Handbook, pp. 1–76. CRC Press, London (2013)

    Google Scholar 

  26. Bowman, R.: Superalloys: a primer and history. In: 9th International Symposium on Superalloys, vol. 3, p. 6 (2000, May)

    Google Scholar 

  27. Kishawy, H.A., Hosseini, A.: Superalloys. Mach. Difficult-to-Cut Mater. 97–137 (2018).https://doi.org/10.1007/978-3-319-95966-5_4

  28. Rahman, M., Seah, W.K.H., Teo, T.T.: The machinability of Inconel 718. J. Mater. Process. Technol. 63(1–3), 199–204 (1997). https://doi.org/10.1016/s0924-0136(96)02624-6

    Article  Google Scholar 

  29. Thakur, D.G., Ramamoorthy, B., Vijayaraghavan, L.: Machinability investigation of Inconel 718 in high-speed turning. Int. J. Adv. Manuf. Technol. 45(5–6), 421–429 (2009). https://doi.org/10.1007/s00170-009-1987-x

    Article  Google Scholar 

  30. Feyzi, T., Safavi, S.M.: Improving machinability of Inconel 718 with a new hybrid machining technique. Int. J. Adv. Manuf. Technol. 66(5–8), 1025–1030 (2012). https://doi.org/10.1007/s00170-012-4386-7

    Article  Google Scholar 

  31. Tharappel, J.T., Babu, J.: Welding processes for Inconel 718—A brief review. IOP Conf. Ser. Mater. Sci. Eng. 330(1), 012082 (2018, March). IOP Publishing

    Google Scholar 

  32. Sames, W.: Additive manufacturing of Inconel 718 using electron beam melting: processing, post-processing, and mechanical properties. Doctoral Dissertation (2015)

    Google Scholar 

  33. Thompson, R.G., Mayo, D.E., Radhakrishnan, B.: The relationship between carbon content, microstructure, and intergranular liquation cracking in cast nickel alloy 718. Metall. Trans. A 22(2), 557–567 (1991). https://doi.org/10.1007/bf02656823

    Article  Google Scholar 

  34. Raj, B.A., Jappes, J.T.W., Khan, M.A., Dillibabu, V., Brintha, N.C.: Studies on heat treatment and electrochemical behaviour of 3D printed DMLS processed nickel-based superalloy. Appl. Phys. A Mater. Sci. Process. 125(10), 1–8 (2019). https://doi.org/10.1007/s00339-019-3019-5

    Article  Google Scholar 

  35. Jambor, M., Bokuvka, O., Novy, F., Trsko, L., Belan, J.: Phase transformations in nickel base superalloy Inconel 718 during cyclic loading at high temperature. Prod. Eng. Arch. 15 (2017)

    Google Scholar 

  36. Yan, S., Wang, Y., Wang, Q., Zhang, C., Chen, D., Cui, G.: Enhancing mechanical properties of the spark plasma sintered Inconel 718 alloy by controlling the nano-scale precipitations. Materials 12(20), 3336 (2019)

    Article  Google Scholar 

  37. Anbarasan, N., Gupta, B.K., Prakash, S., Muthukumar, P., Oyyaravelu, R., Kumar, R.J.F., Jerome, S.: Effect of heat treatment on the microstructure and mechanical properties of Inconel 718. Mater. Today Proc. 5(2), 7716–7724 (2018)

    Article  Google Scholar 

  38. Li, X., Shi, J.J., Wang, C.H., Cao, G.H., Russell, A.M., Zhou, Z.J., Chen, G.F., et al.: Effect of heat treatment on microstructure evolution of Inconel 718 alloy fabricated by selective laser melting. J. Alloys Compounds 764, 639–649 (2018).https://doi.org/10.1016/j.jallcom.2018.06.112

  39. Anderson, M., Thielin, A.-L., Bridier, F., Bocher, P., Savoie, J.: δ phase precipitation in Inconel 718 and associated mechanical properties. Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2016.09.114

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anushraj, B., Brintha, N.C., Chella Ganesh, D., Ajithram, A. (2022). Electrochemical Corrosion Behavior of Heat Treated Inconel 718 Superalloy Manufactured by Direct Metal Laser Sintering (DMLS) in 3.5% NaCl Solution. In: Khan, M.A., Jappes, J.T.W. (eds) Innovations in Additive Manufacturing. Springer Tracts in Additive Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-89401-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89401-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89400-9

  • Online ISBN: 978-3-030-89401-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics