Skip to main content

Melt Extrusion

  • Chapter
  • First Online:
Formulating Poorly Water Soluble Drugs

Abstract

Techniques to overcome poor aqueous solubility of active pharmaceutical ingredients (APIs) continue to gain interest, with a reported 30% of marketed compounds classified as BCS II and 10% classified as BCS IV. Approximately 70% of new chemical entities under development may be classified as BCS II and another 20% as BCS IV (Siew Pharm Technol 39:20–27, 2015). Driven by this need to enable therapies of poorly soluble compounds through the generation of amorphous solid dispersions, pharmaceutical scientists have adapted a number of technologies from other industries to provide reliable and robust drug product manufacturing. Melt extrusion is an example of such a technology. Originally developed in the plastic industry in the 1960s, it has been applied to pharmaceutical systems over the last three decades to generate some of the most cutting-edge delivery systems seen in the industry to date. The well-characterized nature of the process provides for ease of scale-up and process optimization while also affording benefits of continuous manufacturing and adaptability to process analytical technology in an ever-changing regulatory and fiscal environment where manufacturing efficiencies must be maximized to reduce cost and improve product quality. This chapter details the basic engineering principles of the melt extrusion process and provides a fundamental understanding of formulation development of melt-extruded solid dispersions for bioavailability enhancement. Several recent case studies are also described to highlight the technology’s applicability to developmental and marketed products within the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal AM, Dudhedia MS, Zimny E. Hot melt extrusion: development of an amorphous solid dispersion for an insoluble drug from mini-scale to clinical scale. AAPS PharmSciTech. 2015;17(1):133–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Algorta J, Diaz M, de Benito R, Lefebvre M, Sicard E, Furtado M, Regidor PA, Ronchi C. Pharmacokinetic bioequivalence, safety and acceptability of Ornibel®, a new polymer composition contraceptive vaginal ring (etonogestrel/ethinylestradiol 11.00/3.474 mg) compared with Nuvaring® (etonogestrel/ethinylestradiol 11.7/2.7 mg). Eur J Contracept Reprod Health Care. 2017 Nov 2;22(6):429–38.

    Article  CAS  PubMed  Google Scholar 

  • Almeida A, et al. Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion. Eur J Pharm Biopharm. 2011;77(2):297–305.

    Article  CAS  PubMed  Google Scholar 

  • Alonzo DE, et al. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27(4):608–18.

    Article  CAS  PubMed  Google Scholar 

  • Alshahrani SM, Morott JT, Alshetaili AS, Tiwari RV, Majumdar S, Repka MA. Influence of degassing on hot-melt extrusion process. Eur J Pharm Sci. 2015 Dec 1;80:43–52.

    Google Scholar 

  • Amidon GL, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    CAS  PubMed  Google Scholar 

  • Anderson BD. Predicting solubility/miscibility in amorphous dispersions: it is time to move beyond regular solution theories. J Pharm Sci. 2018;107(1):24–33.

    Article  CAS  PubMed  Google Scholar 

  • Angell CA. Formation of glass from liquids and biopolymers. Science. 1995;267(5206):1924–35.

    Article  CAS  PubMed  Google Scholar 

  • Angell CA. Liquid fragility and the glass transition in water and aqueous solutions. Chem Rev. 2002;102(8):2627–50.

    Article  CAS  PubMed  Google Scholar 

  • Arnfast L, Kamruzzaman M, Löbmann K, Aho J, Baldursdottir S, Rades T, Rantanen J. Melt extrusion of high-dose co-amorphous drug-drug combinations. Pharm Res. 2017 Dec 1;34(12):2689–97.

    Article  CAS  PubMed  Google Scholar 

  • Ashour A, et al. Influence of pressurized carbon dioxide on ketoprofen-incorporated hot-melt extruded low molecular weight hydroxypropylcellulose. Drug Dev Ind Pharm. 2015;42(1):1–8.

    Google Scholar 

  • Baert LEC, Verreck G, Thoné D. Antifungal compositions with improved bioavailability. US Patent 6,509,038; 2003.

    Google Scholar 

  • Baird JA, Van Eerdenbrugh B, Taylor LS. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci. 2010;99(9):3787–806.

    Article  CAS  PubMed  Google Scholar 

  • Bauer J, et al. Ritonavir: an extraordinary example of conformation polymorphism. Pharm Res. 2001;18(6):859–66.

    Article  CAS  PubMed  Google Scholar 

  • Berry DJ, Steed JW. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Adv Drug Deliv Rev. 2017;117:3–24.

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj SP, Suryanarayanan R. Molecular mobility as an effective predictor of the physical stability of amorphous trehalose. Mol Pharm. 2012;9(11):3209–17.

    Article  CAS  PubMed  Google Scholar 

  • Birtalan E, Hoelig P, Lindley DJ, et al. Melt-extruded solid dispersions containing an apoptosis-inducing agent. US Patent 2012/0108590; 2012.

    Google Scholar 

  • Bochmann ES, Gryczke A, Wagner KG. Validation of model-based melt viscosity in hot-melt extrusion numerical simulation. Pharmaceutics. 2018;10(3):9–12.

    Article  CAS  Google Scholar 

  • Boksa K, Otte A, Pinal R. Matrix-assisted cocrystallization (MAC) simultaneous production and formulation of pharmaceutical cocrystals by hot-melt extrusion. J Pharm Sci. 2014;103(9):2904–10.

    Article  CAS  PubMed  Google Scholar 

  • Breitenbach J. Melt extrusion can bring new benefits to HIV therapy. Am J Drug Deliv. 2006 Jun;4(2):61–4.

    Google Scholar 

  • Breitenbach J, Mägerlin M. Melt-extruded solid dispersions. In: Pharmaceutical extrusion technology. New York: Informa Healthcare; 2003.

    Google Scholar 

  • Breitenbach A, Wolff HM, inventors; UCB Pharma GmbH, assignee. Hot melt TTS for administering rotigotine. United States patent US 9,186,335; 2015 Nov 17.

    Google Scholar 

  • Brough C, Williams R. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int J Pharm. 2013;453(1):157–66.

    Article  CAS  PubMed  Google Scholar 

  • Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98(8):2549–72.

    Article  CAS  PubMed  Google Scholar 

  • Brown C, DiNunzio J, Eglesia M, et al. HME for solid dispersions: scale-up and late-stage development in: amorphous solid dispersions: theory and practice. New York: Springer; 2014. p. 231–60.

    Book  Google Scholar 

  • Bruce C, et al. Crystal growth formation in melt extrudates. Int J Pharm. 2007;341(1–2):162–72.

    Article  CAS  PubMed  Google Scholar 

  • Center for Drug Evaluation and Research. FDA grants regular approval to venetoclax in combination for untreated [Internet]. U.S. Food and Drug Administration. FDA; 2020 [cited 2021 Jan 15]. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-grants-regular-approval-venetoclax-combination-untreated-acute-myeloid-leukemia

  • Chaudhuri KR. Crystallisation within transdermal rotigotine patch: is there cause for concern? Expert Opin Drug Deliv. 2008 Nov 1;5(11):1169–71.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Ormes JD, Higgins JD, Taylor LS. Impact of surfactants on the crystallization of aqueous suspensions of celecoxib amorphous solid dispersion spray dried particles. Mol Pharm. 2015 Feb 2;12(2):533–41.

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Zhu L, Zhang F, Qiu Y. Chapter 31: Process development and scale-up: twin-screw extrusion. In: Qiu Y, Chen Y, Zhang G, Yu L, Mantri RV, editors. Developing solid oral dosage forms. 2nd ed. Amsterdam: Elsevier; 2016. p. 48. 1176p. (Book chapter).

    Google Scholar 

  • Chiou JS, Barlow JW, Paul DR. Plasticization of glassy polymers by CO2. J Appl Polym Sci. 1985;30(6):2633–42.

    Article  CAS  Google Scholar 

  • Chokshi RJ, Sandhu HK, Iyer RM, et al. Characterization of physico-mechanical properties of indomethacin and polymers to assess their suitability for hot-melt extrusion process as a means to manufacture solid dispersion/solution. J Pharm Sci. 2005;94(11):2463–74.

    Article  CAS  PubMed  Google Scholar 

  • Crowley MM, et al. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm. 2007;33(9):909–26.

    Article  CAS  PubMed  Google Scholar 

  • Crowley M, Zhang F, Koleng J, et al. Hydrophobic abuse deterrent delivery system for hydromorphone. US Patent 20080020032; 2008.

    Google Scholar 

  • Dahan A, Miller JM, Hoffman A, Amidon GE, Amidon GL. The solubility–permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. J Pharm Sci. 2010;99(6):2739–49.

    Article  CAS  PubMed  Google Scholar 

  • Dantuluri AK, Amin A, Puri V, et al. Role of α-relaxation on crystallization of amorphous celecoxib above T g probed by dielectric spectroscopy. Mol Pharm. 2011;8(3):814–22.

    Article  CAS  PubMed  Google Scholar 

  • Davis DA, Miller DA, Su Y, Williams RO. Thermally conductive excipient expands KinetiSol® processing capabilities. AAPS PharmSciTech. 2020;21(8):1–15.

    Article  CAS  Google Scholar 

  • Debenedetti PG, Stillinger FH. Supercooled liquids and the glass transition. Nature. 2001;410(259–267):259.

    Article  CAS  PubMed  Google Scholar 

  • Deshpande TM, Shi H, Pietryka J, Hoag SW, Medek A. Investigation of polymer/surfactant interactions and their impact on itraconazole solubility and precipitation kinetics for developing spray-dried amorphous solid dispersions. Mol Pharm. 2018 Jan 18;15(3):962–74.

    Article  CAS  PubMed  Google Scholar 

  • Dhumal RS, Kelly AL, York P, Coates PD, Paradkar A. Cocrystallization and simultaneous agglomeration using hot melt extrusion. Pharm Res. 2010;27(12):2725–33.

    Article  CAS  PubMed  Google Scholar 

  • DiNunzio JC. Formulation design of melt extruded systems for oral bioavailability enhancement. presented in Leistritz pharmaceutical extrusion seminar, Clinton, NJ; 2010

    Google Scholar 

  • DiNunzio JC, et al. Amorphous compositions using concentration enhancing polymers for improved bioavailability of itraconazole. Mol Pharm. 2008;5(6):968–80.

    Article  CAS  PubMed  Google Scholar 

  • DiNunzio JC, Martin C, Zhang F. Melt extrusion: shaping drug delivery in the 21st century. Pharmaceutical technology, pp s30–7, November supplemental; 2010a.

    Google Scholar 

  • DiNunzio JC, et al. Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot melt extrusion and Kinetisol® dispersing. Eur J Pharm Biopharm. 2010b;74(2):340–51.

    Article  CAS  PubMed  Google Scholar 

  • DiNunzio JC, et al. Production of advanced solid dispersions for enhanced bioavailability of itraconazole using KinetiSol dispersing. Drug Dev Ind Pharm. 2010c;36(9):1064–78.

    Article  CAS  PubMed  Google Scholar 

  • Doetsch W. Material handling and feeder technology. In: Ghebre-Sellassie I, Martin C, editors. Pharmaceutical extrusion technology. New York: Marcel Dekker; 2003. p. 111–34.

    Google Scholar 

  • Dover HW. Apparatus for insulating or covering strands and forming same into cables. US Patent 699,459; 1902.

    Google Scholar 

  • Dreiblatt A. Process design. In: Ghebre-Sellassie I, Martin C, editors. Pharmaceutical extrusion technology. New York: Marcel Dekker; 2003. p. 149–70.

    Google Scholar 

  • Emin MA, Schuchmann HP. Analysis of the dispersive mixing efficiency in a twin-screw extrusion processing of starch based matrix. J Food Eng [Internet]. 2013;115(1):132–143. Available from: https://doi.org/10.1016/j.jfoodeng.2012.10.008.

  • European Medicines Agency (EMA). Ozurdex EPAR summary for the public. London: EMA; 2014. Document Reference: EMA/477896/214, p 32

    Google Scholar 

  • Evans RC, Bochmann ES, Kyeremateng SO, Gryczke A, Wagner KG. Holistic QbD approach for hot-melt extrusion process design space evaluation: linking materials science, experimentation and process modeling. Eur J Pharm Biopharm. 2019 Aug 1;141:149–60.

    Article  CAS  PubMed  Google Scholar 

  • Fang LY, et al. High density compositions containing posaconazole and formulations comprising the same. US Patent Application CA2720849; 2009.

    Google Scholar 

  • Friesen DT, et al. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5(6):1003–19.

    Article  CAS  PubMed  Google Scholar 

  • Ganjyal G, Hanna M. A review of residence time distribution in food extruders and study on the potential of neural networks in RTD modeling. J Food Sci. 2002;67(6):1996–2002.

    Article  CAS  Google Scholar 

  • Geers S, et al. Polymer formulations of CETP inhibitors. US Patent 8030359; 2010.

    Google Scholar 

  • Genina N, Hadi B, Löbmann K. Hot melt extrusion as solvent-free technique for a continuous manufacturing of drug-loaded mesoporous silica. J Pharm Sci. 2018 Jan 1;107(1):149–55.

    Article  CAS  PubMed  Google Scholar 

  • Gilis PM, De Condé VFV, Vandecruys RPG. Beads having a core coated with an antifungal and a polymer. US Patent 5633015; 1997.

    Google Scholar 

  • Greenhalgh DJ, et al. Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci. 1999;88:1182–90.

    Article  CAS  PubMed  Google Scholar 

  • Groenewegen RJ, inventor; Akzo Nobel NV, assignee. Drug delivery system for two or more active substances. United States patent US 5,989,581; 1999 Nov 23.

    Google Scholar 

  • Gupta SS, Meena A, Parikh T, et al. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion – I: polyvinylpyrrolidone and related polymers. J Excipients Food Chem. 2014;5(1):32–45.

    Google Scholar 

  • Gupta SS, Parikh T, Meena AK, et al. Effect of carbamazepine on viscoelastic properties and hot melt extrudability of Soluplus(®). Int J Pharm. 2015a;478(1):232–9. https://doi.org/10.1016/j.ijpharm.2014.11.025.

    Article  CAS  PubMed  Google Scholar 

  • Gupta SS, Solanki N, Serajuddin AT. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, IV: Affinisol™ HPMC HME polymers. AAPS PharmSciTech. 2015b;17(1):1–10.

    CAS  Google Scholar 

  • Hanada M, Jermain SV, Lu X, Su Y, Williams RO. Predicting physical stability of ternary amorphous solid dispersions using specific mechanical energy in a hot melt extrusion process. Int J Pharm. 2018;548(1):571–85.

    Article  CAS  PubMed  Google Scholar 

  • Hanada M, Jermain SV, Thompson SA, Furuta H, Fukuda M, Williams RO III. Ternary Amorphous Solid Dispersions Containing a High-Viscosity Polymer and Mesoporous Silica Enhance Dissolution Performance. Mol Pharmaceutics. 2020 Dec 8;18(1):198–213.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  • Hancock BC, Christensen K, Shamblin SL. Estimating the critical molecular mobility temperature (TK) of amorphous pharmaceuticals. Pharm Res. 1998;15(11):1649–51.

    Article  CAS  PubMed  Google Scholar 

  • Hanna MA, Gennadios A, Mandigo RW. Restructuring of pork meat in a twin-screw extruder. J Food Process Preserv. 1996;20(5):391–402.

    Article  Google Scholar 

  • Harmon PA, Variankaval N. Solid dosage formulations of an orexin receptor antagonists. World Patent WO2013181174 A3; 2015.

    Google Scholar 

  • Haser A, Huang S, Listro T, White D, Zhang F. An approach for chemical stability during melt extrusion of a drug substance with a high melting point. Int J Pharm. 2017 May 30;524(1–2):55–64.

    Article  CAS  PubMed  Google Scholar 

  • Haser A, Haight B, Berghaus A, Machado A, Martin C, Zhang F. Scale-up and in-line monitoring during continuous melt extrusion of an amorphous solid dispersion. AAPS PharmSciTech. 2018 Oct 1;19(7):2818–27.

    Article  CAS  PubMed  Google Scholar 

  • Huang S, O’Donnell KP, Keen JM, et al. A new extrudable form of hypromellose: AFFINISOL™ HPMC HME. AAPS PharmSciTech. 2015;17(1):1–14.

    Google Scholar 

  • Hughey JR, DiNunzio JC, Bennett RC, et al. Dissolution enhancement of a drug exhibiting thermal and acidic decomposition characteristics by fusion processing: a comparative study of hot melt extrusion and KinetiSol® dispersing. AAPS PharmSciTech. 2010;11(2):760–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphreys A. Annual report: top 10 pipelines (2016). Retrieved 02/23/16, from http://www.pharmalive.com/annual-report-top-10-pipelines/.

  • ICH-Q8(R2). ICH guideline Q8 (R2) on pharmaceutical development EMA/CHMP/ICH/167068/2004. 2009;8(June). Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-11.pdf.

  • Islam MT, Scoutaris N, Maniruzzaman M, Moradiya HG, Halsey SA, Bradley MSA, Chowdhry B, Snowden MJ, Douroumis D. Implementation of transmission NIR as a PAT tool for monitoring drug transformation during HME processing. Eur J Pharm Biopharm. 2015;96:106–16.

    Article  CAS  PubMed  Google Scholar 

  • Jedinger N, Schrank S, Fischer JM, Breinhälter K, Khinast J, Roblegg E. Development of an abuse- and alcohol-resistant formulation based on hot-melt extrusion and film coating. AAPS PharmSciTech. 2015;17(1):68–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jerman R, editor. Devolatilization of polymers via twin screw extrusion. Proceeding of the Leistritz Twin screw Extrusion Workshop; 2006 Bridgewater, NJ, USA.

    Google Scholar 

  • Kanzer J, Hupfeld S, Vasskog T, et al. In situ formation of nanoparticles upon dispersion of melt extrudate formulations in aqueous medium assessed by asymmetrical flow field-flow fractionation. J Pharm Biomed Anal. 2010;53(3):359–65.

    Article  CAS  PubMed  Google Scholar 

  • Karimi-Jafari M, Ziaee A, Iqbal J, O’Reilly E, Croker D, Walker G. Impact of polymeric excipient on cocrystal formation via hot-melt extrusion and subsequent downstream processing. Int J Pharm. 2019;566(January):745–55.

    Article  CAS  PubMed  Google Scholar 

  • Keen JM, Martin C, Machado A, et al. Investigation of process temperature and screw speed on properties of a pharmaceutical solid dispersion using corotating and counter-rotating twin-screw extruders. J Pharm Pharmacol. 2014;66(2):204–17.

    Article  CAS  PubMed  Google Scholar 

  • Keen JM, Foley CJ, Hughey JR, Bennett RC, Jannin V, Rosiaux Y, Marchaud D, McGinity JW. Continuous twin screw melt granulation of glyceryl behenate: development of controlled release tramadol hydrochloride tablets for improved safety. Int J Pharm. 2015;487(1):72–80.

    Article  CAS  PubMed  Google Scholar 

  • Kesisoglou F, Hermans A, Neu C, et al. Development of in vitro–in vivo correlation for amorphous solid dispersion immediate-release suvorexant tablets and application to clinically relevant dissolution specifications and in-process controls. J Pharm Sci. 2015;104(9):2913–22.

    Article  CAS  PubMed  Google Scholar 

  • Kessler T, et al. Process for producing a solid dispersion of an active ingredient. US Patent 20090302493; 2009.

    Google Scholar 

  • Kestur US, Wanapun D, Toth SJ, et al. Nonlinear optical imaging for sensitive detection of crystals in bulk amorphous powders. J Pharm Sci. 2012;101(11):4201–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khaled SA, Burley JC, Alexander MR, Roberts CJ. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm. 2014;461(1):105–11.

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Kwon TH. Enhancement of mixing performance of single-screw extrusion processes via chaotic flows: part I basic concepts and experimental study. Adv Polym Technol. 1996a;15(1):41–54.

    Article  CAS  Google Scholar 

  • Kim SJ, Kwon TH. Enhancement of mixing performance of single-screw extrusion processes via chaotic flows: part II numerical study. Adv Polym Technol. 1996b;15(1):55–69.

    Article  CAS  Google Scholar 

  • Krishna R, Bergman AJ, Green M, et al. Model-based development of anacetrapib, a novel cholesteryl ester transfer protein inhibitor. AAPS J. 2011;13(2):179–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulikov OL, Hornung K. A simple geometrical solution to the surface fracturing problem in extrusion processes. J Nonnewton Fluid Mech. 2001;98(2–3):107–15.

    Article  CAS  Google Scholar 

  • LaFountaine JS, McGinity JW, Williams RO. Challenges and strategies in thermal processing of amorphous solid dispersions: a review. AAPS PharmSciTech. 2015;17(1):43–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lakshman JP, et al. Application of melt granulation technology to enhance tabletting properties of poorly compactible high-dose drugs. J Pharm Sci. 2010;100(4):1553–65.

    Article  PubMed  CAS  Google Scholar 

  • LaMattina, J. Forget HDL, Merck is banking on LDL for its heart drug, anacetrapib. Forbes; 2015, Feb.

    Google Scholar 

  • Lamm MS, DiNunzio J, Khawaja NN, Crocker LS, Pecora A. Assessing mixing quality of a copovidone-TPGS hot melt extrusion process with atomic force microscopy and differential scanning calorimetry. AAPS PharmSciTech. 2015;17(1):89–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lauer ME, Siam M, Tardio J, et al. Rapid assessment of homogeneity and stability of amorphous solid dispersions by atomic force microscopy—from bench to batch. Pharm Res. 2013;30(8):2010–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz E, Löbmann K, Rades T, Knop K, Kleinebudde P. Hot melt extrusion and spray drying of co-amorphous indomethacin-arginine with polymers. J Pharm Sci. 2017 Jan 1;106(1):302–12.

    Article  CAS  PubMed  Google Scholar 

  • Li S, Yu T, Tian Y, McCoy CP, Jones DS, Andrews GP. Mechanochemical synthesis of pharmaceutical cocrystal suspensions via hot melt extrusion: feasibility studies and physicochemical characterization. Mol Pharm. 2016;13(9):3054–68.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Xu W, Su Y. Solid-state NMR spectroscopy in pharmaceutical sciences. TrAC Trends Anal Chem. 2020 Dec;15:116152.

    Google Scholar 

  • Liepold B, Rosenblatt K, Hoelig P, et al. Solid compositions. World Patent 2011156578 A1; 2011.

    Google Scholar 

  • Liepold B, Jung T, Hölig P, et al. Solid compositions. US Patent 8686026 B2; 2014.

    Google Scholar 

  • Lim S, White JL. Flow mechanisms, material distributions and phase morphology development in a modular intermeshing counter-rotating twin screw extruder of Leistritz design. Int Polym Process. 1994;9:33–45.

    Article  CAS  Google Scholar 

  • Liu H, Wang P, Zhang X, Shen F, Gogos CG. Effects of extrusion process parameters on the dissolution behavior of indomethacin in Eudragit® E PO solid dispersions. Int J Pharm. 2010;383(1–2):161–9.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Lu M, Guo Z, Huang L, Feng X, Wu C. Improving the chemical stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion. Pharm Res. 2012;29(3):806–17.

    Article  CAS  PubMed  Google Scholar 

  • Lizoňová D, Mužík J, Šoltys M, Beránek J, Kazarian SG, Štěpánek F. Molecular-level insight into hot-melt loading and drug release from mesoporous silica carriers. Eur J Pharm Biopharm. 2018 Sep 1;130:327–35.

    Article  PubMed  CAS  Google Scholar 

  • Luker K. Single-screw extrusion and screw design. In: Ghebre-Sellassie I, Martin C, editors. Pharmaceutical extrusion technology. New York: Marcel Dekker; 2003. p. 54–83.

    Google Scholar 

  • Lyons JG, et al. Preparation of monolithic matrices for oral drug delivery using a supercritical fluid assisted hot melt extrusion process. Int J Pharm. 2007;329(1–2):62–71.

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Huang S, Lowinger MB, et al. Influence of mechanical and thermal energy on nifedipine amorphous solid dispersions prepared by hot melt extrusion: preparation and physical stability. Int J Pharm [Internet]. 2019 Apr 20;561:324–34. Available from: https://doi.org/10.1016/j.ijpharm.2019.03.014.

  • Mahieu AL, Willart J-FO, Dudognon E, et al. A new protocol to determine the solubility of drugs into polymer matrixes. Mol Pharm. 2013;10(2):560–6.

    Article  CAS  PubMed  Google Scholar 

  • Maniruzzaman M, Nair A, Scoutaris N, Bradley MS, Snowden MJ, Douroumis D. One-step continuous extrusion process for the manufacturing of solid dispersions. Int J Pharm. 2015a Dec 30;496(1):42–51.

    Article  CAS  PubMed  Google Scholar 

  • Maniruzzaman M, Islam MT, Halsey S, Amin D, Douroumis D. Novel controlled release polymer-lipid formulations processed by hot melt extrusion. AAPS PharmSciTech. 2015b;17(1):191–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marsac PJ, Shamblin SL, Taylor LS. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res. 2006;23(10):2417–26.

    Article  CAS  PubMed  Google Scholar 

  • Marsac P, Taylor L, Xi H, et al. A novel method for accessing the enthalpy of mixing active pharmaceutical ingredients with polymers. Presented at American Association for Pharmaceutical Scientists National Meeting, Chicago, IL, USA; 2012.

    Google Scholar 

  • Marschik C, Roland W, Miethlinger J. A network-theory-based comparative study of melt-conveying models in single-screw extrusion: A. Isothermal flow. Polymers (Basel). 2018;10(8):929.

    Article  CAS  Google Scholar 

  • Martin C. Twin screw extruders as continuous mixers for thermal processing: a technical and historical perspective. AAPS PharmSciTech. 2016;17(1):3–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • McGinity JW, et al. Hot-melt extrusion technology. In: Encyclopedia of pharmaceutical technology. Hoboken: Informa Healthcare; 2007. p. 2004–20.

    Google Scholar 

  • Medina C, Daurio D, Nagapudi K, Alvarez-Nunez F. Manufacture of pharmaceutical co-crystals using twin screw extrusion: a solvent-less and scalable process. J Pharm Sci. 2010;99(4):1693–6.

    Article  CAS  PubMed  Google Scholar 

  • Meena A, Parikh T, Gupta SS, et al. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, IV: Affinisol™ HPMC HME polymers. AAPS PharmSciTech. 2014;17(1):148–57.

    Google Scholar 

  • Miller DA, et al. Targeted intestinal delivery of supersaturated itraconazole for improved oral absorption. Pharm Res. 2008a;25(6):1450–9.

    Article  CAS  PubMed  Google Scholar 

  • Miller DA, et al. Enhanced in vivo absorption of itraconazole via stabilization of supersaturation following acidic-to-neutral pH transition. Drug Dev Ind Pharm. 2008b;34(8):890–902.

    Article  CAS  PubMed  Google Scholar 

  • Miller DA, et al. Hot-melt extrusion for improved dissolution properties of poorly water-soluble molecules. In U.S.P.a.T. Organization, editors. Basel: F. Hoffmann-La Roche, Inc.; 2011

    Google Scholar 

  • Miller JM, Beig A, Carr RA, et al. The solubility–permeability interplay when using cosolvents for solubilization: revising the way we use solubility-enabling formulations. Mol Pharm. 2012a;9(3):581–90.

    Article  CAS  PubMed  Google Scholar 

  • Miller JM, Beig A, Carr RA, et al. A win–win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Mol Pharm. 2012b;9(7):2009–16.

    Article  CAS  PubMed  Google Scholar 

  • Miller JM, Morris, JB, Sever, NE, et al. Solid antiviral dosage forms. US Patent 20150258093; 2015.

    Google Scholar 

  • Mollan M. Historical overview. In: Ghebre-Sellassie I, Martin C, editors. Pharmaceutical extrusion technology. New York: Marcel Dekker; 2003. p. 1–18.

    Google Scholar 

  • Monschke M, Kayser K, Wagner KG. Processing of polyvinyl acetate phthalate in hot-melt extrusion—preparation of amorphous solid dispersions. Pharmaceutics. 2020;12:337.

    Article  CAS  PubMed Central  Google Scholar 

  • Muller W, Peck JV, inventors; LTS Lohmann Therapie Systeme GmbH and Co KG, Aderis Pharmaceuticals Inc, assignee. Transdermal therapeutic system which contains a d2 agonist and which is provided for treating Parkinsonism, and a method for the production thereof. United States patent US 6,884,434; 2005 Apr 26. Column 4, Lines 6–16.

    Google Scholar 

  • Nakamichi K, Nakano T, Yasuura H, Izumi S, Kawashima Y. The role of the kneading paddle and the effects of screw revolution speed and water content on the preparation of solid dispersions using a twin-screw extruder. Int J Pharm. 2002;241(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  • Newman A, Engers D, Bates S, et al. Characterization of amorphous API: polymer mixtures using X-ray powder diffraction. J Pharm Sci. 2008;97(11):4840–56.

    Article  CAS  PubMed  Google Scholar 

  • Patil H, Tiwari RV, Repka MA. Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech. 2015;17(1):20–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paudel A, Geppi M, Van den Mooter G. Structural and dynamic properties of amorphous solid dispersions: the role of solid-state nuclear magnetic resonance spectroscopy and relaxometry. J Pharm Sci. 2014;103(9):2635–62. https://doi.org/10.1002/jps.23966.

    Article  CAS  PubMed  Google Scholar 

  • Peng T, She Y, Zhu C, Shi Y, Huang Y, Niu B, et al. Influence of polymers on the physical and chemical stability of spray-dried amorphous solid dispersion: dipyridamole degradation induced by enteric polymers. AAPS PharmSciTech. 2018;19(6):2620–8.

    Article  CAS  PubMed  Google Scholar 

  • Perdikoulias J, Dobbie T. Die design. In: Ghebre-Sellassie I, Martin C, editors. Pharmaceutical extrusion technology. New York: Marcel Dekker; 2003. p. 99–110.

    Google Scholar 

  • Pham TN, Watson SA, Edwards AJ, et al. Analysis of amorphous solid dispersions using 2D solid-state NMR and 1H T1 relaxation measurements. Mol Pharm. 2010;7(5):1667–91.

    Article  CAS  PubMed  Google Scholar 

  • PhRMA Foundation. Twenty-five years of progress against hepatitis C: setbacks and stepping stones. Washington, DC: PhRMA; 2014.

    Google Scholar 

  • Pipe CJ, Majmudar TS, McKinley GH. High shear rate viscometry. Rheol Acta. 2008;47(5–6):621–42.

    Article  CAS  Google Scholar 

  • Qi S, Belton P, Nollenberger K, et al. Compositional analysis of low quantities of phase separation in hot-melt-extruded solid dispersions: a combined atomic force microscopy, photothermal Fourier-transform infrared microspectroscopy, and localised thermal analysis approach. Pharm Res. 2011;28(9):2311–26.

    Article  CAS  PubMed  Google Scholar 

  • Qian F, Huang J, Zhu Q, et al. Is a distinctive single Tg a reliable indicator for the homogeneity of amorphous solid dispersion? Int J Pharm. 2010a;395(1):232–5.

    Article  CAS  PubMed  Google Scholar 

  • Qian F, Huang J, Hussain MA. Drug-polymer solubility and miscibility: stability considerations and practical challenges in amorphous solid dispersion development. J Pharm Sci. 2010b;99(7):2941–7.

    Article  CAS  PubMed  Google Scholar 

  • Repka MA, et al. Influence of plasticizers and drugs on the physical-mechanical properties of hydroxypropylcellulose films prepared by hot melt extrusion. Drug Dev Ind Pharm. 1999;25(5):625–33.

    Article  CAS  PubMed  Google Scholar 

  • Repka MA, et al. Pharmaceutical applications of hot-melt extrusion: part II. Drug Dev Ind Pharm. 2007;33(10):1043–57.

    Article  CAS  PubMed  Google Scholar 

  • Repka MA, et al. Applications of hot-melt extrusion for drug delivery. Expert Opin Drug Deliv. 2008;5(12):1357–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg J, Reinhold U, Liepold B, et al. Solid pharmaceutical dosage form. US Patent 8268349 B2; 2012.

    Google Scholar 

  • Rosenberg J, Reinhold U, Liepold B, et al. Solid pharmaceutical dosage form. US Patent 8399015; 2013.

    Google Scholar 

  • Ross SA, Lamprou DA, Douroumis D. Engineering and manufacturing of pharmaceutical co-crystals: a review of solvent-free manufacturing technologies. Chem Commun. 2016;52(57):8772–86.

    Article  CAS  Google Scholar 

  • Ross SA, Ward A, Basford P, McAllister M, Douroumis D. Coprocessing of pharmaceutical cocrystals for high quality and enhanced physicochemical stability. Cryst Growth Des. 2019;19(2):876–88.

    Article  CAS  Google Scholar 

  • Rumondor AC, Marsac PJ, Stanford LA, et al. Phase behavior of poly (vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. Mol Pharm. 2009;6(5):1492–505.

    Article  CAS  PubMed  Google Scholar 

  • Sauceau M, Fages J, Common A, et al. New challenges in polymer foaming: a review of extrusion processes assisted by supercritical carbon dioxide. Prog Polym Sci. 2011;36(6):749–66.

    Article  CAS  Google Scholar 

  • Schenck L. Devolatilization using hot melt extrusion. Presented in Leistritz pharmaceutical extrusion seminar, Clinton, NJ, USA; 2010.

    Google Scholar 

  • Schenck L, et al. Achieving a hot melt extrusion design space for the production of solid solutions. In: Chemical engineering in the pharmaceutical industry: R&D to manufacturing. New York: Wiley; 2011.

    Google Scholar 

  • Schilling SU, et al. Citric acid as a solid-state plasticizer for Eudragit RS PO. J Pharm Pharmacol. 2007;59(11):1493–500.

    Article  PubMed  CAS  Google Scholar 

  • Schlindwein W, Bezerra M, Almeida J, Berghaus A, Owen M, Muirhead G. In-line UV-Vis spectroscopy as a fast-working process analytical technology (PAT) during early phase product development using hot melt extrusion (HME). Pharmaceutics. 2018 Dec;10(4):166.

    Article  CAS  PubMed Central  Google Scholar 

  • Schmitt PD, Trasi NS, Taylor LS, et al. Finding the needle in the haystack: characterization of trace crystallinity in a commercial formulation of paclitaxel protein-bound particles by Raman spectroscopy enabled by second harmonic generation microscopy. Mol Pharm. 2015;12(7):2378–83.

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Sandhu H, et al. Amorphous solid dispersions: theory and practice. New York: Springer; 2014.

    Book  Google Scholar 

  • Sharma PK, Panda A, Pradhan A, Zhang J, Thakkar R, Whang CH, Repka MA, Murthy SN. Solid-state stability issues of drugs in transdermal patch formulations. AAPS PharmSciTech. 2018 Jan 1;19(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  • Siew A. Solving poor solubility to unlock a drug’s potential. Pharm Technol. 2015;39:20–7.

    Google Scholar 

  • Steiner R. Extruder design. In: Pharmaceutical extrusion technology. New York: Marcel Dekker; 2003. p. 20–38.

    Google Scholar 

  • Sun Y, Xi H, Ediger M, et al. Diffusion-controlled and “diffusionless” crystal growth near the glass transition temperature: relation between liquid dynamics and growth kinetics of seven ROY polymorphs. J Chem Phys. 2009;131(7):074506.

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Tao J, Zhang GG, et al. Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc. J Pharm Sci. 2010;99(9):4023–31.

    Article  CAS  PubMed  Google Scholar 

  • Suwardie H, et al. Rheological study of the mixture of acetaminophen and polyethylene oxide for hot-melt extrusion application. Eur J Pharm Biopharm. 2011;78(3):506–12.

    Article  CAS  PubMed  Google Scholar 

  • Tadmor Z, Gogos CG. Principles of polymer processing. Hoboken: Wiley; 2013.

    Google Scholar 

  • Tallury P, Alimohammadi N, Kalachandra S. Poly (ethylene-co-vinyl acetate) copolymer matrix for delivery of chlorhexidine and acyclovir drugs for use in the oral environment: effect of drug combination, copolymer composition and coating on the drug release rate. Dent Mater. 2007 Apr 1;23(4):404–9.

    Article  CAS  PubMed  Google Scholar 

  • Tan DK, Davis DA, Miller DA, et al. Innovations in thermal processing: hot-melt extrusion and KinetiSol® dispersing. AAPS PharmSciTech. 2020;21:312. https://doi.org/10.1208/s12249-02001854-2.

    Article  CAS  PubMed  Google Scholar 

  • Tanno F, Nishiyama Y, Kokubo H, Obara S. Evaluation of hypromellose acetate succinate (HPMCAS) as a carrier in solid dispersions. Drug Dev Ind Pharm. 2004;30(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  • Terife G, Wang P, Faridi N, Gogos CG. Hot melt mixing and foaming of Soluplus® and indomethacin. Polym Eng Sci. 2012;52(8):1629–39.

    Article  CAS  Google Scholar 

  • Thayer AM. Finding solutions. Chem Eng News. 2010;88:13–8.

    Article  Google Scholar 

  • Thiele W. Twin-screw extrusion and screw design. In: Pharmaceutical extrusion technology. New York: Marcel Dekker; 2003. p. 69–98.

    Google Scholar 

  • Tho I, Liepold B, Rosenberg J, Maegerlein M, Brandl M, Fricker G. Formation of nano/micro-dispersions with improved dissolution properties upon dispersion of ritonavir melt extrudate in aqueous media. Eur J Pharm Sci. 2010;40(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  • Thompson SA, Williams III RO. Specific mechanical energy – an essential parameter in the processing of amorphous solid dispersions. Adv Drug Deliv Rev; 2021 Mar 27; https://doi.org/10.1016/j.addr.2021.03.006.

  • Tian Y, Jacobs E, Jones DS, McCoy CP, Wu H, Andrews GP. The design and development of high drug loading amorphous solid dispersion for hot-melt extrusion platform. Int J Pharm. 2020;586:119545.

    Google Scholar 

  • Todd DB. Introduction to compounding. In: Plastics compounding: equipment and processing. New York: Hanser Publishers; 1995. p. 1–12.

    Google Scholar 

  • Toth SJ, Madden JT, Taylor LS, et al. Selective imaging of active pharmaceutical ingredients in powdered blends with common excipients utilizing two-photon excited ultraviolet-fluorescence and ultraviolet-second order nonlinear optical imaging of chiral crystals. Anal Chem. 2012;84(14):5869–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tumuluri VS, et al. Off-line and on-line measurements of drug-loaded hot-melt extruded films using Raman spectroscopy. Int J Pharm. 2008;357(1–2):77–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • United States Pharmacopeia and National Formulary. USP 38-NF 33 [Internet]. 2015 [revision 24 Apr 2015; cited 15 Jan 2020]. Available from: https://www.uspnf.com/official-text

  • Van den Mooter G. The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Disc Today Technol. 2012;9(2):e79–85.

    Article  CAS  Google Scholar 

  • Van Laarhoven JAH, Kruft MAB, Vromans H. In vitro release properties of etonogestrel and ethinyl estradiol from a contraceptive vaginal ring. Int J Pharm. 2002;23:163–73.

    Article  Google Scholar 

  • Verreck G, Six K, Van den Mooter G, et al. Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion—part I. Int J Pharm. 2003;251(1):165–74.

    Article  CAS  PubMed  Google Scholar 

  • Verreck G, et al. The effect of pressurized carbon dioxide as a plasticizer and foaming agent on the hot melt extrusion process and extrudate properties of pharmaceutical polymers. J Supercrit Fluids. 2006a;38(3):383–91.

    Article  CAS  Google Scholar 

  • Verreck G, et al. Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer. Int J Pharm. 2006b;327(1–2):45–50.

    Article  CAS  PubMed  Google Scholar 

  • Verreck G, et al. The effect of supercritical CO2 as a reversible plasticizer and foaming agent on the hot stage extrusion of itraconazole with EC 20 cps. J Supercrit Fluids. 2007;40(1):153–62.

    Article  CAS  Google Scholar 

  • Vora C, Patadia R, Mittal K, Mashru R. Preparation and characterization of dipyridamole solid dispersions for stabilization of supersaturation: effect of precipitation inhibitors type and molecular weight. Pharm Dev Technol. 2015;21(7):847–55.

    Article  PubMed  CAS  Google Scholar 

  • Vyazovkin S, Dranca I. Effect of physical aging on nucleation of amorphous indomethacin. J Phys Chem B. 2007;111(25):7283–7.

    Article  CAS  PubMed  Google Scholar 

  • Wanapun D, Kestur US, Kissick DJ, et al. Selective detection and quantitation of organic molecule crystallization by second harmonic generation microscopy. Anal Chem. 2010;82(13):5425–32.

    Article  CAS  PubMed  Google Scholar 

  • Wanapun D, Kestur US, Taylor LS, et al. Quantification of trace crystallinity in an organic powder by nonlinear optical imaging: investigating the effects of mechanical grinding on crystallinity loss. In: Abstracts of papers of the American Chemical Society meeting, Washington, DC, USA; 2011.

    Google Scholar 

  • Wang S-Q, Drda P. Molecular instabilities in capillary flow of polymer melts: interfacial stick-slip transition, wall slip and extrudate distortion. Macromol Chem Phys. 1997;198(3):673–701.

    Article  CAS  Google Scholar 

  • Yang M, Wang P, Suwardie H, et al. Determination of acetaminophen’s solubility in poly(ethylene oxide) by rheological, thermal and microscopic methods. Int J Pharm. 2011;403(1–2):83–9.

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Su Y, Zhang J, DiNunzio J, Leone A, Huang C, Brown CD. Rheology guided rational selection of processing temperature to prepare copovidone–nifedipine amorphous solid dispersions via hot melt extrusion (HME). Mol Pharm. 2016 Oct 3;13(10):3494–505.

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka M, Hancock BC, Zografi G. Inhibition of indomethacin crystallization in poly(vinylpyrrolidone) coprecipitates. J Pharm Sci. 1995;84(8):983–6.

    Article  CAS  PubMed  Google Scholar 

  • Zecevic DE, Wagner KG. Rational development of solid dispersions via hot-melt extrusion using screening, material characterization, and numeric simulation tools. J Pharm Sci. 2013;102(7):2297–310.

    Article  CAS  PubMed  Google Scholar 

  • Zecevic DE, Evans RC, Paulsen K, Wagner KG. From benchtop to pilot scale–experimental study and computational assessment of a hot-melt extrusion scale-up of a solid dispersion of dipyridamole and copovidone. Int J Pharm. 2018;537(1–2):132–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Hate SS, Russell DJ, Hou HH, Nagapudi K. Impact of surfactant and surfactant-polymer interaction on desupersaturation of clotrimazole. J Pharm Sci. 2019 Oct 1;108(10):3262–71.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, et al. Prediction of the thermal phase diagram of amorphous solid dispersions by Flory-Huggins theory. J Pharm Sci. 2011;100:3196–207.

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Wong L, Yu L. Surface-enhanced crystallization of amorphous nifedipine. Mol Pharm. 2008;5(6):921–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thompson, S.A., Davis, D.A., DiNunzio, J.C., Martin, C., Williams, R.O., Zhang, F. (2022). Melt Extrusion. In: Williams III, R.O., Davis Jr., D.A., Miller, D.A. (eds) Formulating Poorly Water Soluble Drugs. AAPS Advances in the Pharmaceutical Sciences Series, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-030-88719-3_9

Download citation

Publish with us

Policies and ethics