Skip to main content

Why Encapsulate Antioxidants in Emulsion-Based Systems, Where They Are Located, and How Location Affects Their Efficiency

  • Chapter
  • First Online:
Emulsion‐based Encapsulation of Antioxidants

Abstract

The deterioration of fats and oils is a key issue to the food industry because peroxidation affects the nutritional value, sensory attributes (e.g., taste and odor) and the safety of the food itself through the production of harmful byproducts. Fats and oils can be emulsified into oil-in-water (O/W) emulsion systems, where the lipid phase is present as a dispersion of fine oil droplets within a continuous aqueous phase. The emulsifier employed to stabilize kinetically the emulsions is mainly located at the droplet interface, which facilitates emulsification by decreasing interfacial tension. Lipid oxidation within fluid, lipid-based emulsions is essentially governed by the interfacial dynamics. Molecules added to control the oxidation of the lipids (i.e., antioxidants) distribute thermodynamically between the oil, interfacial and aqueous regions according to their polarity, at rates close to the diffusion control, and lipid radicals are polar and diffuse towards the interfacial region of the emulsion, which has been proved to be the main reaction site with added antioxidants. The oxidative stability of the emulsion can, therefore, be controlled by modulating the interfacial concentration of antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aliaga C, Bravo-Moraga F, Gonzalez-Nilo D, Márquez S, Lürh S, Mena G, Rezende MC (2016) Location of TEMPO derivatives in micelles: subtle effect of the probe orientation. Food Chem 192:395–401

    Article  CAS  PubMed  Google Scholar 

  • Almeida J, Losada-Barreiro S, Costa M, Paiva-Martins F, Bravo-Díaz C, Romsted LS (2016) Interfacial concentrations of hydroxytyrosol and its lipophilic esters in intact olive oil-in-water emulsions: effects of antioxidant hydrophobicity, surfactant concentration, and the oil-to-water ratio on the oxidative stability of the emulsions. J Agric Food Chem 64:5274–5283

    Article  CAS  PubMed  Google Scholar 

  • Andersson Trojer M, Nordstierna L, Nordin M, Nydén M, Holmberg K (2013) Encapsulation of actives for sustained release. Phys Chem Chem Phys 15:17727–17741

    Article  CAS  PubMed  Google Scholar 

  • Atkins P, De Paula J (2010) Physical chemistry. W. H. Freeman, New York

    Google Scholar 

  • Balgavý P, Devínsky F (1996) Cut-off effects in biological activities of surfactants. Adv Colloid Interface Sci 66:23–63

    Article  PubMed  Google Scholar 

  • Ballesteros LF, Ramirez MJ, Orrego CE, Teixeira JA, Mussatto SI (2017) Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem 237:623–631

    Article  CAS  PubMed  Google Scholar 

  • Barreiro-Losada S (2014), PhD Thesis, Universidad de Vigo, Spain

    Google Scholar 

  • Bartosz T, Irene T (2016) Polyphenols encapsulation – application of innovation technologies to improve stability of natural products. Phys Sci Rev 20150005–20150010

    Google Scholar 

  • Belščak-Cvitanović A, Stojanović R, Manojlović V, Komes D, Cindrić IJ, Nedović V, Bugarski B (2011) Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate–chitosan system enhanced with ascorbic acid by electrostatic extrusion. Food Res Int 44:1094–1101

    Article  CAS  Google Scholar 

  • Benfeito S, Oliveira C, Soares P, Fernandes C, Silva T, Teixeira J, Borges F (2013) Antioxidant therapy: still in search of the ‘magic bullet’. Mitochondrion 13:427–435

    Article  CAS  PubMed  Google Scholar 

  • Berthod A, Carda-Bosch S (2004) Determination of liquid-liquid partition coefficients by separation methods. J Chromatog A 1037:3–14

    Article  CAS  Google Scholar 

  • Berton C, Ropers MH, Viau M, Genot C (2011) Contribution of the interfacial layer to the protection of emulsified lipids against oxidation. J Agric Food Chem 59:5052–5061

    Article  CAS  PubMed  Google Scholar 

  • Berton-Carabin CC, Ropers M-H, Genot C (2014) Lipid oxidation in oil-in-water emulsions: involvement of the interfacial layer. Compr Rev Food Sci Food Safety 13:945–977

    Article  CAS  Google Scholar 

  • Berton-Carabin CC, Sagis L, Schroën K (2018) Formation, structure, and functionality of interfacial layers in food emulsions. Annu Rev Food Sci Technol 9:551–587

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S (2015) Reactive oxygen species and cellular defense system. In: Rani V, Yadav UCS (eds) Free radicals in human health and disease. Springer India, New Delhi. https://doi.org/10.1007/978-81-322-2035-0_2

    Chapter  Google Scholar 

  • Bravo-Díaz C, Romsted LS, Liu C, Losada-Barreiro S, Pastoriza-Gallego MJ, Gao X, Gu Q, Krishnan G, Sánchez-Paz V, Zhang Y, Ahmad-Dar A (2015) To model chemical reactivity in heterogeneous emulsions, think homogeneous microemulsions. Langmuir 31:8961–8979

    Article  PubMed  CAS  Google Scholar 

  • Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10:221–247

    Article  CAS  Google Scholar 

  • Bunton CA, Savelli G (1986) Organic reactivity in aqueous micelles and similar assemblies. Adv Phys Org Chem 22:213

    CAS  Google Scholar 

  • CalderóN-Montaño JM, Madrona A, Burgos-Morón E, Luis Orta M, Mateos S, Espartero JL, LóPez-LáZaro M (2013) Selective cytotoxic activity of new lipophilic hydroxytyrosol alkyl ether derivatives. J Agric Food Chem 61:5046–5053

    Article  PubMed  CAS  Google Scholar 

  • Chang RC-C (2011) Advanced understanding of neurodegenerative diseases. InTech. https://doi.org/10.5772/2451

  • Chavarria D, Silva T, Martins D, Bravo J, Summavielle T, Garrido J, Borges F (2015) Exploring cinnamic acid scaffold: development of promising neuroprotective lipophilic antioxidants. Med Chem Commun 6:1043–1053

    Article  CAS  Google Scholar 

  • Choi D-Y, Lee Y-J, Hong JT, Lee H-J (2012) Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Res Bull 87:144–153

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C, Romsted LS (2015) A direct correlation between the antioxidant efficiencies of caffeic acid and its alkyl esters and their concentrations in the interfacial region of olive oil emulsions. The pseudophase model interpretation of the “cut-off” effect. Food Chem 175:233–242

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Diaz C (2016) Optimizing the efficiency of antioxidants in emulsions by lipophilization: tuning interfacial concentrations. RSC Adv 6:91483–91493

    Article  CAS  Google Scholar 

  • Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2017) Physical evidence that the variations in the efficiency of homologous series of antioxidants in emulsions are a result of differences in their distribution. J Sci Food Agric 97:564–571

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Freiría-Gándara J, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2020a) Effects of droplet size on the interfacial concentrations of antioxidants in fish and olive oil-in-water emulsions and nanoemulsions and on their oxidative stability. J Colloid Interface Sci 562:352–362

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Losada-Barreiro S, Bravo-Díaz C, Vicente AA, Monteiro LS, Paiva-Martins F (2020b) Influence of AO chain length, droplet size and oil to water ratio on the distribution and on the activity of gallates in fish oil-in-water emulsified systems: emulsion and nanoemulsion comparison. Food Chem 310:125716

    Article  CAS  PubMed  Google Scholar 

  • D’archivio M, Filesi C, Varì R, Scazzocchio B, Masella R (2010) Bioavailability of the polyphenols: status and controversies. Int J Mol Sci 11:1321–1342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Macêdo IYL, Garcia LF, Oliveira Neto JR, De Siqueira Leite KC, Ferreira VS, Ghedini PC, De Souza Gil E (2017) Electroanalytical tools for antioxidant evaluation of red fruits dry extracts. Food Chem 217:326–331

    Article  PubMed  CAS  Google Scholar 

  • De Melo Barbosa R, Severino P, Finkler CLL, De Paula E (2019) Chapter 11 – Lipid-based colloidal carriers for transdermal administration of bioactives. In: Holban A-M, Grumezescu AM (eds) Materials for biomedical engineering. Elsevier, Cambridge, MA

    Google Scholar 

  • De Roos B, Aura A-M, Bronze M, Cassidy A, Conesa M-TG, Gibney ER, Greyling A, Kaput J, Kerem Z, Knežević N, Kroon P, Landberg R, Manach C, Milenkovic D, Rodriguez-Mateos A, Tomás-Barberán FA, Van De Wiele T, Morand C (2019) Targeting the delivery of dietary plant bioactives to those who would benefit most: from science to practical applications. Eur J Nutr 58:65–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Domenico F, Barone E, Perluigi M, Butterfield DA (2015) Strategy to reduce free radical species in Alzheimer’s disease: an update of selected antioxidants. Expert Rev Neurother 15:19–40

    Article  PubMed  CAS  Google Scholar 

  • Ebrahimi A, Schluesener H (2012) Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing Res Rev 11:329–345

    Article  CAS  PubMed  Google Scholar 

  • Embuscado ME (2015) Spices and herbs: natural sources of antioxidants – a mini review. J Funct Foods 18, Part B:811–819

    Article  CAS  Google Scholar 

  • Fanga Z, Chandaria B (2010) Encapsulation of polyphenols: a review. Trends Food Sci Technol 21:510–523

    Article  CAS  Google Scholar 

  • Feng Y, Wang X (2012) Antioxidant therapies for Alzheimer’s disease. Oxid Med Cell Longev 2012:1–17. https://doi.org/10.1155/2012/472932

    Article  Google Scholar 

  • Ferreira I, Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2018) Modulating the interfacial concentration of gallates to improve the oxidative stability of fish oil-in-water emulsions. Food Res Int 112:192–198

    Article  CAS  PubMed  Google Scholar 

  • Frankel EN (2005) Lipid oxidation. The Oily Press, PJ Barnes & Associates, Bridgwater

    Book  Google Scholar 

  • Frankel EN, Huang SW, Kanner J, German JB (1994) Interfacial phenomena in the evaluation of antioxidants: bulk oils vs emulsions. J Agric Food Chem 42:1054–1059

    Article  CAS  Google Scholar 

  • Freiría-Gándara J, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2018a) Differential partitioning of bioantioxidants in edible oil–water and octanol–water systems: linear free energy relationships. J Chem Eng Data 63:2999–3007

    Article  CAS  Google Scholar 

  • Freiría-Gándara J, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2018b) Enhancement of the antioxidant efficiency of gallic acid derivatives in intact fish oil-in-water emulsions through optimization of their interfacial concentrations. Food Funct 9:4429–4442

    Article  PubMed  Google Scholar 

  • Galan A, Losada-Barreiro S, Bravo-Díaz C (2016) A physicochemical study of the effects of acidity on the distribution and antioxidant efficiency of trolox in olive oil-in-water emulsions. Chem Phys Chem 17:296–304

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Bravo-Díaz C, Romsted LS (2013) Interpreting ion-specific effects on the reduction of an arenediazonium ion by t-butylhydroquinone (TBHQ) using the pseudophase kinetic model in emulsions prepared with a zwitterionic sulfobetaine surfactant. Langmuir 29:4928–4933

    Article  CAS  PubMed  Google Scholar 

  • Garti N (2008) Delivery and controlled release of bioactives in foods and nutraceuticals. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  • Gray JI (1978) Measurement of lipid oxidation: a review. J Am Oil Chem Soc 55:539–546

    Article  CAS  Google Scholar 

  • Gu Q, Bravo-Díaz C, Romsted LS (2013) Using the pseudophase kinetic model to interpret chemical reactivity in ionic emulsions: determining antioxidant partition constants and interfacial rate constants. J Colloid Interface Sci 400:41–48

    Article  CAS  PubMed  Google Scholar 

  • Hardiman O, Doherty CP (2011) Neurodegenerative disorders: a clinical guide. Springer, London

    Book  Google Scholar 

  • Hemingway RW, Laks PE (2012) Plant polyphenols: synthesis, properties, significance. Springer/Plenum Press, New York

    Google Scholar 

  • Ingold KU, Pratt DA (2014) Advances in radical-trapping antioxidant chemistry in the 21st century: a kinetics and mechanisms perspective. Chem Rev 114:9022–9046

    Article  CAS  PubMed  Google Scholar 

  • Jafari SM, Fathi M, Mandala I (2015) Chapter 13 - Emerging product formation. In: Galanakis CM (ed) Food waste recovery. Academic Press, San Diego

    Google Scholar 

  • Jan Zuidam N, Nedovic VA (2010) Encapsulation technologies for active food ingredients and food processing. Springer, New York

    Book  Google Scholar 

  • Jodko-Piórecka J, Cedrowski J, Litwinienko G (2018) Physico-chemical principles of antioxidant action, including solvent and matrix dependence and interfacial phenomena. In: Apak R, Capanoglu E, Shahidi F (eds) Measurement of antioxidant activity & capacity: recent trends and applications. J. Wiley & Sons, West Sussex

    Google Scholar 

  • Kamal-Eldin A, Min DB (2008) Lipid oxidation pathways, vol 2. AOCS Press, Champaign

    Google Scholar 

  • Kim J, Lee HJ, Lee KW (2010) Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J Neurochem 112:1415–1430

    Article  CAS  PubMed  Google Scholar 

  • Laguerre M, López-Giraldo LJ, Lecomte J, Figueroa-Espinoza MJ, Baréa B, Weiss J, Decker EA, Villeneuve P (2009) Chain length affects antioxidant properties of chlorogenate esters in emulsion: the cut-off theory behind the polar paradox. J Agric Food Chem 57:11335–11342

    Article  CAS  PubMed  Google Scholar 

  • Laguerre M, Decker EA, Lecomte J, Villeneuve P (2010) Methods for evaluating the potency and efficacy of antioxidants. Curr Opin Clin Nutr Metab Care 13:518–525

    Article  CAS  PubMed  Google Scholar 

  • Laguerre M, Bayrasy C, Lecomte J, Chabi B, Decker EA, Wrutniak-Cabello C, Cabello G, Villeneuve P (2012) How to boost antioxidants by lipophilization? Biochimie 95:1–7

    Google Scholar 

  • Lin C-H, Chen C-H, Lin Z-C, Fang J-Y (2017) Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 25:219–234

    Article  CAS  PubMed  Google Scholar 

  • Lisete-Torres P, Losada-Barreiro S, Albuquerque H, Sánchez-Paz V, Paiva-Martins F, Bravo-Díaz C (2012) Distribution of hydroxytyrosol and hydroxytyrosol acetate in olive oil emulsions and their antioxidant efficiency. J Agric Food Chem 60:7318–7325

    Article  CAS  PubMed  Google Scholar 

  • Litwinienko G, Ingold KU (2007) Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc Chem Res 40:222–230

    Article  CAS  PubMed  Google Scholar 

  • Losada-Barreiro S (2009) PhD Thesis, Universidad de Vigo

    Google Scholar 

  • Losada-Barreiro S, Bravo-Díaz C (2017) Free radicals and polyphenols: the redox chemistry of neurodegenerative diseases. Eur J Med Chem 133:379–402

    Article  CAS  PubMed  Google Scholar 

  • Losada-Barreiro S, Bravo Díaz C, Paiva Martins F, Romsted LS (2013a) Maxima in antioxidant distributions and efficiencies with increasing hydrophobicity of gallic acid and its alkyl esters. The pseudophase model interpretation of the Cut-off effect. J Agric Food Chem 61:6533–6543

    Article  CAS  PubMed  Google Scholar 

  • Losada-Barreiro S, Sánchez Paz V, Bravo-Díaz C (2013b) Effects of emulsifier hydrophile–lipophile balance and emulsifier concentration the distributions of gallic acid, propyl gallate, and α-tocopherol in corn oil emulsions. J Colloid Interface Sci 389:1–9

    Article  CAS  PubMed  Google Scholar 

  • Losada-Barreiro S, Bravo Díaz C, Romsted LS (2015a) Distributions of phenolic acid antioxidants between the interfacial and aqueous regions of corn oil emulsions: effects of pH and emulsifier concentration. Eur J Lipid Sci Technol 117:1801–1813

    Article  CAS  Google Scholar 

  • Losada-Barreiro S, Sánchez-Paz V, Bravo-Díaz C (2015b) Transfer of antioxidants at the interfaces of model food emulsions: distributions and thermodynamic parameters. Org Biomol Chem 13:876–885

    Article  CAS  PubMed  Google Scholar 

  • Madhavi DL, Deshpande NR, Salunkhe DK (1996) Food antioxidants, technological, toxicological and health perspectives. Marcel Dekker, New York

    Google Scholar 

  • Malar DS, Devi KP (2014) Dietary polyphenols for treatment of Alzheimer’s disease– future research and development. Curr Pharm Biotechnol 15:330–342

    Article  CAS  PubMed  Google Scholar 

  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    Article  CAS  PubMed  Google Scholar 

  • Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81(1 suppl):230S–242S

    Article  CAS  PubMed  Google Scholar 

  • Mateos R, Trujillo M, Pereira-Caro G, Madrona A, Cert A, Espartero JL (2008) New lipophilic tyrosyl esters. Comparative antioxidant evaluation with hydroxytyrosyl esters. J Agric Food Chem 53:10960–10966

    Article  CAS  Google Scholar 

  • Mcclements DJ (2015) Food emulsions, principles, practices and techniques. CRC Press, Boca Raton

    Book  Google Scholar 

  • Mcclements DJ (2018) Enhanced delivery of lipophilic bioactives using emulsions: a review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility. Food Funct 9:22–41

    Article  CAS  PubMed  Google Scholar 

  • Medina I, Lois S, Alcántara D, Lucas L, Morales JC (2009) Effect of lipophilization of hydroxytyrosol on its antioxidant activity in fish oils and fish oil-in-water emulsions. J Agric Food Chem 57:9773–9779

    Article  CAS  PubMed  Google Scholar 

  • Meireles M, Losada-Barreiro S, Costa M, Paiva-Martins F, Bravo-Díaz C, Monteiro LS (2020) Control of antioxidant efficiency of chlorogenates in emulsions: modulation of antioxidant interfacial concentrations. J Sci Food Agric 99:3917–3925

    Google Scholar 

  • Mitrus O, Żuraw M, Losada-Barreiro S, Bravo-Díaz C, Paiva-Martins F (2019) Targeting antioxidants to interfaces: control of the oxidative stability of lipid-based emulsions. J Agric Food Chem 67:3266–3274

    Article  CAS  PubMed  Google Scholar 

  • Mozuraityte R, Kristinova V, Rustad T (2016) Oxidation of food components. In: Encyclopedia of food and health. Academic Press, Oxford

    Google Scholar 

  • Mundi MS, Salonen BR, Bonnes SL, Hurt RT (2017) Parenteral nutrition – lipid emulsions and potential complications. Pract Gastroenterol 41:32–37

    Google Scholar 

  • Munin A, Edwards-Lévy F (2011) Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 3:793–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Marín J, De La Cruz JP, Guerrero A, López-Leiva I, López-Villodres JA, Reyes JJ, Espartero JL, Madrona A, Labajos MT, González-Correa JA (2013) Cytoprotective effect of hydroxytyrosyl alkyl ether derivatives after oral administration to rats in a model of glucose–oxygen deprivation in brain slices. J Agric Food Chem 60:7659–7667

    Article  CAS  Google Scholar 

  • Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B (2011) An overview of encapsulation technologies for food applications. Procedia Food Sci 1:1806–1815

    Article  CAS  Google Scholar 

  • Nimse SB, Palb D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5:27986–28006

    Article  CAS  Google Scholar 

  • Nowak E, Livney YD, Niu Z, Singh H (2019) Delivery of bioactives in food for optimal efficacy: what inspirations and insights can be gained from pharmaceutics? Trends Food Sci Technol 91:557–573

    Article  CAS  Google Scholar 

  • Paiva-Martins F, Santos V, Mangericão H, Gordon MH (2006) Effects of copper on the antioxidant activity of olive polyphenols in bulk oil and oil-in-water emulsions. J Agric Food Chem 54:3738–3743

    Article  CAS  PubMed  Google Scholar 

  • Parisi OI, Puoci F, Restuccia D, Farina G, Iemma F, Picci N (2014) Chapter 4 - Polyphenols and their formulations: different strategies to overcome the drawbacks associated with their poor stability and bioavailability. In: Polyphenols in human health and disease. Academic Press, San Diego

    Google Scholar 

  • Pastoriza-Gallego MJ, Losada-Barreiro S, Bravo Díaz C (2012) Effects of acidity and emulsifier concentration on the distribution of vitamin C in a model food emulsion. J Phys Org Chem 25:908–915

    Article  CAS  Google Scholar 

  • Pinchuk I, Shoval H, Dotan Y, Lichtenberg D (2012) Evaluation of antioxidants: scope, limitations and relevance of assays. Chem Phys Lipids 165:638–647

    Article  CAS  PubMed  Google Scholar 

  • Porter WL (1993) Paradoxical behavior of antioxidants in food and in biological systems. Princeton, Priceton Scientific

    Book  Google Scholar 

  • Qian C, Mcclements DJ (2011) Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocoll 25:1000–1008

    Article  CAS  Google Scholar 

  • Raimúndez-Rodríguez EA, Losada-Barreiro S, Bravo-Díaz C (2019) Enhancing the fraction of antioxidants at the interfaces of oil-in-water emulsions: a kinetic and thermodynamic analysis of their partitioning. J Colloid Interface Sci 555:224–233

    Article  PubMed  CAS  Google Scholar 

  • Rajalakshmi D, Narasimhan S (1995) Food antioxidants: sources and methods of evaluation, in food antioxidants. CRC Press, Boca Raton

    Google Scholar 

  • Raman M, Almutairdi A, Mulesa L, Alberda C, Beattie C, Gramlich L (2017) Parenteral nutrition and lipids. Nutrients 9:388–349

    Article  PubMed Central  CAS  Google Scholar 

  • Ray PD, Huang B-W, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray S, Raychaudhuri U, Chakraborty R (2016) An overview of encapsulation of active compounds used in food products by drying technology. Food Biosci 13:76–83

    Article  CAS  Google Scholar 

  • Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SG, Silva Pinto M (2012) Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br J Clin Pharmacol 75:588–602

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  PubMed  Google Scholar 

  • Roleira FMF, Tavares-Da-Silva EJ, Varela CL, Costa SC, Silva T, Garrido J, Borges F (2015) Plant derived and dietary phenolic antioxidants: anticancer properties. Food Chem 183:235–258

    Article  CAS  PubMed  Google Scholar 

  • Romsted LS (2012) Introduction to surfactant self-assembly. In: Gale PA, Steed JW (eds) Supramolecular chemistry: from molecules to nanomaterials. J. Wiley & Sons Ltd, New York

    Google Scholar 

  • Romsted LS, Bravo-Díaz C (2013) Modelling chemical reactivity in emulsions. Curr Opin Colloid Interface Sci 18:3–14

    Article  CAS  Google Scholar 

  • Ross L, Barclay C, Vinqvist MR (2003) Phenols as antioxidants. In: Rappoport Z (ed) The chemistry of phenols. J. Wiley & Sons, West Sussex

    Google Scholar 

  • Salvia-Trujillo L, Soliva-Fortuny R, Rojas-Graü MA, Mcclements DJ, Martín-Belloso O (2017) Edible nanoemulsions as carriers of active ingredients: a review. Annu Rev Food Sci Technol 8:439–466

    Article  CAS  PubMed  Google Scholar 

  • Schaich KM (2005) Lipid oxidation: theoretical aspects. In: Shahidi F (ed) Bailey’s industrial oil and fat products. J. Wiley & Sons, New York

    Google Scholar 

  • Schaich KM, Shahidi F, Zhong Y, Eskin NAM (2013) Chapter 11 - Lipid oxidation. In: Biochemistry of foods, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Schieber M, Chandel, Navdeep s. (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahidi F (2015) Handbook of antioxidants for food preservation, 1st edn. Woodhead Pub, Sawston, Cambridge

    Google Scholar 

  • Shahidi F, Zhong Y (2005) Lipid oxidation: measurement methods. In: Shahidi F (ed) Bailey’s industrial oil and fat products, 6th edn. John Wiley & Sons, Hoboken

    Chapter  Google Scholar 

  • Sonia Barreiro-Losada (2014), PhD Thesis, Universidad de Vigo, Spain

    Google Scholar 

  • Spray JW (2016) Review of intravenous lipid emulsion therapy. J Infus Nurs 39:377–380

    Article  PubMed  PubMed Central  Google Scholar 

  • Sukhorukov GB (2014) Editorial overview: new technologies: how to put everything you need in a tiny pack and track its delivery? Curr Opin Pharmacol 18:vii–ix

    Article  CAS  PubMed  Google Scholar 

  • Teixeira J, Gaspar A, Garrido EM, Garrido J, Borges F (2013) Hydroxycinnamic acid antioxidants: an electrochemical overview. Bio Med Theatr Res Int 2013:1–11. https://doi.org/10.1155/2013/251754

    Article  CAS  Google Scholar 

  • Trujillo M, Mateos R, Collantes De Teran L, Espartero JL, Cert R, Jover M, Alcudia F, Bautista J, Cert A, Parrado J (2006) Lipophilic hydroxytyrosyl esters. Antioxidant activity in lipid matrices and biological systems. J Agric Food Chem 54:3779–3785

    Article  CAS  PubMed  Google Scholar 

  • Vladimir-Knežević S, Blažeković B, Štefan MB, Babac M (2012) Plant polyphenols as antioxidants influencing the human health. In: Rao V (ed) Phytochemicals as nutraceuticals – global approaches to their role in nutrition and health. InTech, London. https://doi.org/10.5772/2375

    Chapter  Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Zhang T, Dong Q, Collins Nice E, Huang C, Wei Y (2013) Redox homeostasis: the linchpin in stem cell self-renewal and differentiation. Cell Death Dis 4:e537. https://doi.org/10.1038/cddis.2013.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson RR, Preedy VR, Zibadi S (2013) Polyphenols in human health and disease. Elsevier Science, Cambridge, MA

    Google Scholar 

  • Williams KA (1996) Oils, fats and fatty foods. J & A. Churchill, London

    Google Scholar 

  • Williamson G, Manach C (2005) Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 81(1 suppl):243S–255S

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Xu L, Porter NA (2011) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111:5944–5972

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Financial support of the following institutions is acknowledged: Xunta de Galicia (REDUSO, Grant number ED431D 2017/18), UID/QUI/50006/2019 and University of Vigo. S. L-B thanks Xunta de Galicia for a postdoctoral grant (POS-B/2016/012) and University of Vigo (Plan de Retención de Talento 2018). This book chapter was prepared during a sabbatical leave supported by the University of Vigo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Bravo-Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Losada-Barreiro, S., Bravo-Díaz, C., Paiva-Martins, F. (2020). Why Encapsulate Antioxidants in Emulsion-Based Systems, Where They Are Located, and How Location Affects Their Efficiency. In: Aboudzadeh, M.A. (eds) Emulsion‐based Encapsulation of Antioxidants. Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-62052-3_1

Download citation

Publish with us

Policies and ethics