Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 97))

  • 650 Accesses

Abstract

The simulation of Additive Manufacturing is based on coupled differential equations. Besides precise models for all phenomena, accurate solution schemes for differential equations are a prerequisite for realistic reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • N. Aronszajn, Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  • M. Arroyo, M. Ortiz, Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int. J. Num. Methods Eng. 65, 2167–2202 (2006)

    Article  MathSciNet  Google Scholar 

  • K.J. Bathe, Finite Element Procedures (Klaus-Jurgen Bathe, 2006)

    Google Scholar 

  • G.P. Bazeley, Y.K. Cheung, B.M. Irons, O.C. Zienkiewicz, Triangular elements in bending-conforming and nonconforming solutions, in Proceedings of the Conference on Matrix Methods in Structural Mechanics, Air Forces Institute of Technology, Wright Patterson AF Base, Ohio (1965)

    Google Scholar 

  • T. Belytschko, Y. Krongauz, J. Dolbow, C. Gerlach, On the completeness of meshfree particle methods. Int. J. Num. Methods Eng. 43(5), 785–819 (1998)

    Article  MathSciNet  Google Scholar 

  • T. Belytschko, Y. Guo, W.K. Liu, S.P. Xiao, A unified stability analysis of meshless particle methods. Int. J. Numer. Methods Eng. 48(9), 1359–1400 (2000a)

    Google Scholar 

  • T. Belytschko, W.K. Liu, B. Moran. Nonlinear Finite Elements for Continua and Structures (Wiley, Chichester, 2000b)

    Google Scholar 

  • J. Bonet, S.D. Kulasegaram, Correction and stabilization of Smooth Particle Hydrodynamics methods with applications in metal forming simulations. Int. J. Num. Methods Eng. 47(6), 1189–1214 (2000)

    Article  Google Scholar 

  • J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  Google Scholar 

  • D. Braess. Finite Elemets: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. (Cambridge University Press, 2007)

    Google Scholar 

  • A.N. Brooks, T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982)

    Article  MathSciNet  Google Scholar 

  • J.S. Chen, C. Pan, C.T. Wu, W.K. Liu, Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput. Methods Appl. Mech. Eng. 139(1–4), 195–227 (1996)

    Article  MathSciNet  Google Scholar 

  • J.S. Chen, C.T. Wu, S. Yoon, Y. You, A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Num. Methods Eng. 50(2), 435–466 (2001)

    Article  Google Scholar 

  • J.S. Chen, S. Yoon, C.T. Wu, Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 53(12), 2587–2615 (2002)

    Article  Google Scholar 

  • J.S. Chen, M. Hillman, M. Rüter, An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int. J. Numer. Methods Eng. 95(5), 387–418 (2013)

    Article  MathSciNet  Google Scholar 

  • L. Chen, J.H. Lee, C.F. Chen, On the modeling of surface tension and its applications by the generalized interpolation material point method. Comput. Model. Eng. Sci. 86(3), 199 (2012)

    MATH  Google Scholar 

  • G. Dhatt, G. Touzot, The Finite Element Method Displayed (Wiley, Chicester, 1984)

    MATH  Google Scholar 

  • I. Ergatoudis, B.M. Irons, O.C. Zienkiewicz, Curved, isoparametric, “quadrilateral’’ elements for finite element analysis. Int. J. Solids Struct. 4(1), 31–42 (1968)

    Article  Google Scholar 

  • W. Fleming. Functions of Several Variables (Springer Science & Business Media, 2012)

    Google Scholar 

  • M. Foca. On a Local Maximum Entropy Interpolation Approach for Simulation of Coupled Thermo-mechanical Problems. Application to the Rotary Frictional Welding process. Ph.D. thesis, Ecole Centrale de Nantes (ECN) (2015)

    Google Scholar 

  • P.M. Gresho, R.L. Sani, Incompressible Flow and the Finite Element Method. Volume 1: Advection-diffusion and Isothermal Laminar Flow (Wiley, New York, NY (USA), 1998)

    Google Scholar 

  • M. Hillman, M. Pasetto, G. Zhou, Generalized reproducing kernel Peridynamics: unification of local and non-local meshfree methods, non-local derivative operations, and an arbitrary-order state-based peridynamic formulation. Comput. Part. Mech. 7(2), 435–469 (2020)

    Article  Google Scholar 

  • C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  Google Scholar 

  • G.A. Holzapfel, Nonlinear Solid Mechanics. A Continuum Approach for Engineering (Wiley, Chichester, 2000)

    MATH  Google Scholar 

  • T.R.J. Hughes, The Finite Element Method (Prentice Hall, Englewood Cliffs, NJ, 1987)

    MATH  Google Scholar 

  • B.M. Irons, O.C. Zienkiewicz, The isoparametric finite element system: a new concept in finite element analysis. Royal Aeronautical Society London 3–36 (1968)

    Google Scholar 

  • E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)

    Article  MathSciNet  Google Scholar 

  • Y. Krongauz, T. Belytschko, Consistent pseudo-derivatives in meshless methods. Comput. Methods Appl. Mech. Eng. 146(3–4), 371–386 (1997)

    Article  MathSciNet  Google Scholar 

  • S. Kumar, K. Danas, D.M. Kochmann, Enhanced local maximum-entropy approximation for stable meshfree simulations. Comput. Methods Appl. Mech. Eng. 344, 858–886 (2019)

    Article  MathSciNet  Google Scholar 

  • P. Lancaster, K. Salkauskas, Curve and Surface Fitting. An Introduction (Academic Press, London, 1986)

    MATH  Google Scholar 

  • S. Li, W.K. Liu, Synchronized reproducing kernel interpolant via multiple wavelet expansion. Comput. Mech. 21(1), 28–47 (1998)

    Article  MathSciNet  Google Scholar 

  • S. Li, W.K. Liu, Meshfree Particle Methods (Springer, Berlin, Heidelberg, New York, 2007)

    MATH  Google Scholar 

  • I.V. Lindell, Methods for Electromagnetic Field Analysis (IEEE Press, 1992)

    Google Scholar 

  • W.K. Liu, S. Jun, Y.F. Zhang, Reproducing kernel particle methods. Int. J. Numer. Methods Fluids 20(8–9), 1081–1106 (1995)

    Article  MathSciNet  Google Scholar 

  • W.K. Liu, S. Li, T. Belytschko, Moving least-square reproducing kernel methods (I): methodology and convergence. Comput. Methods Appl. Mech. Eng. 143(1), 113–154 (1997)

    Article  MathSciNet  Google Scholar 

  • E. Madenci, A. Barut, M. Futch, Peridynamic differential operator and its applications. Compu. Methods Appl. Mech. Eng. 304, 408–451 (2016)

    Article  MathSciNet  Google Scholar 

  • E. Madenci, M. Dorduncu, A. Barut, N. Phan, Weak form of Peridynamics for nonlocal essential and natural boundary conditions. Comput. Methods Appl. Mech. Eng. 337, 598–631 (2018)

    Article  MathSciNet  Google Scholar 

  • J. Marsden, T.J.R. Hughes, Mathematical Foundations of Elasticity (Prentice-Hall Inc, Englewood Cliffs, 1983)

    MATH  Google Scholar 

  • C. Miehe, Zur numerischen Behandlung thermomechanischer Prozesse. Ph.D. thesis, Universität Hannover, Germany (1988)

    Google Scholar 

  • E. Onate, S. Idelsohn, O.C. Zienkiewicz, R.L. Taylor, A finite point method in computational mechanics. Applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering 39, 3839–3866 (1996)

    Google Scholar 

  • S. Osher, R.P. Fedkiw, Level set methods: an overview and some recent results. J. Comput. Phys. 169(2), 463–502 (2001)

    Article  MathSciNet  Google Scholar 

  • S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  Google Scholar 

  • D.J. Price, Smoothed particle hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231(3), 759–794 (2012)

    Article  MathSciNet  Google Scholar 

  • M.A. Puso, J.S. Chen, E. Zywicz, W. Elmer, Meshfree and finite element nodal integration methods. Int. J. Numer. Methods Eng. 74(3), 416–446 (2008)

    Article  MathSciNet  Google Scholar 

  • P.W. Randles, L.D. Libersky, Smoothed particle hydrodynamics: some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 375–408 (1996)

    Article  MathSciNet  Google Scholar 

  • R. Seydel, Practical Bifurcation and Stability Analysis, vol. 5 (Springer Science & Business Media, 2009)

    Google Scholar 

  • J.C. Simo, N. Tarnow, The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Zeitschrift für angewandte Mathematik und Physik ZAMP 43(5), 757–792 (1992)

    Google Scholar 

  • G. Strang, Variational crimes in the Finite Element Method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Elsevier, 1972), pp. 689–710

    Google Scholar 

  • G. Strang, G.J. Fix, An Analysis of the Finite Element Methhod (Prentice-Hall, Englewood Cliffs, NJ, 1973)

    MATH  Google Scholar 

  • J.W. Swegle, D.L. Hicks, S.W. Attaway, Smoothed particle hydrodynamics stability analysis. J. Comput. Phys. 116(1), 123–134 (1995)

    Article  MathSciNet  Google Scholar 

  • R.L. Taylor, J.C. Simo, O.C. Zienkiewicz, A.C.H. Chan, The patch test—a condition for assessing FEM convergence. Int. J. Numer. Methods Eng. 22(1), 39–62 (1986)

    Article  MathSciNet  Google Scholar 

  • M.R. Tupek, R. Radovitzky, An extended constitutive correspondence formulation of Peridynamics based on nonlinear bond-strain measures. J. Mech. Phys. Solids 65, 82–92 (2014)

    Article  MathSciNet  Google Scholar 

  • M.M. Vainberg, Variational Methods for the Study of Nonlinear Operators (Holden Day, 1964)

    Google Scholar 

  • C. Weißenfels, Direct nodal imposition of surface loads using the divergence theorem. Finite Elem. Anal. Des. 165, 31–40 (2019)

    Article  MathSciNet  Google Scholar 

  • H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389–396 (1995)

    Article  MathSciNet  Google Scholar 

  • W.L. Wood, Practical Time-Stepping Schemes, vol. 6 (Clarendon Press, Oxford, 1990)

    MATH  Google Scholar 

  • P. Wriggers. Nonlinear Finite Element Methods (Springer Science & Business Media, 2008)

    Google Scholar 

  • O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, vol. 1, 4th edn. (McGraw Hill, London, 1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Weißenfels .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weißenfels, C. (2022). Meshfree Discretization Schemes. In: Simulation of Additive Manufacturing using Meshfree Methods. Lecture Notes in Applied and Computational Mechanics, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-030-87337-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87337-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87336-3

  • Online ISBN: 978-3-030-87337-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics