Skip to main content

Control of Lipid Oxidation in Oil-in Water Emulsions: Effects of Antioxidant Partitioning and Surfactant Concentration

  • Chapter
  • First Online:
Lipid Oxidation in Food and Biological Systems

Abstract

Lipid oxidation continues to be a major challenge in the food industry to minimize food spoilage and waste. It is also of paramount importance for the pharmaceutical industry because lipid-based emulsions are widely employed in parenteral nutrition. Control of oxidation of bioactive lipids with added antioxidants (AOs) is crucial both in the current development of strategies for preparing more nutritional and healthier lipid-based formulations, with extended shelf lives, and in providing a scientific basis for predicting the efficiency of AOs in emulsified systems. In emulsions, compartmentalization effects have a crucial role in the AO efficiency and a deep analysis of the effects of parameters controlling AO partitioning is crucial to modulate the AO availability at the reaction site and their efficiency. Our aim here is to provide an update of the current evidence showing the interfacial region as the main reaction site between antioxidants and lipid radicals, and how the efficiency of AOs can be controlled by enhancing the effective concentration of AOs in the interfacial region by modulating, for instance, the hydrophlilic-lipophilic balance (i.e., the polarity) of the antioxidant and by adjusting the concentration of the surfactant employed in the preparation of the emulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aliaga C, Bravo-Moraga F, Gonzalez-Nilo D, Márquez S, Lürh S, Mena G et al (2016) Location of TEMPO derivatives in micelles: subtle effect of the probe orientation. Food Chem 192:395–401

    CAS  PubMed  Google Scholar 

  • Almeida J, Losada-Barreiro S, Costa M, Paiva-Martins F, Bravo-Díaz C, Romsted LS (2016) Interfacial concentrations of Hydroxytyrosol and its lipophilic esters in intact olive oil-in-water emulsions: effects of antioxidant hydrophobicity, surfactant concentration, and the oil-to-water ratio on the oxidative stability of the emulsions. J Agric Food Chem 64:5274–5283

    CAS  PubMed  Google Scholar 

  • Balgavý P, Devínsky F (1996) Cut-off effects in biological activities of surfactants. Adv Colloid Interf Sci 66:23–63

    Google Scholar 

  • Berton-Carabin CC, Ropers M-H, Genot C (2014) Lipid oxidation in oil-in-water emulsions: involvement of the interfacial layer. Compr Rev Food Sci Food Safety 13:945–977

    CAS  Google Scholar 

  • Bravo-Díaz C, Romsted LS, Liu C, Losada-Barreiro S, Pastoriza-Gallego MJ, Gao X et al (2015) To model chemical reactivity in heterogeneous emulsions. Think Homogeneous Microemulsions Langmuir 31:8961–8979

    PubMed  Google Scholar 

  • Bush L, Stevenson L, Lane KE (2019) The oxidative stability of omega-3 oil-in-water nanoemulsion systems suitable for functional food enrichment: a systematic review of the literature. Crit Rev Food Sci Nutr 59(7):1154–1168. https://doi.org/10.1080/10408398.2017.1394268

    Article  CAS  PubMed  Google Scholar 

  • Calder PC (2009) Rationale for using new lipid emulsions in parenteral nutrition and a review of the trials performed in adults: conference on ‘malnutrition matters’ symposium 4: hot topics in parenteral nutrition. Proc Nutr Soc 68(3):252–260

    CAS  PubMed  Google Scholar 

  • Calder PC, Waitzberg DL, Klek S, Martindale RG (2020) Lipids in parenteral nutrition: biological aspects. J Parenter Enter Nutr 44(S1):S21–SS7

    CAS  Google Scholar 

  • Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C, Romsted LS (2015) A direct correlation between the antioxidant efficiencies of caffeic acid and its alkyl esters and their concentrations in the interfacial region of olive oil emulsions. The pseudophase model interpretation of the “cut-off” effect. Food Chem 175:233–242

    CAS  PubMed  Google Scholar 

  • Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Diaz C (2016) Optimizing the efficiency of antioxidants in emulsions by lipophilization: tuning interfacial concentrations. RSC Adv 6(94):91483–91493

    CAS  Google Scholar 

  • Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2017) Physical evidence that the variations in the efficiency of homologous series of antioxidants in emulsions are a result of differences in their distribution. J Sci Food Agric 97(2):564–571

    CAS  PubMed  Google Scholar 

  • Costa M, Losada-Barreiro S, Bravo-Díaz C, Vicente AA, Monteiro LS, Paiva-Martins F (2020a) Influence of AO chain length, droplet size and oil to water ratio on the distribution and on the activity of gallates in fish oil-in-water emulsified systems: emulsion and nanoemulsion comparison. Food Chem 310:125716

    CAS  PubMed  Google Scholar 

  • Costa M, Losada-Barreiro S, Bravo-Díaz C, Vicente AA, Monteiro LS, Paiva-Martins F (2020b) Influence of AO chain length, droplet size and oil to water ratio on the distribution and on the activity of gallates in fish oil-in-water emulsified systems: emulsion and nanoemulsion comparison. Food Chem 310(1–9):125716

    CAS  PubMed  Google Scholar 

  • Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2021) Polyphenolic antioxidants in lipid emulsions: partitioning effects and interfacial phenomena. Foods 10(3):539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dar AA, Bravo-Diaz C, Nazir N, Romsted LS (2017) Chemical kinetic and chemical trapping methods: unique approaches for determining respectively the antioxidant distributions and interfacial molarities of water, counter-anions, and other weakly basic nucleophiles in association colloids. Curr Opin Colloid Interface Sci 32:84–93

    CAS  Google Scholar 

  • Decker EA, DJ MC, Bourlieu-Lacanal C, Durand E, Figueroa-Espinoza MC, Lecomte J et al (2017) Hurdles in predicting antioxidant efficacy in oil-in-water emulsions. Tr Food Sci Technol 67(Supplement C):183–194

    CAS  Google Scholar 

  • Ferreira I, Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2018) Modulating the interfacial concentration of gallates to improve the oxidative stability of fish oil-in-water emulsions. Food Res Int 112:192–198

    CAS  PubMed  Google Scholar 

  • Foti MC (2007) Antioxidant properties of phenols. J Pharm Pharmacol 59(12):1673–1685

    CAS  PubMed  Google Scholar 

  • Frankel EN (2005) Lipid oxidation. The Oily Press, PJ Barnes & Associates, Bridgwater, England

    Google Scholar 

  • Freiría-Gándara J, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2018a) Differential partitioning of bioantioxidants in edible oil–water and octanol–water systems: linear free energy relationships. J Chem Eng Data 63(8):2999–3007

    Google Scholar 

  • Freiría-Gándara J, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2018b) Enhancement of the antioxidant efficiency of gallic acid derivatives in intact fish oil-in-water emulsions through optimization of their interfacial concentrations. Food Funct 9(8):4429–4442

    PubMed  Google Scholar 

  • Genot C (2015) Distributions of phenolic acid antioxidants between the interfacial and aqueous regions of corn oil emulsions—a commentary. Eur J Lipid Sci Technol 117(11):1684–1686

    CAS  Google Scholar 

  • Gunaseelan K, Romsted LS, Pastoriza-Gallego MJ, González-Romero E, Bravo-Díaz C (2006) Determining α-tocopherol distributions betweeen the oil, water and interfacial regions of macroemulsions: novel applications of electrocanalytical chemistry and a pseudophase kinetic model. Adv Colloid Interf Sci 123–126:303–311

    Google Scholar 

  • Ingold KU, Pratt DA (2014) Advances in radical-trapping antioxidant chemistry in the 21st century: a kinetics and mechanisms perspective. Chem Rev 114(18):9022–9046

    CAS  PubMed  Google Scholar 

  • Klek S (2016) Omega-3 fatty acids in modern parenteral nutrition: a review of the current evidence. J Clin Med 5(3):34

    PubMed Central  Google Scholar 

  • Laguerre M, López-Giraldo LJ, Lecomte J, Figueroa-Espinoza MJ, Baréa B, Weiss J et al (2009) Chain length affects antioxidant properties of chlorogenate esters in emulsion: the cut-off theory behind the polar paradox. J Agric Food Chem 57:11335–11342

    CAS  PubMed  Google Scholar 

  • Laguerre M, Bayrasy C, Lecomte J, Chabi B, Decker EA, Wrutniak-Cabello C et al (2012) How to boost antioxidants by lipophilization? Biochimie 95:1–7

    Google Scholar 

  • Laguerre M, Bayrasy C, Panya A, Weiss J, McClements DJ, Lecomte J et al (2015) What makes good antioxidants in lipid-based systems? The next theories beyond the polar paradox. Crit Rev Food Sci Nutr 55(2):183–201

    CAS  PubMed  Google Scholar 

  • Laguerre M, Bily A, Roller M, Birtić S (2017) Mass transport phenomena in lipid oxidation and Antioxidation. Annu Rev Food Sci Technol 8(1):391–411

    CAS  PubMed  Google Scholar 

  • Laguerre M, Tenon M, Bily A, Birtić S (2020a) Toward a spatiotemporal model of oxidation in lipid dispersions: a hypothesis-driven review. Eur J Lipid Sci Technol 122(3):1900209

    CAS  Google Scholar 

  • Laguerre M, Bily A, Birtić S (2020b) Chapter 7 – Lipid oxidation in food. In: Galanakis CM (ed) Lipids and edible oils. Academic Press, Cambridge, MA, pp 243–287

    Google Scholar 

  • Litwinienko G (2005) Chapter 7 – Analysis of lipid oxidation by differential scanning calorimetry. In: Kamal Elding A, Pokorny J (eds) Analysis of lipid oxidation. AOCS Press

    Google Scholar 

  • Lopez de Arbina A, Losada-Barreiro S, Rezende MC, Vidal M, Aliaga C (2019) The location of amphiphobic antioxidants in micellar systems: the diving-swan analogy. Food Chem 279:288–293

    CAS  PubMed  Google Scholar 

  • Losada-Barreiro S, Bravo Díaz C, Paiva Martins F, Romsted LS (2013) Maxima in antioxidant distributions and efficiencies with increasing hydrophobicity of gallic acid and its alkyl esters. The pseudophase model interpretation of the “cut-off effect”. J Agric Food Chem 61:6533–6543

    CAS  PubMed  Google Scholar 

  • Losada-Barreiro S, Bravo-Díaz C, Paiva-Martins F (2021) Why encapsulate antioxidants in emulsion-based systems, where they are located, and how location affects their efficiency. In: Aboudzadeh MA (ed) Emulsion-based encapsulation of antioxidants. Food bioactive ingredients. Cham, Switzerland, Springer Nature

    Google Scholar 

  • Lucas L, Comelles F, Alcántara D, Maldonado O, Curcuroze M, Parra JL et al (2010) Surface-active properties of lipophilic antioxidants Tyrosol and Hydroxytyrosol fatty acid esters: a potential explanation for the nonlinear hypothesis of the antioxidant activity in oil-in-water emulsions. J Agric Food Chem 58:8021–8026

    CAS  PubMed  Google Scholar 

  • Martindale RG, Berlana D, Boullata JI, Cai W, Calder PC, Deshpande GH et al (2020) Summary of proceedings and expert consensus statements from the international summit “lipids in parenteral nutrition”. J Parenter Enter Nutr 44(S1):S7–S20

    Google Scholar 

  • McClements DJ (2005) Food emulsions. CRC Press, Boca Raton, USA

    Google Scholar 

  • Meireles M, Losada-Barreiro S, Costa M, Paiva-Martins F, Bravo-Díaz C, Monteiro LS (2019) Control of antioxidant efficiency of chlorogenates in emulsions: modulation of antioxidant interfacial concentrations. J Sci Food Agric 99:3917–3925

    CAS  PubMed  Google Scholar 

  • Mitrus O, Żuraw M, Losada-Barreiro S, Bravo-Díaz C, Paiva-Martins F (2019) Targeting antioxidants to interfaces: control of the oxidative stability of lipid-based emulsions. J Agric Food Chem 67(11):3266–3274

    CAS  PubMed  Google Scholar 

  • Nahas R, Berdah D (2013) The polar paradox: how an imperfect conceptual framework accelerated our knowledge of antioxidant behavior. In: Logan A, Nienaber U, Pan X (eds) Lipid oxidation, challenges in food systems. AOCS Press, Urbana, IL, USA, pp 243–260

    Google Scholar 

  • Oehlke K, Garamus V, Heins A, Stöckman H, Schwarz K (2008) The partitioning of emulsifiers in o/w emulsions: a comparative study of SANS, ultrafiltration and dialysis. J Colloid Interface Sci 322:294–303

    CAS  PubMed  Google Scholar 

  • Panya A, Laguerre M, Bayrasy C, Lecomte J, Villeneuve P, McClements D et al (2012) An investigation of the versatile antixoidant mechanism of action of rosmarinate alkyl esters in oil-in-water emulsions. J Agric Food Chem 60:2692–2700

    CAS  PubMed  Google Scholar 

  • Pawlik D, Lauterbach R, Turyk E (2011) Fish-oil fat emulsion supplementation may reduce the risk of severe retinopathy in VLBW infants. Pediatrics 127(2):223–228

    PubMed  Google Scholar 

  • Porter WL (1993) Paradoxical behavior of antioxidants in food and in biological systems. Priceton Scientific, Princeton, NJ, pp 93–122

    Google Scholar 

  • Raimúndez-Rodríguez EA, Losada-Barreiro S, Bravo-Díaz C (2019) Enhancing the fraction of antioxidants at the interfaces of oil-in-water emulsions: a kinetic and thermodynamic analysis of their partitioning. J Colloid Interface Sci 555:224–233

    PubMed  Google Scholar 

  • Roche LD (2012) Oxidative stress: the dark side of soybean-oil-based emulsions used in parenteral nutrition. Oxid Antioxid Med Sci 1(1):11–14

    Google Scholar 

  • Romsted LS, Bravo-Díaz C (2013) Modelling chemical reactivity in emulsions. Curr Opin Colloid Interface Sci 18:3–14

    CAS  Google Scholar 

  • Ross L, Barclay C, Vinqvist MR (2003) Phenols as antioxidants. In: Rappoport Z (ed) The chemistry of phenols. Wiley, West Sussex, England

    Google Scholar 

  • Salvia-Trujillo L, Soliva-Fortuny R, Rojas-Graü MA, McClements DJ, Martín-Belloso O (2017) Edible Nanoemulsions as carriers of active ingredients: a review. Annu Rev Food Sci Technol 8(1):439–466

    CAS  PubMed  Google Scholar 

  • Schaich KM, Shahidi F, Zhong Y, NAM E (2013) Chapter 11 - Lipid oxidation. In: Biochemistry of foods, 3rd edn. Academic Press, San Diego, pp 419–478

    Google Scholar 

  • Schwarz K, Huang SW, German JB, Tiersch B, Hartmann J, Frankel EN (2000) Activities of antioxidants are affected by colloidal properties of oil-in-water and water-in-oil emulsions and bulk oils. J Agric Food Chem 48:4874–4882

    CAS  PubMed  Google Scholar 

  • Shahidi F (2015) Handbook of antioxidants for food preservation, 1st edn. Woodhead Publiser, Sawston

    Google Scholar 

  • Shahidi F, Zhong Y (2011) Revisiting the polar paradox theory: a critical overview. J Agric Food Chem 59:3499–3504

    CAS  PubMed  Google Scholar 

  • Silva R, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2017) Partitioning and antioxidative effect of protocatechuates in soybean oil emulsions: relevance of emulsifier concentration. Euro J Lipid Sci Technol 119(6):1600274-n/a

    Google Scholar 

  • Stöckman H, Schwarz K (1999) Partitioning of low molecular weight compounds in oil-in-water emulsions. Langmuir 15:6142–6149

    Google Scholar 

  • Torres de Pinedo A, Peñalver P, Pérez-Victoria I, Rondón D, Morales JC (2007) Synthesis of new phenolic fatty acid esters and their evaluation as lipophilic antioxidants in an oil matrix. Food Chem 105:657–665

    CAS  Google Scholar 

  • Valgimigli L, Pratt DA (2012) Antioxidants in chemistry and biology. In: encyclopedia of radicals in chemistry, biology and materials. John Wiley &Sons, USA. https://doi.org/10.1002/9781119953678.rad055

Download references

Acknowledgement

This chapter was prepared during the sabbatical leave of C. B-D, supported by Universidad de Vigo. The authors thank FCT/MCTES (UIDB/QUI/50006/2020; PTDC/OCE-ETA/32492/2017–POCI-01-0145-FEDER-032492; doctoral grant SFRH/BD/100889/2014), REQUIMTE-LAQV (PTDC/OCE-ETA/32492/2017), and Xunta de Galicia (10TAL314003PR) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Losada-Barreiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Costa, M., Paiva-Martins, F., Bravo-Díaz, C., Losada-Barreiro, S. (2022). Control of Lipid Oxidation in Oil-in Water Emulsions: Effects of Antioxidant Partitioning and Surfactant Concentration. In: Bravo-Diaz, C. (eds) Lipid Oxidation in Food and Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-87222-9_9

Download citation

Publish with us

Policies and ethics