Skip to main content

Role of Trichoderma spp. in Biocontrol of Plant Diseases

  • Chapter
  • First Online:
Microbial Biocontrol: Food Security and Post Harvest Management

Abstract

Crop losses incurred by major plant pathogens, fungi, bacteria, nematodes and viruses are in a surge. The detrimental impacts of current disease management practices create an urgent need to develop non-chemical and eco-friendly methods. Biological control or biocontrol of phytopathogens is a sustainable and sound approach to overwhelm various threats caused by the existing control measures. Among the biocontrol agents (BCAs), avirulent, filamentous mycoparasitic Trichoderma spp. are well-known for their agricultural application versatility. The host plant-Trichoderma-pathogen interaction plays a pivotal role in plant disease management. Trichoderma spp. network with plant pathogens via direct mechanisms of mycoparasitism, antibiosis and competition while indirectly inducing systemic disease resistance and promoting plant growth and yield when Trichoderma-plant interaction is switched on. The interactions support efficient biological disease control and overall crop recovery from various diseases and ultimately lead to successful crop production. Trichoderma-based BCAs offer significant contributions in the arena of plant protection and disease management. An array of Trichoderma spp. have proven effective against a broad range of plant pathogens by enhancing the plants’ overall health and improving their yield. The biocontrol activity, plant-Trichoderma interactions and the efficacy could vary with the type of the pathogens, Trichoderma strain and host plant. Besides, the efficacy and stability of widely used and newly recognized strains of Trichoderma still need to be evaluated under different environmental conditions in the field for successful outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Fataah GM, Shabana YM, Ismail AE, Rashad YM (2007) Trichoderma harzianum: a biocontrol agent against Bipolaris oryzae. Mycopathologia 164:81–99

    Google Scholar 

  • Abd-Elgawad MMM, Askary TH (2020) Factors affecting success of biological agents used in controlling the plant-parasitic-nematodes. Egypt J Biol Pest Control 30:17

    Google Scholar 

  • Affokpon A, Coyne DL, Htay CC, Agbede RD, Lawouin L, Coosemans J (2011) Biocontrol potential native Trichoderma isolates against root-knot nematodes in West African vegetable production systems. Soil Biol Chem 43(3):600–608

    CAS  Google Scholar 

  • Agrios GN (2005) Plant diseases caused by prokaryotes: bacteria and mollicutes. In: Agrios GN (ed) Plant pathology, 5th edn. Academic Press, pp 615–703

    Google Scholar 

  • Ahluwalia V, Kumar J, Rana VS, Sati OP, Walia S (2015) Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity. Nat Prod Res 29:914–920

    CAS  PubMed  Google Scholar 

  • Al-Ani LKT (2018) Trichoderma: beneficial role in sustainable agriculture by plant disease management. In: Egamberdieva D, Ahmad P (eds) Plant microbiome: stress response. Microorganisms for sustainability. Springer, Singapore

    Google Scholar 

  • Al-Askar AA, Ezzat AS, Ghoneem KM, Saber WIA (2016) Trichoderma harzianum WKY5 and its gibberellic acid control of Rhizoctonia solani, improve sprouting, growth and productivity of potato. Egypt J Biol Pest Control 26(4):87–796

    Google Scholar 

  • Aldahmani JH, Abbasi PA, Sahin F, Hoitink HAJ, Miller SA (2005) Reduction of bacterial leaf spot severity on radish, lettuce, and tomato plants grown in compost-amended potting mixes. Can J Plant Pathol 27(2):186–193

    Google Scholar 

  • Alfiky A, Weisskopf L (2021) Deciphering Trichoderma-plant-pathogen interactions for better development of biocontrol applications. J Fungi (Basel) 7(1):61. https://doi.org/10.3390/jof7010061

    Article  CAS  Google Scholar 

  • Al-Hazmi AS, TariqJaveed M (2016) Effects of different inoculum densities of Trichoderma harzianum and Trichoderma viride against Meloidogyne javanica on tomato. Saudi J Biol Sci 23(2):288–292

    PubMed  Google Scholar 

  • Almassi F, Ghisalberti EL, Narbey MJ, Sivasithamparam K (1991) New antibiotics from strains of Trichoderma harzianum. J Nat Prod 54:396–402

    CAS  Google Scholar 

  • Amarasinghe LD, Hemachandra KHDJK (2020) Meloidogyne graminicola infestation in selected Sri Lankan rice varieties, Oryza sativa L. and nemato-toxic effect of Trichoderma viride to reduce infectivity. J Sci Univ Kelaniya 13:18–34

    Google Scholar 

  • Anees M, Tronsmo A, Edel-Hermann V, Hjeljord LG, HĂ©raud C, Steinberg C (2010) Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biol 114:691–701

    PubMed  Google Scholar 

  • Ansari RA, Rizvi R, Sumbul A, Mahmood I (2020) Plant-growth-promoting rhizobacteria (PGPR)-based sustainable management of phytoparasitic nematodes: current understandings and future challenges. In: Ansari RA et al (eds) Management of phytonematodes: recent advances and future challenges. Springer Nature, Singapore, pp 51–72

    Google Scholar 

  • Askew DJ, Laing MD (1993) An adapted selective medium for the quantitative isolation of Trichoderma species. Plant Pathol 42:686–690

    Google Scholar 

  • Atanasova L, Druzhinina IS, Jaklitsch WM, Mukherjee P, Horwitz B, Singh U (2013) Two hundred Trichoderma species recognized on the basis of molecular phylogeny. Trichoderma: biology and applications. CABI, Wallingford, pp 10–42

    Google Scholar 

  • Atehnkeng J, Ojiambo PS, Ikotun T, Sikora RA, Cotty PJ, Bandyopadhyay R (2008) Evaluation of atoxigenic isolates of Aspergillus flavus as potential biocontrol agents for aflatoxin in maize. Food Addit Contam 25(10):1264–1271

    CAS  Google Scholar 

  • Atolani O, Fabiyi OA (2020) Plant parasitic nematodes management through natural products: current progress and challenges. In: Ansari R, Rizvi R, Mahmood I (eds) Management of phytonematodes: recent advances and future challenges. Springer, Singapore, pp 297–315

    Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baird R, Carling D (1998) Survival of parasitic and saprophytic fungi on intact senescent cotton roots. J Cotton Sci 2:27–34

    Google Scholar 

  • Balai L, Ahir R (2011) Evaluation of plant extracts and biocontrol agents against leaf spot disease of brinjal. Indian Phytopathol 64:378–380

    Google Scholar 

  • Balique F, Lecoq H, Raoult D, Colson P (2015) Can plant viruses cross the kingdom border and be pathogenic to humans? Viruses 7(4):2074–2098

    PubMed  PubMed Central  Google Scholar 

  • Barnwal MK, Kotasthane A, Magculia N, Mukherjee PK, Savary S, Sharma AK, Singh HB, Singh US, Sparks AH, Variar M, Zaidi N (2013) A review on crop losses, epidemiology and disease management of rice brown spot to identify research priorities and knowledge gaps. Eur J Plant Pathol 136(3):443–457

    Google Scholar 

  • Barua L, Bora BC (2008) Comparative efficacy of Trichoderma harzianum and Pseudomonas fluorescens against Meloidogyne incognita and Ralstonia solanacearum complex in brinjal. Indian J Nematol 38(1):86–89

    Google Scholar 

  • Behzad H, Mousa T, Mohammad RM, Mahdi D (2008) Biological potential of some Iranian Trichoderma isolates in the control of soil-borne plant pathogenic fungi. Afr J Biotechnol 7:967–972

    Google Scholar 

  • BenĂ­tez T, RincĂłn AM, LimĂłn MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Berg G, Zachow C, Lottmann J, Götz M, Costa R, Smalla K (2005) Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae kleb. Appl Environ Microbiol 71:4203–4213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bissett J (1984) A revision of the genus Trichoderma. I. Section Longibrachiatum sect nov. Can J Bot 62:924–931

    Google Scholar 

  • Bissett J (1991a) A revision of the genus Trichoderma. II. Infrageneric classification. Can J Bot 69:2357–2372

    Google Scholar 

  • Bissett J (1991b) A revision of the genus Trichoderma. III. Sect. Pachybasium. Can J Bot 69:2373–2417

    Google Scholar 

  • Biswas KK, Sen C (2000) Management of stem rot of groundnut caused by Sclerotium rolfsii through Trichoderma harzianum. Indian Phytopathol 53(3):290–295

    Google Scholar 

  • Bokhari FM (2009) Efficacy of some Trichoderma species in the control of Rotylenchulus reniformis and Meloidogyne javanica. Arch Phytopathol Plant Prot 42(4):361–369

    CAS  Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trend Ecol Evol 28(4):230–238

    Google Scholar 

  • Bourguignon E (2008) Ecology and diversity of indigenous Trichoderma species in vegetable cropping systems (Ph.D. thesis). Lincoln University, New Zealand

    Google Scholar 

  • Brotman Y, Lisec J, MĂ©ret M, Chet I, Willmitzer L, Viterbo A (2012) Transcript and metabolite analysis of the Trichodermainduced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology 158:139–146

    CAS  PubMed  Google Scholar 

  • Cai F, Yu G, Wang P, Wei Z, Fu L, Shen Q, Chen W (2013) Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem 73:106–113

    CAS  PubMed  Google Scholar 

  • Cardoso Lopes FA, Steindorff AS, Geraldine AM, BrandĂŁo RS, Monteiro VN, JĂşnior ML, Guedes Coelho AS, Ulhoa CJ, Silva RN (2012) Biochemical and metabolic profiles of Trichoderma strains isolated from common bean crops in the Brazilian Cerrado, and potential antagonism against Sclerotinia sclerotiorum. Fungal Biol 116:815–824

    Google Scholar 

  • Carolee TB, Koike ST, Huerta AI, Jardini TM, Mauzey SJ, Rubio I, Zacaroni AB (2016) Plant pathogenic prokaryotes. In: Bonnie HO, Robert NT (eds) Plant pathology concepts and laboratory exercises, 3rd edn. CRC Press, Taylor and Francis, Boca Raton, FL, pp 81–102

    Google Scholar 

  • Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60(1):2–14

    Google Scholar 

  • Chaudhary S, Sagar S, Lal M, Tomar A, Kumar V, Kumar M (2020) Biocontrol and growth enhancement potential of Trichoderma spp. against Rhizoctonia solani causing sheath blight disease in rice. J Environ Biol 41(5):1034–1045

    CAS  Google Scholar 

  • Cheatham MR, Rouse MN, Esker PD, Ignacio S, Pradel W, Raymundo R, Sparks AH, Forbes GA, Gordon TR, Garrett KA (2009) Beyond yield: plant disease in the context of ecosystem services. Phytopathology 99(11):1228–1236

    CAS  PubMed  Google Scholar 

  • Chen J, Li QX, Song B (2020) Chemical nematicides: recent research progress and outlook. J Agric Food Chem 68(44):12175–12188

    CAS  PubMed  Google Scholar 

  • Chet I (1993) Biological control of soil-borne plant pathogens with fungal antagonists in combination with soil treatments. In: Hornnby D (ed) Biological control of soil-borne plant pathogens. CABI Publishers, UK, pp 15–25

    Google Scholar 

  • Chet I, Inbar J (1994) Biological control of fungal pathogens. Appl Biochem Biotechnol 48:37–43

    CAS  PubMed  Google Scholar 

  • Chien YC, Huang CH (2020) Biocontrol of bacterial spot on tomato by foliar spray and growth medium application of Bacillus amyloliquefaciens and Trichoderma asperellum. Eur J Plant Pathol 156:995–1003

    CAS  Google Scholar 

  • Chinnaswami K, Mishra D, Miriyala A, Vellaichamy P, Kurubar B, Gompa J, Madamsetty SP, Raman MS (2021) Native isolates of Trichoderma as bio-suppressants against sheath blight and stem rot pathogens of rice. Egypt J Biol Pest Control 31(1):12

    Google Scholar 

  • Cumagun CJR, Hockenhull J, LĂĽbeck M (2000) Characterization of Trichoderma isolates from Philippine rice fields by UP-PCR and rDNA-ITS1 analysis: identification of UP-PCR markers. J Phytopathol 148:109–115

    CAS  Google Scholar 

  • Damodaran T, Rajan S, Muthukumar M, Ram G, Yadav K, Kumar S, Ahmad I, Kumari N, Mishra VK, Jha SK (2020) Biological management of banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 using antagonistic fungal isolate CSR-T-3 (Trichoderma reesei). Front Microbiol 11:595845

    PubMed  PubMed Central  Google Scholar 

  • Davet P, Rouxel F (2000) Detection and isolation of soil fungi. Science Publishers Inc, p 188

    Google Scholar 

  • del Pilar MartĂ­nez-Diz M, DĂ­az-Losada E, AndrĂ©s-Sodupe M, Bujanda R, Maldonado-González MM, Ojeda S, Yacoub A, Rey P, Gramaje D (2021) Field evaluation of biocontrol agents against black-foot and Petri diseases of grapevine. Pest Manag Sci 77(2):697–708

    PubMed  Google Scholar 

  • Delgado-Jarana J, Moreno-Mateos MA, BenĂ­tez T (2003) Glucose uptake in Trichoderma harzianum: role of gtt1. Eukaryot Cell 2(4):708–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • DĂ­az-GutiĂ©rrez C, Arroyave C, Llugany M, Poschenrieder C, Martos S, Peláez C (2021) Trichoderma asperellum as a preventive and curative agent to control Fusarium wilt in Stevia rebaudiana. Biol Control 155:104537

    Google Scholar 

  • Dickinson JM, Hanson JR, Hitchcock PB, Claydon N (1989) Structure and biosynthesis of harzianopyridone, an antifungal metabolite of Trichoderma harzianum. J Chem Soc Perkin Trans 1:1885–1887

    Google Scholar 

  • Doi Y, Abe I, Sugiyama J (1987) Trichoderma sect. Saturnisporum, sect. Nov. and Trichoderma ghanense, sp. nov. Bull Nat Sci Museum Ser B (Botany) 13:1–9

    Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9(10):749–759

    CAS  PubMed  Google Scholar 

  • Dutta P, Das BC (2002) Management of collar rot of tomato by Trichoderma spp. and chemicals. Indian Phytopathol 55(2):235–237

    CAS  Google Scholar 

  • Elad Y, Chet I, Henis Y (1981) A selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica 9(1):59–67

    Google Scholar 

  • Elad Y, David DR, Levi T, Kapat A, Kirshner B, Lyr H, Russell PE, Dehne HW, Sisler HD (1999) Trichoderma harzianum T-39-mechanisms of biocontrol of foliar pathogens. In: Modern fungicides and antifungal compounds II. Intercept, Andover, Hants, UK, pp 459–467

    Google Scholar 

  • El-Nagdi WMA, Youssef MMA, El-Khair HA, Abd-Egawad MMM (2019) Effect of certain of organic amendments and Trichoderma species on the root-knot nematode, Meloidogyne incognita, infecting pea (Pisum sativum L.). Egypt J Biol Pest Control 29:75

    Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H, Ozaki K, Hyakumachi M (2013) Induction of systemic resistance against cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1. Plant Pathol J 29:193–200

    PubMed  PubMed Central  Google Scholar 

  • Fan H, Yao M, Wang H, Zhao D, Zhu X, Wang Y, Liu X, Duan Y, Chen L et al (2020a) Isolation and effect of Trichoderma citrinoviride Snef1910 for the biological control of root-knot nematode, Meloidogyne incognita. BMC Microbiol 20:299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan R, Gong X, Gao L, Shang W, Hu X, Xu X (2020b) Temporal dynamics of the survival of Verticillium dahliae microsclerotia with or without melanin in soils amended with biocontrol agents. Eur J Plant Pathol 157(3):521–531

    CAS  Google Scholar 

  • Fang S, Wang Y, Ma X, Yin X, Ji N (2019) Two new sesquiterpenoids from the marine-sediment-derived fungus Trichoderma harzianum P1-4. Nat Prod Res 33(21):3127–3133

    CAS  PubMed  Google Scholar 

  • Fernandez MR (1992) The effect of Trichoderma harzianum on fungal pathogens infesting wheat and black oat straw. Soil Biol Biochem 24(10):1031–1034

    Google Scholar 

  • Ferrigo D, Causin R, Raiola A (2017) Effect of potential biocontrol agents selected among grapevine endophytes and commercial products on crown gall disease. BioControl 62:821–833

    Google Scholar 

  • Flood J (2010) The importance of plant health to food security. Food Secur 2(3):215–231

    Google Scholar 

  • Fontenelle ADB, Guzzo SD, Lucon CMM, Harakava R (2011) Growth promotion and induction of resistance in tomato plant against Xanthomonas euvesicatoria and Alternaria solani by Trichoderma spp. Crop Prot 30(11):1492–1500

    Google Scholar 

  • Forghani F, Hajihassani A (2020) Recent advances in the development of environmentally benign treatments to control root-knot nematodes. Front Plant Sci 11:1125

    PubMed  PubMed Central  Google Scholar 

  • Gajera H, Domadiya R, Patel S, Kapopara M, Golakiya B (2013) Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system–a review. Curr Res Microbiol Biotechnol 1:133–142

    Google Scholar 

  • Gams W, Bissett J (1998) Morphology and identification of Trichoderma. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium. Vol. 1. Basic biology, taxonomy and genetics. Taylor & Francis, London, pp 3–25

    Google Scholar 

  • Gaur RB, Sharma RN, Singh V (2005) Manipulations in the mycoparasite application techniques against Rhizoctonia root rot of cotton. Indian Phytopathol 58(4):402–409

    Google Scholar 

  • Gherbawy Y, Druzhinina I, Shaban GM, Wouczkowsky M, Yaser M, El-Naghy MA, Prillinger HJ, KubĂ­ÄŤek C (2004) Trichoderma populations from alkaline agricultural soil in the Nile valley, Egypt, consist of only two species. Mycol Prog 3:211–218

    Google Scholar 

  • Ghorbanpour A, Salimi A, Ghanbary MAT, Pirdashti H, Dehestani A (2018) The effect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) plants. Sci Hortic 230:134–141

    Google Scholar 

  • Gilardi G, Manker DC, Garibaddi A, Gullino ML (2008) Efficacy of the biocontrol agents Bacillus subtilis and Ampelomyces quisqualis applied in combination with fungicides against powdery mildew of zucchini. J Plant Dis Prot 115:208–213

    Google Scholar 

  • Gupta R, Cigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial a-amylase: a biotechnological perspective. Process Biotechnol 38:1599–1616

    CAS  Google Scholar 

  • Hagn A, Pritsch K, Schloter M, Munch JC (2003) Fungal diversity in agricultural soil under different farming management systems, with special reference to biocontrol strains of Trichoderma spp. Biol Fertil Soils 38:236–244

    CAS  Google Scholar 

  • Hajihassani A, Rutter WB, Schwarz T, Woldemeskel M, Ali ME, Hamidi N (2019) Characterization of resistance to major tropical root-knot nematodes (Meloidogyne spp.) in Solanum sisymbriifolium. Phytopathology 110:666–673

    Google Scholar 

  • Harish S, Saravavakumar D, Radjacommar R, Ebenezar EG, Seetharaman K (2007) Use of plant extracts and biocontrol agents for the management of brown spot disease in rice. BioControl 53(3):555–567

    Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194

    CAS  PubMed  Google Scholar 

  • Harman GE (2011) Trichoderma—not just for biocontrol anymore. Phytoparasitica 39:103–108

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    CAS  PubMed  Google Scholar 

  • Harman GE, Petzoldt R, Comis A, Chen J (2004b) Interaction between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on disease caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94(2):147–153

    PubMed  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    CAS  PubMed  Google Scholar 

  • Herrera-Estrella A, Chet I (2003) The biological control agent Trichoderma: from fundamentals to applications. In: Arora D (ed) Handbook of fungal biotechnology. Dekker, New York, pp 1000–1020

    Google Scholar 

  • Hill R, Stark C, Cummings N, Elmer P, Hoyte S (2015) Use of beneficial microorganisms and elicitors for control of Pseudomonas syringae pv. actinidiae in Kiwifruit (Actinidia spp.). Acta Hortic 1095:137–144

    Google Scholar 

  • Howell CR (2003) Mechanism employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87(1):1–10

    Google Scholar 

  • Hu X, Roberts DP, Xie L, Yu C, Li Y, Qin L, Hu L, Zhang Y, Liao X (2016) Use of formulated Trichoderma sp. Tri-1 in combination with reduced rates of chemical pesticide for control of Sclerotinia sclerotiorium on oilseed rape. Crop Prot 79:124–127

    CAS  Google Scholar 

  • Ibrahim DSS, Elderiny MM, Ansari RR, Rizvi R, Sumbul A, Mahmood I (2020) Role of Trichoderma spp. in the management of plant-parasitic nematodes infesting important crops. In: Ansari R, Rizvi R, Mahmood I (eds) Management of phytonematodes: recent advances and future challenges. Springer, Singapore, pp 259–278

    Google Scholar 

  • Idowu OO, Olawole OI, Idumu OO, Salami AO (2016) Bio-control effect of Trichoderma asperellum (Samuels) Lieckf. and Glomus intraradices Schenk on okra seedlings infected with Pythium aphanidermatum (Edson) Fitzp and Erwinia carotovora (Jones). Am J Exp Agric 10(4):1–12

    Google Scholar 

  • Inayati A, Sulistyowati L, Aini LQ, Yusnawan E (2020) Mycoparasitic activity of indigenous Trichoderma virens strains against mungbean soil-borne pathogen Rhizoctonia solani: Hyperparasite and hydrolytic enzyme production. Agri 42(2):229–242

    Google Scholar 

  • Irawati AFC, Mutaqin KH, Suhartono MT, Widodo W (2020) The effect of application endophytic fungus Trichoderma spp. and Fusarium spp. to control bacterial wilt in chilli pepper. Walailak J Sci Technol 17(6):559–569

    Google Scholar 

  • Izuogu NB, Abiri TO (2015) Efficacy of Trichoderma harzianum T22 as a biocontrol agent against root-knot nematode (Meloidogyne incognita) on some soybean varieties. Croatian J Food Sci Technol 7(2):47–51

    Google Scholar 

  • Izuogu NB, Baba HS, Winjobi EO (2019) Assessment of bio-agent (Trichoderma harzianum) in the management of two pepper varieties infected with root-knot nematode (Meloidogyne incognita). Acta Universitatis Sapientiae Agric Environ 11(1):16–22

    Google Scholar 

  • Jadon KS (2009) Eco-friendly management of brinjal collar rot caused by Sclerotium rolfsii Sacc. Indian Phytopathol 62(3):345–347

    Google Scholar 

  • Jagtap GP, Jangam AM, Dey U (2012) Management of bacterial blight of cotton caused by Xanthomonas axonopodis pv. Malvacearum. Sci J Microbiol 1(1):10–18

    Google Scholar 

  • Jangir M, Sharma S, Sharma S (2019) Non-target effects of Trichoderma on plants and soil microbial communities. Plant Microbe Interface:239–251

    Google Scholar 

  • Janvier C, Villeneuve F, Alabouvette A, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23

    CAS  Google Scholar 

  • Jayaraj J, Radhakrishnan NV, Velazhahan R (2006) Development of formulations of Trichoderma harzianum strain M1 for control of damping-off of tomato caused by Pythium aphanidermatum. Arch Phytopathol Plant Protect 39(1):1–8

    Google Scholar 

  • Jayaswal RK, Singh R, Lee YS (2003) Influence of physiological and environmental factors on growth and sporulation of an antagonistic strain of Trichoderma viride RSR 7. Mycobiology 31(1):36–41

    CAS  Google Scholar 

  • Ji S, An Y, Zhang H, Wang Y, Liu Z (2021) Trichoderma biofertilizer (mixTroTha) mediates Malus sieversii resistance to Alternaria alternata. Biol Control 156:104539

    CAS  Google Scholar 

  • John RP, Tyagi RD, PrĂ©vost D, Brar SK, Pouleur S, Surampalli RY (2010) Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Prot 29(12):1452–1459

    Google Scholar 

  • Juliatti FC, Rezende AA, Juliatti BCM, Morais TP (2019) Trichoderma as a biocontrol agent against Sclerotinia stem rot or white mold on soybeans in Brazil: usage and technology. In: Trichoderma-the Most widely used fungicide. IntechOpen, London, UK

    Google Scholar 

  • Junaid JM, Dar NA, Bhat TA, Bhat AH, Bhat MA (2013) Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. Int J Modern Plant Anim Sci 1(2):39–57

    Google Scholar 

  • Kamala T, Indira Devi S, Sharma KC, Kennedy K (2015) Phylogeny and taxonomical investigation of Trichoderma spp. from Indian region of IndoBurma biodiversity hot spot region with special reference to Manipur. Bio Med Res Int 2015:285261

    Google Scholar 

  • Kariuki CK, Mutitu EW, Muiru WM (2020) Effect of Bacillus and Trichoderma species in the management of the bacterial wilt of tomato (Lycopersicum esculentum) in the field. Egypt J Biol Pest Control 30:109

    Google Scholar 

  • Karuppiah V, Li T, Vallikkannu M, Chen J (2019) Co-cultivation of Trichoderma asperellum GDFS1009 and Bacillus amyloliquefaciens 1841 causes differential gene expression and improvement in the wheat growth and biocontrol activity. Front Microbiol 10:1068

    PubMed  PubMed Central  Google Scholar 

  • Khalili E, Sadravi M, Naeimi S, Khosravi V (2012) Biological control of rice brown spot with native isolates of three Trichoderma species. Braz J Microbiol 43(1):297–305

    PubMed  PubMed Central  Google Scholar 

  • Khan R, Najeeb S, Mao Z, Ling J, Yang Y, Li Y, Xie B (2020a) Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic bacteria and root-knot nematode. Microorganisms 8(3):401

    PubMed Central  Google Scholar 

  • Khan RAA, Najeeb S, Hussain S, Xie B, Li Y (2020b) Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms 8(6):817

    CAS  PubMed Central  Google Scholar 

  • Kiriga AE, Haukeland S, Kariuki GM, Coyne DL, Beek NV (2018) Effect of Trichoderma spp. and Purpureocillium lilacinum on Meloidogyne javanica in commercial pineapple production in Kenya. Biol Control 119:27–32

    Google Scholar 

  • Kishore GK, Pande S, Rao JN, Podile AR (2001) Biological control of crown rot of groundnut by Trichoderma harzianum and T. viride. Int Arachis Newsl 21:39–40

    Google Scholar 

  • Klein D, Eveleigh DE (1998) Ecology of Trichoderma. In: Kubicek CP, Harman GE (eds) Trichoderma & Gliocladium Volume 1. Basic biology, taxonomy and genetics, pp 57–73

    Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845. https://doi.org/10.3389/fpls.2019.00845

    Article  PubMed  PubMed Central  Google Scholar 

  • Konappa N, Krishnamurthy S, Arakere UC, Chowdappa S, Ramachandrappa NS (2020) Efficacy of indigenous plant growth-promoting rhizobacteria and Trichoderma strains in eliciting resistance against bacterial wilt in a tomato. Egypt J Biol Pest Control 30(1):1–13

    Google Scholar 

  • Konappa N, Krishnamurthy S, Siddaiah CN, Ramachandrappa NS, Chowdappa S (2018) Evaluation of biological efficacy of Trichoderma asperellum against tomato bacterial wilt caused by Ralstonia solanacearum. Egypt J Biol Pest Control 28(63):1–10

    Google Scholar 

  • Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186(4):1084–1096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kredics L, Antal Z, Manczinger L, Szekeres A, Kevei F, Nagy E (2003) Trichoderma strains with biocontrol potential. Food Technol Biotechnol 41(1):37–42

    Google Scholar 

  • Kredics L, Láday M, Körmöczi P, Manczinger L, Rákhely G, Vágvölgyi C, Szekeres A (2012) Genetic and biochemical diversity among Trichoderma isolates in soil samples from winter wheat fields of the Pannonian Plain. Acta Biol Szeg 56:141–149

    Google Scholar 

  • Kthiri Z, Jabeur MB, Mchraoui M, Gargouri S, Hiba K, Hamada W (2020) Coating seeds with Trichoderma strains promotes plant growth and enhance systemic resistance against Fusarium crown rot in durum wheat. Egypt J Biol Pest Control 30:139

    Google Scholar 

  • Kumar S, Singh OP (2008) Influence of media for growth of Trichoderma species. Ann Plant Prot Sci 16(2):485–547

    Google Scholar 

  • Kyeon MS, Son SH, Noh YH, Kim YE, Lee HI, Cha JS (2016) Xanthomonas euvesicatoria causes bacterial spot disease on pepper plant in Korea. Plant Pathol J 32(5):431–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin RP (2015) Soil health paradigms and implications for disease management. Annu Rev Phytopathol 53:199–221

    CAS  PubMed  Google Scholar 

  • Larralde-Corona CP, Santiago-Mena MR, Sifuentes-RincĂłn AM, RodrĂ­guez-Luna IC, RodrĂ­guez-PĂ©rez MA, Shirai K, NarváezZapata JA (2008) Biocontrol potential and polyphasic characterization of novel native Trichoderma strains against Macrophomina phaseolina isolated from sorghum and common bean. Appl Microbiol Biotechnol 80:167–177

    CAS  PubMed  Google Scholar 

  • Leiva S, Oliva M, Hernández E, Chuquibala B, Rubio K, GarcĂ­a F, de la Cruz MT (2020) Assessment of the potential of Trichoderma spp. strains native to Bagua (Amazonas, Peru) in the biocontrol of frosty pod rot (Moniliophthora roreri). Agronomy 10(9):1376

    CAS  Google Scholar 

  • Leonetti P, Zonno MC, Molinari S, Altomare C (2017) Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita. Plant Cell Rep 36(4):621–631

    CAS  PubMed  Google Scholar 

  • Li GQ, Huang HC, Acharya SN, Erickson RS (2005) Effectiveness of Coniothyrium minitans and Trichoderma atroviride in suppression of sclerotinia blossom blight of alfalfa. Plant Pathol 54(2):204–211

    Google Scholar 

  • Li HY, Luo Y, Zhang XS, Shi WL, Gong ZT, Shi M, Chen LL, Chen XL, Zhang YZ, Song XY (2014) Trichokonins from Trichoderma pseudokoningii SMF2 induce resistance against gram-negative Pectobacterium carotovorum subsp. carotovorum in Chinese cabbage. FEMS Microbiol Lett 354(1):75–82. https://doi.org/10.1111/1574-6968.12427

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Li B, Lu G (2004) Gliocladium and Trichoderma in agricultural soil. J Zhejiang Univ Agric Life Sci 30:415

    Google Scholar 

  • Liang XR, Ma XY, Ji NY (2020) Trichosordarin A, anorditerpene glycoside from the marine-derived fungus Trichoderma harzianum R5. Nat Prod Res 34(14):2037–2042

    CAS  PubMed  Google Scholar 

  • Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from 'omics to the field. Annu Rev Phytopathol 48:395–417

    CAS  PubMed  Google Scholar 

  • Luo Y, Zhang DD, Dong XV, Zhao PB, Chen LL, Song XY, Wang XJ, Chen XL, Shi M, Zhang YZ (2010) Antimicrobial peptaibols induce defence responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol Lett 313:120–126

    CAS  PubMed  Google Scholar 

  • Ma Z, Ge L, Zhou C, Lu X (2020) Trichoderma harzianum improves drought resistance in maize by mediating acetic acidethanol metabolic pathways. Pak J Bot 52(3):1045–1054

    CAS  Google Scholar 

  • Maketon M, Apisitsantikul J, Siriraweekul C (2008) Greenhouse evaluation of Bacillus subtilis AP-01 and Trichoderma harzianum AP-001 in controlling tobacco diseases. Braz J Microbiol 39(2):296–300

    PubMed  PubMed Central  Google Scholar 

  • Malik VK, Singh M, Hooda KS, Yadav NK, Chauhan PK (2018) Efficacy of newer molecules, bioagents and botanicals against maydis leaf blight and banded leaf and sheath blight of maize. Plant Pathol J 34:121–125

    PubMed  PubMed Central  Google Scholar 

  • Malmierca MG, McCormick SP, Cardoza RE, Monte E, Alexander NJ, GutiĂ©rrez S (2015) Trichodiene production in a Trichoderma harzianum erg1-silenced strain provides evidence of the importance of the sterol biosynthetic pathway in inducing plant defense-related gene expression. Mol Plant-Microbe Interact 28(11):1181–1197

    CAS  PubMed  Google Scholar 

  • Manczinger L, Rákhely G, Vágvölgyi C, Szekeres A (2012) Genetic and biochemical diversity among Trichoderma isolates in soil samples from winter wheat fields of the Pannonian plain. Acta Biol Szegediensis 56:141–149

    Google Scholar 

  • Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13(6):614–629

    PubMed  PubMed Central  Google Scholar 

  • Manzar N, Singh Y, Kashyap AS, Sahu PK, Rajawat MVS, Bhowmik A, Sharma PK, Saxena AK (2021) Biocontrol potential of native Trichoderma spp. against anthracnose of great millet (sorghum bicolour L.) from Tarai and hill regions of India. Biol Control 152:104474

    CAS  Google Scholar 

  • Masso C, Mukhongo RW, Thuita M, Abaidoo R, Ulzen J, Kariuki G, Kalumuna M (2016) Biological inoculants for sustainable intensification of agriculture in sub-Saharan Africa smallholder farming systems. In: Lal R, Kraybill D, Hansen DO, Singh BR, Mosogoya T, Eik LO (eds) Climate change and multi-dimensional sustainability in African agriculture. Springer International Publishing, Oxon, pp 639–658

    Google Scholar 

  • Mastouri F, Bjorkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stress in germinating seeds and seedlings. Phytopathology 100(11):1213–1221

    Google Scholar 

  • Mastouri F, Björkman T, Harman GE (2012) Trichoderma harzianum enhances antioxidant defence of tomato seedlings and resistance to water deficit. Mol Plant-Microbe Interact 25(9):1264–1271

    CAS  PubMed  Google Scholar 

  • Mathew SK, Manimala R, Surendra Gopal K et al (2007) Effect of microbial antagonists on the management of bacterial wilt in tomato. Rec Trends Hortic Biotechnol:823–828

    Google Scholar 

  • Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BPA, De Coninck B (2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci 3:1–20

    Google Scholar 

  • McLean KL, Swaminathan J, Frampton CM, Hunt JS, Ridgway HJ, Stewart A (2005) Effect of formulation on the rhizosphere competence and biocontrol ability of Trichoderma atroviride C52. Plant Pathol 54:212–218

    Google Scholar 

  • Medina-Canales MG, Terroba-Escalante P, Manzanilla-LĂłpez RH, Tovar-Soto A (2019) Assessment of three strategies for the management of Meloidogyne arenaria on carrot in Mexico using Pochonia chlamydosporia var. mexicana under greenhouse conditions. Biocontrol Sci Tech 29:671–685

    Google Scholar 

  • Meincke R, Weinert N, Radl V, Schloter M, Smalla K, Berg G (2010) Development of a molecular approach to describe the composition of Trichoderma communities. J Microbiol Methods 80:63–69

    CAS  PubMed  Google Scholar 

  • Mghalu MJ, Tsuji T, Kubo N, Kubota M, Hyakumachi M (2007) Selective accumulation of Trichoderma species in soils suppressive to radish damping-off disease after repeated inoculations with Rhizoctonia solani, binucleate Rhizoctonia and Sclerotium rolfsii. J Gen Plant Pathol 73:250–259

    Google Scholar 

  • Mishra DS, Gupta AK, Prajapati CR, Singh US (2011) Combination of fungal and bacterial antagonists for management of root and stem rot disease of soybean. Pak J Bot 43(5):2569–2574

    Google Scholar 

  • Mohamed BFF, Sallam NMA, Alamri SAM, Abo-Elyousr KAM, Mostafa YS, Hashem M (2020) Approving the biocontrol method of potato wilt caused by Ralstonia solanacearum (smith) using Enterobacter cloacae PS14 and Trichoderma asperellum T34. Egypt J Biol Pest Control 30:61

    Google Scholar 

  • Monte E (2001) Understanding Trichoderma: between agricultural biotechnology and microbial ecology. Int Microbiol 4:1–4

    CAS  PubMed  Google Scholar 

  • Montero-Barrientos M, Hermosa R, Cardoza RE, GutiĂ©rrez S, Monte E (2011) Functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum. Appl Environ Microbiol 77:3009–3016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morán-Diez ME, Tranque E, Bettiol W, Monte E, Hermosa R (2020) Differential response of tomato plants to the application of three Trichoderma species when evaluating the control of Pseudomonas syringae populations. Plan Theory 9(5):626

    Google Scholar 

  • Mostafa Kamal MD, Shahjahan AKM (1995) Trichoderma in rice field soils and their effect on Rhizoctonia solani. Bangladesh J Bot 24:75–79

    Google Scholar 

  • Mpika J, KĂ©bĂ© IB, Issali AE, N’Guessan FK, Druzhinina IS, KomonZĂ©lazowska M, Kubicek CP, AkĂ© S (2009) Antagonist potential of Trichoderma indigenous isolates for biological control of Phytophthora palmivora the causative agent of black pod disease on cocoa (Theobroma cacao L.) in CĂ´te d’Ivoire. Afr J Biotechnol 8:5280–5293

    Google Scholar 

  • Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S (2012) Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52(4):522–529

    PubMed  PubMed Central  Google Scholar 

  • Mukhophadhay R, Kumar D (2020) Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egypt J Biol Pest Control 30:133

    Google Scholar 

  • Mukhtar T, Tariq-Khan M, Aslam MN (2021) Bioefficacy of Trichoderma species against Javanese Root-Knot nematode, Meloidogyne javanica, in green gram. Gesunde Pflanzen. https://doi.org/10.1007/s10343-021-00544-8

  • Mulaw BT, Kubicek CP, Druzhinina IS (2010) The rhizosphere of Coffea arabica in its native highland forests of Ethiopia provides a niche for a distinguished diversity of Trichoderma. Diversity 2:527–549

    CAS  Google Scholar 

  • Mustafa G, Anwar S, Joyia FA, Hayat MB, Zia MA, Ghazala K (2020) Molecular characterization and mycoparasitic aptitude of indigenous biocontrol agent Trichoderma harzianum. J Anim Plant Sci 30(6):1508–1515

    CAS  Google Scholar 

  • Naeimi S, Khodaparast SA, Javan-Nikkhah M, Vágvölgyi C, Kredics L (2011) Species patterns and phylogenetic relationships of Trichoderma strains in rice fields of southern Caspian Sea. Iran Cereal Res Commun 39:560–568

    Google Scholar 

  • Nagamani A, Mew TW (1987) Trichoderma in Philippine rice field soils. Int Rice Res Newsl 12:25

    Google Scholar 

  • Naher L, Yusuf U, Ismail A, Hossain K (2014) Trichoderma spp.: a biocontrol agent for sustainable management of plant diseases. Pak J Bot 46(4):1489–1493

    Google Scholar 

  • Naseby DC, Pascual JA, Lynch JM (2000) Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. J Appl Microbiol 88:161–169

    CAS  PubMed  Google Scholar 

  • Naserinasab F, Sahebani N, Etebarian HR (2011) Biological control of Meloidogyne javanica by Trichoderma harzianum BI and salicylic acid on tomato. Afr J Food Sci 5:276–280

    Google Scholar 

  • Nawrocka J, MaĹ‚olepsza U (2013) Diversity in plant systemic resistance induced by Trichoderma. Biol Control 67:149–156

    Google Scholar 

  • Nawrocka J, MaĹ‚olepsza U, Szymczak K, Szczech M (2018) Involvement of metabolic components, volatile compounds, PR proteins, and mechanical strengthening in multilayer protection of cucumber plants against Rhizoctonia solani activated by Trichoderma atroviride TRS25. Protoplasma 255:359–373

    CAS  PubMed  Google Scholar 

  • Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland S, Maafi ZT (2011) Current nematode threats to world agriculture. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant nematode interactions. Springer, Dordrecht, pp 21–43

    Google Scholar 

  • Olabiyi TI, Ojo OJ, Adewuyi BO (2016) Impact assessment of neem compost and Trichoderma harzianum solution in the control of root knot nematode disease on cowpea. Cogent Food Agric 2:1

    Google Scholar 

  • Osman HA, Ameen HH, Mohamed M, El-Mohamedy R, Elkelany US (2018) Field control of Meloidogyne incognita and root rot disease infecting eggplant using nematicide, fertilizers, and microbial agents. Egypt J Biol Pest Control 28:40

    Google Scholar 

  • Pacheco PV, Monterio TS, Coutinho RR, Balbino HM, de Freitas LG (2020) Fungal biocontrol reduces the populations of the lesion nematode, Pratylenchus brachyurus, in soybean and corn. Nematology 1(aop):1–8

    Google Scholar 

  • PajÄŤin IS, Vlajkov VR, Cvetković DD, Ignjatov MV, Grahovac MS, VuÄŤurović DG, Grahovac JA (2020) Selection of antagonists for biocontrol of Xanthomonas euvesicatoria. Acta Periodica Technol 51:181–189

    Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. In: The plant health instructor. https://doi.org/10.1094/PHI-A-2006-1117-02

    Chapter  Google Scholar 

  • Pan S, Das A (2011) Control of cowpea (Vigna sinensis) root and collar rot (Rhizoctonia solani) with some organic formulations of Trichoderma harzianum under field condition. J Plant Prot Sci 3(2):20–25

    Google Scholar 

  • Pandey A, Palni LMS (1997) Bacillus species: the dominant bacteria of the rhizosphere of established tea bushes. Microbiol Res 152:359–365

    CAS  PubMed  Google Scholar 

  • Pandya JR, Sabalpara AN, Chawda SK (2011) Trichoderma: a particular weapon for biological control of Phytopathogens. J Agric Technol 7(5):1187–1191

    Google Scholar 

  • Pang G, Cai F, Li R, Zhao Z, Li R, Gu X, Shen Q, Chen W (2017) Trichoderma-enriched organic fertilizer can mitigate microbiome degeneration of monocropped soil to maintain better plant growth. Plant Soil 416:181–192

    CAS  Google Scholar 

  • Papavizas GC, Lumsden RD (1982) Improved medium for isolate of Trichoderma spp. from soil. Plant Dis 66(2000):1019–1020

    Google Scholar 

  • Pavone M, Domenico F (2012) Biocontrol de Rhizoctonia solani KĂĽhn por Trichoderma spp. (Ph.D. thesis). Universidad Central de Venezuela

    Google Scholar 

  • PerellĂł A, Moreno V, MĂłnaco C, Simon MR (2008) Effect of Trichoderma spp. isolates for biological control of tan spot of wheat caused by Pyrenophora tritici-repentis under field conditions in Argentina. BioControl 53:895–904

    Google Scholar 

  • Persoon CH (1794) Dispositio methodica fungorum in classes, ordines, Familias et Genera. In: Römer JJ (ed) Neues Magazin fĂĽr die Botanik. Ziegler u. Söhne, ZĂĽrich, pp 63–128

    Google Scholar 

  • Pertot I, Puopolo G, Giovannini O, Angeli D, Sicher C, Perazzolli M (2016) Advantages and limitations involved in the use of microbial biofungicides for the control of root and foliar phytopathogens of fruit crops. Italus Hortus 23(3):3–12

    Google Scholar 

  • PiÄ™ta D, Pastucha A, Patkowska E (2000) Bacteria and fungi communities occurring in the soil after the cultivation of cereals and potato. Electron J Pol Agric Univ Serv Hortic 3(2):1

    Google Scholar 

  • PiÄ™ta D, Patkowska E (2003) The role of antagonistic fungi and bacteria limiting the occurrence of some phytopathogens inhabiting the soybean soil environment. Electron J Pol Agric Univ Serv Hortic 6(2):4

    Google Scholar 

  • Pimentel MF, ArnĂŁo E, Warner AJ, Subedi A, Rocha LF, Srour A, Bond JP, Fakhoury AM (2020) Trichoderma isolates inhibit Fusarium virguliforme growth, reduce root rot, and induce defence-related genes on soybean seedlings. Plant Dis 104(7):1949–1959

    CAS  PubMed  Google Scholar 

  • Pocurull M, Fullana AM, Ferro M, Valero P, Escudero N, Saus E, Gabaldon T, Sorribas FJ (2020) Commercial formulates of Trichoderma induce systemic plant resistance to Meloidogyne incognita in tomato and the effect of is additive to that of the Mi-1.2 resistance gene. Front Microbiol 31(10):3042

    Google Scholar 

  • Pokhar R, Pinki S, Dodiya NS, Arunabh J (2013) Evaluation of fungicides, neem bio-formulations and biocontrol agent for the management of root rot of Safed musli caused by Rhizoctonia solani. J Mycol Plant Pathol 43(3):297–305

    Google Scholar 

  • Poveda J, Abril-Urias P, Escobar C (2020) Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front Microbiol 11:992

    PubMed  PubMed Central  Google Scholar 

  • Rakholiya KBR, Jadeja KBJ (2010) Effect of seed treatment of biocontrol agents and chemicals for management of stem and pod rot of groundnut. Int J Plant Prot 3(2):276–278

    Google Scholar 

  • RamĂ­rez-Cariño HF, Guadarrama-Mendoza PC, Sánchez-LĂłpez V, Cuervo-Parra JA, RamĂ­rez-Reyes T, Dunlap CA, Valadez-Blanco R (2020) Biocontrol of Alternaria alternata and Fusarium oxysporum by Trichoderma asperelloides and Bacillus paralicheniformis in tomato plants. Int J Gen Mol Microbiol 113(9):1247–1261

    Google Scholar 

  • Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123

    CAS  Google Scholar 

  • Rifai MA (1969) A revision of the genus Trichoderma. Commun Mycol Inst Mycol Papers 116:1–56

    Google Scholar 

  • Rini CR, Sulochana KK (2007) Management of seedling rot of chilli (Capsicum annuum L.) using Trichoderma spp. and fluorescent pseudomonads (Pseudomonas fluorescens). J Trop Agric 44:79–82

    Google Scholar 

  • Rivera-Mendez W, ObregĂłn M, Moran-Diez ME, Hermosa R, Monte E (2020) Trichoderma asperellum biocontrol activity and induction of systemic defences against Sclerotium cepivorum in onion plants under tropical climate conditions. Biol Control 141:104145

    CAS  Google Scholar 

  • Ruano-Rosa D, Cazorla FM, Bonilla N, MartĂ­n-PĂ©rez R, De Vicente A, LĂłpez-Herrera CJ (2014) Biological control of avocado white root rot with combined applications of Trichoderma spp. and rhizobacteria. Eur J Plant Pathol 138(4):751–762

    Google Scholar 

  • Rubio MB, Rosa H, RubĂ©n V, Fabio AG, Rosa M, Enrique M, Wagner B (2017) The combination of Trichoderma harzianum and chemical fertilization leads to the deregulation of phytohormone networking, preventing the adaptive responses of tomato plants to salt stress. Front Plant Sci 8:294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saha DK, Pan S (1997) Qualitative evaluation of some specific media of Trichoderma and Gliocladium spp. J Mycopathol Res 35:7–13

    Google Scholar 

  • Samuels GJ, Petrini O, Kuhls K, Lieckfeldt E, Kubicek CP (1998) The Hypocrea schweinitzii complex and Trichoderma sect. Longibrachiatum. Stud Mycol 41:1–54

    Google Scholar 

  • Sangle UR, Bambawale OM, Ahmad N, Singh SK (2003) Substrate and temperature requirements for sporulation of sub-tropical isolates of Trichoderma spp. Ann Plant Protect Sci 11:192–195

    Google Scholar 

  • Sariah M, Choo CW, Zakaria H, Norihan MS (2005) Quantification and characterization of Trichoderma spp. from different ecosystems. Mycopathologia 159:113–117

    CAS  PubMed  Google Scholar 

  • Sarrocco S, Guidi L, Fambrini S, Degl’Innocenti E, Vannacci G (2009) Competition for cellulose exploitation between Rhizoctonia solani and two Trichoderma isolates in the decomposition of wheat straw. J Plant Pathol 91:331–338

    CAS  Google Scholar 

  • Savary S, Bregaglio S, Willocquet L, Gustafson D, D’Croz DM, Sparks A, Castilla N, Djurle A, Allinne C, Sharma M, Rossi V (2017) Crop health and its global impacts on the components of food security. Food Sec 9(2):311–327

    Google Scholar 

  • Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31:446–459

    CAS  Google Scholar 

  • Shanthi A, Rajendran G (2006) Biological control of lesion nematodes in banana. Nematol Medit 34:69–75

    Google Scholar 

  • Sharma R, Joshi A, Dhaker RC (2012) A brief review on mechanism of Trichoderma fungus use as biological control agents. Int J Innov Bio-Sci 2(4):200–210

    Google Scholar 

  • Sharon E, Bar-Eyal M, Chet I, Herrera-Estrella A, Kleifeld O, Spiegel Y (2001) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91:687–693

    CAS  PubMed  Google Scholar 

  • Sharon E, Chet I, Viterbo A, Bar-Eyal M, Nagan H, Samuels GJ, Spiegel Y (2007) Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. Eur J Plant Pathol 118:247–258

    Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    CAS  PubMed  Google Scholar 

  • Siddiqui IA, Ameer-Zareem M, Javad Zaki M, Shaukat SS (2001) Use of Trichoderma spp. in the control of Meloidogyne javanica, root knot nematode in okra and mungbean. Pak J Biol Sci 4(7):846–848

    Google Scholar 

  • Sikandar A, Zhang M, Wang Y et al (2020) In vitro evaluation of Penicillium chrysogenum Snef1216 against Meloidogyne incognita (root-knot nematode). Sci Rep 10:8342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sikder MM, Vestergard M (2020) Impacts of root metabolites on soil nematodes. Front Plant Sci 31(10):1792

    Google Scholar 

  • Singh D, Kapur SP, Singh K (2012) Management of citrus scab caused by Elsinoe fawcettii. Indian Phytopathol 53(4):461–467

    Google Scholar 

  • Singh N, Palat R, Narain U, Mathuria OP (2008) Efficacy of bio-agents in management of linseed wilt. Ann Plant Prot Sci 16(1):245–246

    Google Scholar 

  • Singh S, Singh B, Singh AP (2015) Nematodes: a threat to sustainability of agriculture. Procedia Environ Sci 29:215–216

    Google Scholar 

  • Sivasubramaniam N, Hariharan G, Zakeel MCM (2020) Sustainable management of plant-parasitic nematodes: an overview from conventional practices to modern techniques. In: Ansari R, Rizvi R, Mahmood I (eds) Management of phytonematodes: recent advances and future challenges. Springer, Singapore, pp 353–399

    Google Scholar 

  • Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, MarcLandi M, Araniti F, Sharma A (2020) Trichoderma: the “secrets” of a multitalented biocontrol agent. Plan Theory 9:762

    CAS  Google Scholar 

  • Srinivas C (2013) Efficacy of Trichoderma asperellum against Ralstonia solanacearum under greenhouse conditions. Ann Plant Sci 2(9):342–350

    Google Scholar 

  • Sulaiman MM, Yass STA, Aish AA, Yasir LB, Abdullah SJ, Youssef SA (2020) Activity of Trichoderma spp. against Erwinia carotovora causal agent of potato tuber soft rot. Plant Arch 20:115–118

    Google Scholar 

  • Sundin GW, Castiblanco LF, Yuan X, Zeng Q, Yang CH (2016) Bacterial disease management: challenges, experience, innovation and future prospects: challenges in bacterial molecular plant pathology. Mol Plant Pathol 17(9):1506–1518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundström JF, Albihn A, Boqvist S, Ljungvall K, Marstorp H, Martiin C, Nyberg K, VĂĄgsholm I, Yuen J, Magnusson U (2014) Future threats to agricultural food production posed by environmental degradation, climate change, and animal and plant diseases–a risk analysis in three economic and climate settings. Food Secur 6(2):201–215

    Google Scholar 

  • SzabĂł M, Csepregi K, Galber M, Viranyi F, Fekete C (2012) Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: the role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biol Control 63(2):121–128

    Google Scholar 

  • Taha MA, Ismaiel AA, Ahmed RM (2021) 6-pentyl-α-pyrone from Trichoderma koningii induces systemic resistance in tobacco against tobacco mosaic virus. Eur J Plant Pathol 159(1):81–93

    CAS  Google Scholar 

  • Thatcher LF, Williams AH, Garg G, Buck SAG, Singh KB (2016) Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors. BMC Genomics 17:860

    PubMed  PubMed Central  Google Scholar 

  • Thind BS (2015) Diagnosis and management of bacterial plant diseases. In: Awasthi LP (ed) Recent advances in the diagnosis and management of plant diseases. Springer, India, pp 101–117

    Google Scholar 

  • Trifonova ZT (2010) Studies on the efficacy of some bacteria and fungi for control of Globodera restochiensis. J Agric Sci 55(1):37–44

    Google Scholar 

  • Ul Haq I, Sarwar MK, Faraz A, Latif MZ (2020) Synthetic chemicals: major component of plant disease management. In: Ul Haq I, Ijaz S (eds) Plant disease management strategies for sustainable agriculture through traditional and modern approaches. Sustainability in plant and crop protection. Springer, Cham. https://doi.org/10.1007/978-3-030-35955-3_4

    Chapter  Google Scholar 

  • Utkhede R, Koch C (2004) Biological treatments to control bacterial canker of greenhouse tomatoes. BioControl 49:305–313

    Google Scholar 

  • Van Bruggen AHC, Gamliel A, Finckh MR (2016) Plant disease management in organic farming systems. Pest Manag Sci 72:30–44

    PubMed  Google Scholar 

  • Vanhove W, Vanhoudt N, Van Damme P (2016) Biocontrol of vascular streak dieback (Ceratobasidium theobromae) on cacao (Theobroma cacao) through induced systemic resistance and direct antagonism. Biocontrol Sci Tech 2(4):492–503

    Google Scholar 

  • Vasanthakumari MM, Shivanna MB (2013) Biological control of anthracnose of chilli with rhizosphere and rhizoplane fungal isolates from grasses. Arch Phytopathol Plant Prot 46(14):1641–1666

    Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valero JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37(1):1–20

    Google Scholar 

  • Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72(11):2032–2035

    CAS  PubMed  Google Scholar 

  • Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148

    CAS  PubMed  Google Scholar 

  • Vinale F, Nigro M, Sivasithamparam K, Flematti G, Ghisalberti EL, Ruocco M, Varlese R, Marra R, Lanzuise S, Eid A, Woo SL, Lorito M (2013) Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiol Lett 347(2):123–129

    CAS  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigro M, Marra R (2008) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8:127–139

    Google Scholar 

  • Vitti A, La Monaca E, Sofo A, Scopa A, Cuypers A, Nuzzaci M (2015) Beneficial effects of Trichoderma harzianum T-22 in tomato seedlings infected by cucumber mosaic virus (CMV). BioControl 60:135–147

    CAS  Google Scholar 

  • Vizcaino JA, Sanz L, Cardoza RE, Monte E, Gutierrez S (2005) Detection of putative peptide synthetase genes in Trichoderma species. Application of this method to the cloning of a gene from T. harzianum CECT 2413. FEMS Microbiol Lett 244:39–148

    Google Scholar 

  • Wang SQ, Ma J, Wang M, Wang XH, Li YQ, Chen J (2019a) Combined application of Trichoderma harzianum SH2303 and difenoconazole-propiconazolein controlling Southern corn leaf blight disease caused by Cochliobolus heterostrophus in maize. J Integr Agric 18(9):2063–2071

    CAS  Google Scholar 

  • Wang Z, Li Y, Zhuang L, Yu Y, Liu J, Zhang L, Gao Z, Wu Y, Gao W, Ding GC, Wang Q (2019b) A rhizosphere-derived consortium of Bacillus subtilis and Trichoderma harzianum suppresses common scab of potato and increases yield. Comput Struct Biotechnol J 17:645–653

    PubMed  PubMed Central  Google Scholar 

  • Wells DH (1988) Trichoderma as a biocontrol agent. In: Mukerji KG, Garg KL (eds) Biocontrol and plant diseases. CRC press, Florida, p 73

    Google Scholar 

  • Wilson PS, Ahvenniemi PM, Lehtonen MJ, Kukkonen M, Rita H, Valkonen JPT (2008) Biological and chemical control and their combined use to control different stages of the rhizoctonia disease complex on potato through the growing season. Ann Appl Biol 153:307–320

    Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8:71–126

    Google Scholar 

  • Wu Q, Zhang L, Xia H, Yu C, Dou K, Li Y, Chen J (2017) Omics for understanding synergistic action of validamycin A and Trichoderma asperellum GDFS1009 against maize sheath blight pathogen. Sci Rep 7:40140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Khan RAA (2021) Biological control of bacterial wilt in tomato through the metabolites produced by the biocontrol fungus, Trichoderma harzianum. Egypt J Biol Pest Cont 31:5

    Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69(12):7343–7353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yendyo SGCR, Pandey BR (2017) Evaluation of Trichoderma spp., Pseudomonas fluorescens and Bacillus subtilis for biological control for Ralstonia wilt of tomato. F1000Res 20(6):2028

    Google Scholar 

  • Yu Z, Zhang K (2004) Population dynamics of Trichoderma species in the rhizosphere of tobacco and four species from China. J Zhejiang Univ Agric Life Sci 30:468

    Google Scholar 

  • Zalak MP, Rita M, Siva SMJ (2020) Role of fungal elicitors in plant defence mechanism. In: Vivek S, Richa S, Laith KTA (eds) . Academic Press, Molecular aspects of plant beneficial microbes in agriculture, pp 143–158

    Google Scholar 

  • Zehra A, Meena M, Dubey MK, Aamir M, Upadhyay RS (2017) Activation of defence response in tomato against Fusarium wilt disease triggered by Trichoderma harzianum supplemented with exogenous chemical inducers (SA and MeJA). Braz J Bot 40:651–664

    Google Scholar 

  • Zeilinger S, Galhaup C, Payer K, Woo SL, Mach RL, Fekete C, Lorito M, Kubicek CP (1999) Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet Biol 26:131–140

    CAS  PubMed  Google Scholar 

  • Zhan J, Thrall PH, PapaĂŻx J, Xie LH, Burdon JJ (2015) Playing on a pathogen’s weakness: using evolution to guide sustainable plant disease control strategies. Annu Rev Phytopathol 53:19–43

    CAS  PubMed  Google Scholar 

  • Zhang F, Liu C, Wang Y, Dou K, Chen F, Pang L, Kong X, Shang C, Li Y (2020a) Biological characteristic and biocontrol mechanism of Trichoderma harzianum T-A66 against bitter gourd wilt caused by Fusarium oxysporum. J Plant Pathol 102(4):1107–1120

    Google Scholar 

  • Zhang S, Gan Y, Ji W, Xu B, Hou B, Liu J (2017) Mechanisms and characterization of Trichoderma longibrachiatum T6 in suppressing nematodes (Heterodera avenae) in wheat. Front Plant Sci 8:1491

    PubMed  PubMed Central  Google Scholar 

  • Zhang S, Gan Y, Xu B (2014) Efficacy of Trichoderma longibrachiatum in the control of Heterodera avenae. BioControl 59:319–331

    Google Scholar 

  • Zhang Y, Tian C, Xiao J et al (2020b) Soil inoculation of Trichoderma asperellum M45a regulates rhizosphere microbes and triggers watermelon resistance to Fusarium wilt. AMB Express 10:189

    PubMed  PubMed Central  Google Scholar 

  • Zin NA, Badaluddin NA (2020) Biological functions of Trichoderma spp. for agriculture applications. Ann Agric Sci 65(2):168–178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Prasannath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hariharan, G., Rifnas, L.M., Prasannath, K. (2022). Role of Trichoderma spp. in Biocontrol of Plant Diseases. In: Kumar, A. (eds) Microbial Biocontrol: Food Security and Post Harvest Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87289-2_3

Download citation

Publish with us

Policies and ethics