Skip to main content

Nanoemulsions as Encapsulation System to Prevent Lipid Oxidation

  • Chapter
  • First Online:
Lipid Oxidation in Food and Biological Systems

Abstract

Nanoemulsions consist of small droplets (typically with a diameter <200 nm) dispersed in a continuous phase, where emulsifier molecules surround each droplet. They have great potential in the food industry for encapsulating, protecting, and delivering lipid compounds in order to improve the quality, bioaccessibility, and shelf life of food products, nutritional supplements, and nutraceuticals. Nanoemulsions present several advantages compared to conventional emulsions, such as good dispersibility in water, clarity, kinetical stability, and a greater lipid bioaccessibility, being an excellent carrier for lipid bioactive compounds in food applications. Besides, they can be designed to have different optical, rheological, and chemical properties when controlling their composition and structure. In this context, this chapter is focuses on nano-emulsification as a tool to improve the oxidative stability of lipid bioactive compounds incorporated into them, where diverse strategies to prevent lipid oxidation will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acevedo-Estupiñan MV, Gutierrez-Lopez GF, Cano-Sarmiento C, Parra-Escudero CO, Rodriguez-Estrada MT, Garcia-Varela R, García HS (2019) Stability and characterization of O/W free phytosterols nanoemulsions formulated with an enzymatically modified emulsifier. LWT-Food Sci Technol 107:151–157

    Article  Google Scholar 

  • Akhavan S, Assadpour E, Katouzian I, Jafari SM (2018) Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci Technol 74:132–146

    Article  CAS  Google Scholar 

  • Arancibia C, Navarro-Lisboa R, Zúñiga RN, Matiacevich S (2016) Application of CMC as thickener on nanoemulsions based on olive oil: physical properties and stability. Int J Polymer Sci 2016:6280581

    Article  Google Scholar 

  • Arancibia C, Riquelme N, Zúñiga R, Matiacevich S (2017) Comparing the effectiveness of natural and synthetic emulsifiers on oxidative and physical stability of avocado oil-based nanoemulsions. Innovative Food Sci Emerg Technol 44:159–166

    Article  CAS  Google Scholar 

  • Artiga-Artigas M, Lanjari-Pérez Y, Martín-Belloso O (2018) Curcumin-loaded nanoemulsions stability as affected by the nature and concentration of surfactant. Food Chem 266:466–474

    Article  CAS  PubMed  Google Scholar 

  • Aswathanarayan JB, Vittal RR (2019) Nanoemulsions and their potential applications in food industry. Front Sustain Food Syst 3:95

    Article  Google Scholar 

  • Berton-Carabin CC, Ropers MH, Genot C (2014) Lipid oxidation in oil-in-water emulsions: involvement of the interfacial layer. Compr Rev Food Sci Food Saf 13:945–977

    Article  CAS  Google Scholar 

  • Calligaris S, Plazzotta S, Bot F, Grasselli S, Malchiodi A, Anese M (2016) Nanoemulsion preparation by combining high-pressure homogenization and high-power ultrasound at low energy densities. Food Res Int 83:25–30

    Article  CAS  Google Scholar 

  • Chen XW, Chen YJ, Wang JM, Guo J, Yin SW, Yang XQ (2016) Phytosterol structured algae oil nanoemulsions and powders: improving antioxidant and flavor properties. Food Funct 7:3694–3702

    Article  CAS  PubMed  Google Scholar 

  • Cheng C, Yu X, McClements DJ, Huang Q, Tang H, Yu K, Xiang X, Chen P, Wang X, Deng Q (2019) Effect of flaxseed polyphenols on physical stability and oxidative stability of flaxseed oil-in-water nanoemulsions. Food Chem 301:125207

    Article  CAS  PubMed  Google Scholar 

  • Cho YH, McClements DJ (2009) Theoretical stability maps for guiding preparation of emulsions stabilized by protein-polysaccharide interfacial complexes. Langmuir 25:6649–6657

    Article  CAS  PubMed  Google Scholar 

  • Choi SJ, Decker EA, Henson L, Popplewell LM, McClements DJ (2010) Influence of droplet charge on the chemical stability of citral in oil-in-water emulsions. J Food Sci 75:C536–C540

    Article  CAS  PubMed  Google Scholar 

  • Choi SJ, McClements DJ (2020) Nanoemulsions as delivery systems for lipophilic nutraceuticals: strategies for improving their formulation, stability, functionality and bioavailability. Food Sci Biotechnol 29:149–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuesiang P, Siripatrawan U, Sanguandeekul R, McLandsborough L, Julian McClements D (2018) Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: impact of oil phase composition and surfactant concentration. J Colloid Interface Sci 514:208–216

    Article  CAS  PubMed  Google Scholar 

  • Chung C, McClements DJ (2018) Characterization of physicochemical properties of nanoemulsions: appearance, stability and rheology. In: Nanoemulsions. Academic Press, San Diego, CA, pp 543–572

    Google Scholar 

  • Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2016) Physical evidence that the variation in the efficiency of homologous series of antioxidants in emulsions are a result of differences in their distribution. J Sci Food Agr 97:564–571

    Article  Google Scholar 

  • Costa M, Freiría-Gándara J, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2020) Effects of droplet size on the interfacial concentration of antioxidants in fish and olive oil-in-water emulsions and nanoemulsions and on their oxidative stability. J Colloid Interface Sci 562:352–362

    Article  CAS  PubMed  Google Scholar 

  • da Silveira TFF, Laguerre M, Bourlieu-Lacanal C, Lecomte J, Durand E, Figueroa-Espinoza MC, Baréa B, Barouh N, Castro IA, Villeneuve P (2021) Impact of surfactant concentration and antioxidant mode of incorporation on the oxidative stability of oil-in-water nanoemulsions. LWT-Food Sci Technol 141:110892

    Article  Google Scholar 

  • Dickinson E (2019) Strategies to control and inhibit the flocculation of protein-stabilized oil-in-water emulsions. Food Hydrocoll 96:209–223

    Article  CAS  Google Scholar 

  • Doost AS, Van Camp J, Dewettinck K, Van der Meeren P (2019) Production of thymol nanoemulsions stabilized using Quillaja saponin as a biosurfactant: antioxidant activity enhancement. Food Chem 293:134–143

    Article  Google Scholar 

  • Espitia PJP, Fuenmayor CA, Otoni CG (2019) Nanoemulsions: synthesis, characterization, and application in bio-based active food packaging. Compr Rev Food Sci Food Saf 18:264–285

    Article  CAS  PubMed  Google Scholar 

  • Ferreira I, Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2018) Modulating the interfacial concentration of gallates to improve the oxidative stability of fish oil-in-water emulsions. Food Res Int 112:192–198

    Article  CAS  PubMed  Google Scholar 

  • Flores-Andrade E, Allende-Baltazar Z, Sandoval-González PE, Jiménez-Fernández M, Beristain CI, Pascual-Pineda LA (2021) Carotenoid nanoemulsions stabilized by natural emulsifiers: whey protein, gum Arabic, and soy lecithin. J Food Eng 290:110208

    Article  CAS  Google Scholar 

  • Fomuso LB, Corredig M, Akoh CC (2002) Effect of emulsifier on oxidation properties of fish oil-based structured lipid emulsions. J Agric Food Chem 50:2957–2961

    Article  CAS  PubMed  Google Scholar 

  • García-Moreno PJ, Yang J, Gregersen S, Jones NC, Berton-Carabin CC, Sagis LM, Hoffman SV, Marcatili P, Overgaard MT, Hansen EB, Jacobsen C (2021) The structure, viscoelasticity and charge of potato peptides adsorbed at the oil-water interface determine the physicochemical stability of fish oil-in-water emulsions. Food Hydrocoll 115:106605

    Article  Google Scholar 

  • Gasa-Falcon A, Odriozola-Serrano I, Oms-Oliu G, Martín-Belloso O (2020) Nanostructured lipid-based delivery systems as a strategy to increase functionality of bioactive compounds. Foods 9:325

    Article  CAS  PubMed Central  Google Scholar 

  • Gumus CE, Decker EA, McClements DJ (2017) Impact of legume protein type and location on lipid oxidation in fish oil-in-water emulsions: lentil, pea, and faba bean proteins. Food Res Int 100:175–185

    Article  CAS  PubMed  Google Scholar 

  • Håkansson A, Rayner M (2018) General principles of nanoemulsion formation by high-energy mechanical methods. In: Nanoemulsions. Academic Press, San Diego, CA, pp 103–139

    Chapter  Google Scholar 

  • Hu M, McClements DJ, Decker EA (2003) Lipid oxidation in corn oil-in-water emulsions stabilized by casein, whey protein isolate, and soy protein isolate. J Agric Food Chem 51:1696–1700

    Article  CAS  PubMed  Google Scholar 

  • Jiménez M, Domínguez JA, Pascual-Pineda LA, Azuara E, Beristain CI (2018) Elaboration and characterization of O/W cinnamon (Cinnamomum zeylanicum) and black pepper (Piper nigrum) emulsions. Food Hydrocoll 77:902–910

    Article  Google Scholar 

  • Kharat M, Du Z, Zhang G, McClements DJ (2017) Physical and chemical stability of curcumin in aqueous solutions and emulsions: impact of pH, temperature, and molecular environment. J Agric Food Chem 65:1525–1532

    Article  CAS  PubMed  Google Scholar 

  • Kharat M, Zhang G, McClements DJ (2018) Stability of curcumin in oil-in-water emulsions: impact of emulsifier type and concentration on chemical degradation. Food Res Int 111:178–186

    Article  CAS  PubMed  Google Scholar 

  • Kharat M, McClements DJ (2019) Recent advances in colloidal delivery systems for nutraceuticals: a case study-delivery by design of curcumin. J Colloid Interface Sci 557:506–518

    Article  CAS  PubMed  Google Scholar 

  • Kumar DL, Sarkar P (2018) Encapsulation of bioactive compounds using nanoemulsions. Environ Chem Lett 16:59–70

    Article  Google Scholar 

  • Li Z, Dai L, Wang D, Mao L, Gao Y (2018a) Stabilization and rheology of concentrated emulsions using the natural emulsifiers quillaja saponins and rhamnolipids. J Agric Food Chem 66:3922–3929

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wu CL, Liu J, Zhu Y, Zhang XY, Jiang LZ, Qi BK, Zhang XN, Wang ZJ, Teng F (2018b) Soy protein isolate-phosphatidylcholine nanoemulsions prepared using high-pressure homogenization. Nano 8:307

    Google Scholar 

  • Li M, McClements DJ, Liu X, Liu F (2020) Design principles of oil-in-water emulsions with functionalized interfaces: mixed, multilayer, and covalent complex structures. Compr Rev Food Sci Food Saf 19:3159–3190

    Article  CAS  PubMed  Google Scholar 

  • Li G, Zhang Z, Liu H, Hu L (2021) Nanoemulsion-based delivery approaches for nutraceuticals: fabrication, application, characterization, biological fate, potential toxicity and future trends. Food Funct 12:1933–1953

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Huang H, Chen H, Lin J, Wang Q (2019a) Food-grade nanoemulsions: preparation, stability and application in encapsulation of bioactive compounds. Molecules 24:4242

    Article  CAS  PubMed Central  Google Scholar 

  • Liu J, Guo Y, Li X, Si T, McClements DJ, Ma C (2019b) Effects of chelating agents and salts on interfacial properties and lipid oxidation in oil-in-water emulsions. J Agric Food Chem 67:13718–13727

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Pei R, Peltonen L, Heinonen M (2020) Assembling of the interfacial layer affects the physical and oxidative stability of faba bean protein-stabilized oil-in-water emulsions with chitosan. Food Hydrocoll 102:105614

    Article  CAS  Google Scholar 

  • Lourenço SC, Moldão-Martins M, Alves VD (2019) Antioxidants of natural plant origins: from sources to food industry applications. Molecules 24:4132

    Article  PubMed Central  Google Scholar 

  • Losada-Barreiro S, Bravo-Díaz C, Paiva-Martins F (2020) Why encapsulate antioxidants in emulsion-based systems, where they are located, and how location affects their efficiency. In: Emulsion-based Encapsulation of Antioxidants: Design and Performance. Springer International Publishing, Cham, pp 1–39

    Google Scholar 

  • Lozada MIO, Maldonade IR, Rodrigues DB, Santos D, Sanchez BAO, de Souza PEN, Longo JP, Amaro GB, de Oliveira LD (2021) Physicochemical characterization and nano-emulsification of three species of pumpkin seed oils with focus on their physical stability. Food Chem 343:128512

    Article  Google Scholar 

  • Ma P, Zeng Q, Tai K, He X, Yao Y, Hong X, Yuan F (2018) Development of stable curcumin nanoemulsions: effects of emulsifier type and surfactant-to-oil ratios. J Food Sci Technol 55:3485–3497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maqsoudlou A, Assadpour E, Mohebodini H, Jafari SM (2020) Improving the efficiency of natural antioxidant compounds via different nanocarriers. Adv Colloid Interf Sci 278:102122

    Article  CAS  Google Scholar 

  • McClements DJ (2015) Appearance. In: Food emulsions: principles, practices, and techniques, 3rd edn. CRC Press and Taylor & Francis Group, Boca Raton

    Chapter  Google Scholar 

  • McClements DJ, Decker E (2018) Interfacial antioxidants: a review of natural and synthetic emulsifiers and co-emulsifiers that can inhibit lipid oxidation. J Agric Food Chem 66:20–35

    Article  CAS  PubMed  Google Scholar 

  • McClements DJ, Jafari SM (2018a) General aspects of nanoemulsions and their formulation. In: Nanoemulsions. Academic Press, Cambridge, MA, pp 3–20

    Chapter  Google Scholar 

  • McClements DJ, Jafari SM (2018b) Improving emulsion formation, stability and performance using mixed emulsifiers: a review. Adv Colloid Interf Sci 251:55–79

    Article  CAS  Google Scholar 

  • McClements DJ (2021) Advances in edible nanoemulsions: digestion, bioavailability, and potential toxicity. Prog Lipid Res 81:101081

    Article  CAS  PubMed  Google Scholar 

  • McClements DJ, Öztürk B (2021) Utilization of nanotechnology to improve the handling, storage and biocompatibility of bioactive lipids in food applications. Foods 10:365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni S, Hu C, Sun R, Zhao G, Xia Q (2017) Nanoemulsions-based delivery systems for encapsulation of quercetin: preparation, characterization, and cytotoxicity studies. J Food Process Eng 40:e12374

    Article  Google Scholar 

  • Ozkan G, Franco P, De Marco I, Xiao J, Capanoglu E (2019) A review of microencapsulation methods for food antioxidants: principles, advantages, drawbacks and applications. Food Chem 272:494–506

    Article  CAS  PubMed  Google Scholar 

  • Páez-Hernández G, Mondragón-Cortez P, Espinosa-Andrews H (2019) Developing curcumin nanoemulsions by high-intensity methods: impact of ultrasonication and microfluidization parameters. LWT-Food Sci Technol 111:291–300

    Article  Google Scholar 

  • Park SJ, Hong SJ, Garcia CV, Lee SB, Shin GH, Kim JT (2019) Stability evaluation of turmeric extract nanoemulsion powder after application in milk as a food model. J Food Eng 259:12–20

    Article  CAS  Google Scholar 

  • Pavoni L, Perinelli DR, Ciacciarelli A, Quassinti L, Bramucci M, Miano A, Casettari L, Cespi M, Bonacucina G, Palmieri GF (2020b) Properties and stability of nanoemulsions: how relevant is the type of surfactant? J Drug Delivery Sci Technol 58:101772

    Article  CAS  Google Scholar 

  • Pavoni L, Perinelli DR, Bonacucina G, Cespi M, Palmieri GF (2020a) An overview of micro- and nanoemulsions as vehicles for essential oils: formulation, preparation and stability. Nano 10:135

    CAS  Google Scholar 

  • Pinto F, de Barros DP, Fonseca LP (2018) Design of multifunctional nanostructured lipid carriers enriched with α-tocopherol using vegetable oils. Ind Crop Prod 118:149–159

    Article  CAS  Google Scholar 

  • Qian C, McClements DJ (2011) Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocoll 25:1000–1008

    Article  CAS  Google Scholar 

  • Raimúndez-Rodríguez EA, Losada-Barreiro S, Bravo-Díaz C (2019) Enhancing the fraction of antioxidants at the interfaces of oil-in-water emulsions: a kinetic and thermodynamic analysis of their partitioning. J Colloid Interface Sci 555:224–233

    Article  PubMed  Google Scholar 

  • Rehman A, Jafari SM, Tong Q, Karim A, Mahdi AA, Iqbal MW, Aadil RM, Ali A, Manzoor MF (2020) Role of peppermint oil in improving the oxidative stability and antioxidant capacity of borage seed oil-loaded nanoemulsions fabricated by modified starch. Int J Biol Macromol 153:697–707

    Article  CAS  PubMed  Google Scholar 

  • Riquelme N, Zúñiga RN, Arancibia C (2019) Physical stability of nanoemulsions with emulsifier mixtures: replacement of tween 80 with quillaja saponin. LWT- Food Sci Technol 111:760–766

    Article  CAS  Google Scholar 

  • Ryu V, McClements DJ, Corradini MG, Yang JS, McLandsborough L (2018) Natural antimicrobial delivery systems: formulation, antimicrobial activity, and mechanism of action of quillaja saponin-stabilized carvacrol nanoemulsions. Food Hydrocoll 82:442–450

    Article  CAS  Google Scholar 

  • Saberi AH, Fang Y, McClements DJ (2014) Effects of salts on formation and stability of vitamin E-enriched mini-emulsions produced by spontaneous emulsification. J Agric Food Chem 62:11246–11253

    Article  CAS  PubMed  Google Scholar 

  • Safaya M, Rotliwala YC (2020) Nanoemulsions: a review on low energy formulation methods, characterization, applications and optimization technique. Mater Today Proc 27:454–459

    Article  CAS  Google Scholar 

  • Salvia-Trujillo L, Decker EA, McClements DJ (2016) Influence of an anionic polysaccharide on the physical and oxidative stability of omega-3 nanoemulsions: antioxidant effects of alginate. Food Hydrocoll 52:690–698

    Article  CAS  Google Scholar 

  • Salvia-Trujillo L, Soliva-Fortuny R, Rojas-Graü MA, McClements DJ, Martín-Belloso O (2017) Edible nanoemulsions as carriers of active ingredients: a review. Annual Rev Food Sci Technol 8:439–466

    Article  CAS  Google Scholar 

  • Schröder A, Berton-Carabin C, Venema P, Cornacchia L (2017) Interfacial properties of whey protein and whey protein hydrolysates and their influence on O/W emulsion stability. Food Hydrocoll 73:129–140

    Article  Google Scholar 

  • Sharif HR, Goff HD, Majeed H, Liu F, Nsor-Atindana J, Haider J, Liang R, Zhong F (2017) Physicochemical stability of β-carotene and α-tocopherol enriched nanoemulsions: influence of carrier oil, emulsifier and antioxidant. Colloids Surf A Physicochem Eng Asp 529:550–559

    Article  CAS  Google Scholar 

  • Sharma S, Cheng SF, Bhattacharya B, Chakkaravarthi S (2019) Efficacy of free and encapsulated natural antioxidants in oxidative stability of edible oils: special emphasis on nanoemulsion-based encapsulation. Trends Food Sci Technol 91:305–318

    Article  CAS  Google Scholar 

  • Sharma N, Kaur G, Khatkar SK (2021) Optimization of emulsification conditions for designing ultrasound assisted curcumin loaded nanoemulsion: characterization, antioxidant assay and release kinetics. LWT-Food Sci Technol 141:110962

    Article  CAS  Google Scholar 

  • Shao P, Feng J, Sun P, Xiang N, Lu B, Qiu D (2020) Recent advances in improving stability of food emulsion by plant polysaccharides. Food Res Int 137:109376

    Article  CAS  PubMed  Google Scholar 

  • Shehzad Q, Rehman A, Jafari SM, Zuo M, Khan MA, Ali A, Khan S, Karim A, Usman M, Hussain A, Xia W (2021) Improving the oxidative stability of fish oil nanoemulsions by co-encapsulation with curcumin and resveratrol. Colloids Surf B: Biointerfaces 199:111481

    Article  CAS  PubMed  Google Scholar 

  • Silva R, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C (2017) Partitioning and antioxidative effect of protocatechuates in soybean oil emulsions: relevance of emulsifier concentration. Eur J Lipid Sci Technol 119:1600274

    Article  Google Scholar 

  • Su D, Zhong Q (2016) Lemon oil nanoemulsions fabricated with sodium caseinate and tween 20 using phase inversion temperature method. J Food Eng 171:214–221

    Article  CAS  Google Scholar 

  • Tamm F, Drusch S (2017) Impact of enzymatic hydrolysis on the interfacial rheology of whey protein/pectin interfacial layers at the oil/water-interface. Food Hydrocoll 63:8–18

    Article  CAS  Google Scholar 

  • Velderrain-Rodríguez GR, Salvia-Trujillo L, González-Aguilar GA, Martín-Belloso O (2021) Interfacial activity of phenolic-rich extracts from avocado fruit waste: influence on the colloidal and oxidative stability of emulsions and nanoemulsions. Innovative Food Sci Emerg Technol 69:102665

    Article  Google Scholar 

  • Vinh TDT, Hien LTM, Dao DTA (2020) Formulation of black pepper (Piper nigrum L.) essential oil nanoemulsion via phase inversion temperature method. Food Sci Nutr 8:1741–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker RM, Gumus CE, Decker EA, McClements DJ (2017) Improvements in the formation and stability of fish oil-in-water nanoemulsions using carrier oils: MCT, thyme oil, & lemon oil. J Food Eng 211:60–68

    Article  CAS  Google Scholar 

  • Wang C, Sun C, Lu W, Gul K, Mata A, Fang Y (2020) Emulsion structure design for improving the oxidative stability of polyunsaturated fatty acids. Compr Rev Food Sci Food Saf 19:2955–2971

    Article  CAS  PubMed  Google Scholar 

  • Waraho T, McClements DJ, Decker EA (2011) Mechanisms of lipid oxidation in food dispersions. Trends Food Sci Technol 22:3–13

    Article  CAS  Google Scholar 

  • Xu X, Luo L, Liu C, McClements DJ (2017) Utilization of anionic polysaccharides to improve the stability of rice glutelin emulsions: impact of polysaccharide type, pH, salt, and temperature. Food Hydrocoll 64:112–122

    Article  CAS  Google Scholar 

  • Xu X, Sun Q, McClements DJ (2019) Enhancing the formation and stability of emulsions using mixed natural emulsifiers: hydrolyzed rice glutelin and quillaja saponins. Food Hydrocoll 89:396–405

    Article  CAS  Google Scholar 

  • Yang L, Qin X, Kan J, Liu X, Zhong J (2019) Improving the physical and oxidative stability of emulsions using mixed emulsifiers: casein-octenyl succinic anhydride modified starch combinations. Nano 9:1018

    CAS  Google Scholar 

  • Yi J, Ning J, Zhu Z, Cui L, Decker EA, McClements DJ (2019) Impact of interfacial composition on co-oxidation of lipids and proteins in oil-in-water emulsions: competitive displacement of casein by surfactants. Food Hydrocoll 87:20–28

    Article  CAS  Google Scholar 

  • Yu H, Park JY, Kwon CW, Hong SC, Park KM, Chang PS (2018) An overview of nanotechnology in food science: preparative methods, practical applications, and safety. J Chem 2018:5427978

    Article  Google Scholar 

  • Zamora R, Hidalgo FJ (2016) The triple defensive barrier of phenolic compounds against the lipid oxidation-induced damage in food products. Trends Food Sci Technol 54:165–174

    Article  CAS  Google Scholar 

  • Zhang Y, Tan C, Abbas S, Eric K, Xia S, Zhang X (2015) Modified SPI improves the emulsion properties and oxidative stability of fish oil microcapsules. Food Hydrocoll 51:108–117

    Article  CAS  Google Scholar 

  • Zhang Z, McClements DJ (2018) Overview of nanoemulsion properties: stability, rheology, and appearance. In: Nanoemulsions. Academic Press, Cambridge, pp 21–49

    Chapter  Google Scholar 

  • Zhang R, Zhang Z, McClements DJ (2020a) Nanoemulsions: an emerging platform for increasing the efficacy of nutraceuticals in foods. Colloids Surf B: Biointerfaces 194:111202

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Tian L, Yi J, Zhu Z, Decker EA, McClements DJ (2020b) Mixed plant-based emulsifiers inhibit the oxidation of proteins and lipids in walnut oil-in-water emulsions: almond protein isolate-camellia saponin. Food Hydrocoll 109:106136

    Article  CAS  Google Scholar 

  • Zhao C, Wei L, Yin B, Liu F, Li J, Liu X, Wang J, Wang Y (2020) Encapsulation of lycopene within oil-in-water nanoemulsions using lactoferrin: impact of carrier oils on physicochemical stability and bioaccessibility. Int J Biol Macromol 153:912–920

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Zhao C, Yi J, Liu N, Cao Y, Decker EA, McClements DJ (2018) Impact of interfacial composition on lipid and protein co-oxidation in oil-in-water emulsions containing mixed emulsifiers. J Agric Food Chem 66:4458–4468

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Arancibia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arancibia, C., Riquelme, N. (2022). Nanoemulsions as Encapsulation System to Prevent Lipid Oxidation. In: Bravo-Diaz, C. (eds) Lipid Oxidation in Food and Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-87222-9_11

Download citation

Publish with us

Policies and ethics