Skip to main content

Intersomatic Screw Experimental Study to Treat Lumbar Disc Herniations

  • Conference paper
  • First Online:
Proceedings of I4SDG Workshop 2021 (I4SDG 2021)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 108))

Included in the following conference series:

  • 1087 Accesses

Abstract

In this work, the biomechanical behavior of an intersomatic screw located in an intervertebral disc after a discectomy is studied. For the analysis, a clamping device was designed to reproduce the rotational movements of the vertebrae. The mechanism was adapted to a Shimadzu® universal mechanical testing machine, using an axial compression load in a range of 0 to 3000 N on two types of specimens, with different properties but with similar geometries, an L2 vertebral unit −L3 from resin vertebrae and an L4-L5 vertebral unit from a porcine specimen. The deformation of the vertebrae was obtained using the Photostress technique. The results show the biomechanical evaluation of an interbody screw, which can be used as an alternative to alleviate pathologies that involve the wear of the lumbar intervertebral disc and increase the quality of life and well-being of people, which is the Third Goal for Development Sustainable (SDG3) of the 2030 Agenda of the United Nations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cloward, R.B.: The treatment of ruptured lumbar intervertebral discs by vertebral body fusion I; indications, operative technique, after care. J. Neurosurg. 10, 154–168 (1953)

    Article  Google Scholar 

  2. Bailey, R.W., Bagley, C.: Stabilization of the cervical spine by anterior fusion. J. Bone Joint Surg. 42(4), 565–594 (1960)

    Google Scholar 

  3. Ramani, P.S.: Textbook of Cervical Spondylosis (Ed. by, Jaypee), p. 327 (2004)

    Google Scholar 

  4. Hitchin, P.W., Traynelis, V.C., Rengachary, S.: Techniques in Spinal Fusion and Stabilization (Ed. by, Thieme), p. 174 (1995)

    Google Scholar 

  5. Xu, H.-Z., Wang, X.-Y., Chi, Y.-L., Zhu, Q.-A., Lin, Y.: Biomechanical evaluation of a dynamic pedicle screw fixation device. Center, Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China, 7 December 2005

    Google Scholar 

  6. Disch, A.C., Luzzati, A., Melcher, I., Schaser, K.D., Feraboli, F., Schmoelz, W.: Three-dimensional stiffness in a thoracolumbar model: a biomechanical in vitro study. Centre for Musculoskeletal Surgery, Musculoskeletal Tumour Surgery Section, Charite’-University Medicine Berlin, Augustenburger Platz Berlin, Germany, 3 July 2007

    Google Scholar 

  7. Gay, R.E., Ilharreborde, B., Zhao, K.D., Berglund, L.J., Bronfort, G., An, K.-N.: Stress in lumbar intervertebral discs during distraction: a cadaveric study. Department of Physical Medicine and Rehabilitation, Mayo Clinic, USA, 31 July 2007

    Google Scholar 

  8. Meyers, K., et al.: Use of instrumented pedicle screws to evaluate load sharing in posterior dynamic stabilization systems. Department of Biomechanics, Hospital for Special Surgery, New York, USA, 15 August 2007

    Google Scholar 

  9. Wheeler, D.J., et al.: Interlaboratory variability in vitro spinal segment flexibility testing. A University of Minnesota, Minneapolis, USA, 29 June 2011

    Google Scholar 

  10. Torres-San Miguel, C.R., Hernández-Gómez, J., Urriolagoitia-Sosa, G., Romero-Ángeles, B., Martínez-Sáez, L.: Design and manufacture of a customised temporomandibular prosthesis. Rev. Int. Metodos Numer. Calc. Diseno Ing. 35, 1–22 (2019)

    Google Scholar 

  11. Tang, J.A., Scheer, J.K., Ames, C.P., Buckley, J.M.: Pure moment testing for spinal biomechanics applications: fixed versus 3D floating ring cable-driven test designs. The Taylor Collaboration, San Francisco, USA, 21 December 2011

    Google Scholar 

  12. Galbusera, F., Bellini, C.M., Anasetti, F., Ciavarro, C., Lovi, A., Brayda-Bruno, M.: Rigid and flexible spinal stabilization devices: a biomechanical comparison. J. Med. Eng. Phys. 33, 490–496 (2011)

    Google Scholar 

  13. Rapoff, A.J., Ghanayem, A.J., Zdeblick, T.A.: Biomechanical comparison of posterior lumbar interbody fusion cages. Spine 22, 2375–2379 (1997)

    Article  Google Scholar 

  14. Calalpa-Torres, I., Torres-SanMiguel, C.R., Urriolagoitia-Sosa, G., Cuautle-Estrada, A., Romero-Angeles, B., Urriolagoitia-Calderón, G.M.: Antigravity Device for Invertebral Rehabilitation. Engineering Design Applications III, pp. 13–21, Springer, Heidelberg (2020)

    Google Scholar 

  15. Ramirez, O., Ceccarelli, M., Russo, M., Torres-San-Miguel, C.R., Urriolagoitia-Calderon, G.: Experimental dynamic tests of RIB implants. In: Carbone, G., Gasparetto, A. (eds.) IFToMM ITALY 2018. MMS, vol. 68, pp. 353–361. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03320-0_38

    Chapter  Google Scholar 

  16. Ramirez, O., Torres-San-Miguel, C., Ceccarelli, M., Urriolagoitia-Calderón, G.: Experimental characterization of an osteosynthesis implant. Adv. Mech. Mach. Sci. 73(16), 53–62 (2019)

    Google Scholar 

  17. Torres, C.R., García, G., Aguilar, L.A., Martínez, L.: Design of a rib impactor equipment. VIII Int. Congr. Eng. Phys. 48, 1–6 (2016)

    Google Scholar 

  18. Rueda Arreguin, J.L., Ceccarelli, M., Torres San Miguel, C.R.: Design of an articulated neck for testbed mannequin. In: Niola, V., Gasparetto, A. (eds.) IFToMM ITALY 2020. MMS, vol. 91, pp. 94–101. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55807-9_11

    Chapter  Google Scholar 

  19. Rueda Arreguín, J.L., Ceccarelli, M., Torres-San-Miguel, C.R., Morales Cruz, C.: Lab experiences on impact biomechanics of human head. In: Rauter, G., Cattin, P.C., Zam, A., Riener, R., Carbone, G., Pisla, D. (eds.) MESROB 2020. MMS, vol. 93, pp. 229–237. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58104-6_26

    Chapter  Google Scholar 

  20. Rueda Arreguín, J.L., Ceccarelli, M., Torres San Miguél, C.R.: Design and simulation of a parallel-mechanism testbed for head impact. In: Zeghloul, S., Laribi, M., Sandoval Arevalo, J. (eds.) RAAD 2020. MMS, vol. 84, pp. 400–407. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48989-2_43

  21. Caravaggi, P., Chaudary, S., Uko, L., Chen, L., Khamsi, B., Vives, M.: A novel design for application of pure moments in-vitro: application to the kinematic analysis of the cervical spine. Vives Joint Motion Lab, Orthopedics Dept., University of Medicine and Dentistry of New Jersey, Newark (NJ), USA (2013)

    Google Scholar 

  22. Holsgrove, T.P., Gheduzzi, S., Gill, H.S., Miles, A.W.: The development of a dynamic, six-axis spine simulator. Centre for Orthopaedic Biomechanics, Department of Mechanical Engineering, University of Bath, Bath, UK, 26 November 2013

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support for the development of this work by the National Council of Science and Technology (CONACYT) of Mexico, the Instituto Politécnico Nacional. Authors thanks of partial support from project 20210282 and EDI grant, all provided by SIP/IPN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Torres-San Miguel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oropeza-Osornio, A., Torres-San Miguel, C.R., Urriolagoitia-Calderón, G.M. (2022). Intersomatic Screw Experimental Study to Treat Lumbar Disc Herniations. In: Quaglia, G., Gasparetto, A., Petuya, V., Carbone, G. (eds) Proceedings of I4SDG Workshop 2021. I4SDG 2021. Mechanisms and Machine Science, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-87383-7_24

Download citation

Publish with us

Policies and ethics