Skip to main content

OLVA: Optimal Latent Vector Alignment for Unsupervised Domain Adaptation in Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12903))

Abstract

This paper addresses the domain shift problem for segmentation. As a solution, we propose OLVA, a novel and lightweight unsupervised domain adaptation method based on a Variational Auto-Encoder (VAE) and Optimal Transport (OT) theory. Thanks to the VAE, our model learns a shared cross-domain latent space that follows a normal distribution, which reduces the domain shift. To guarantee valid segmentations, our shared latent space is designed to model the shape rather than the intensity variations. We further rely on an OT loss to match and align the remaining discrepancy between the two domains in the latent space. We demonstrate OLVA’s effectiveness for the segmentation of multiple cardiac structures on the public Multi-Modality Whole Heart Segmentation (MM-WHS) dataset, where the source domain consists of annotated 3D MR images and the unlabelled target domain of 3D CTs. Our results show remarkable improvements with an additional margin of \(12.5\%\) dice score over concurrent generative training approaches.

This work has been supported in part by the European Regional Development. Fund, the Pays de la Loire region on the Connect Talent scheme (MILCOM Project) and Nantes Métropole (Convention 2017-10470).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackaouy, A., Courty, N., Vallée, E., Commowick, O., Barillot, C., Galassi, F.: Unsupervised domain adaptation with optimal transport in multi-site segmentation of multiple sclerosis lesions from MRI data. Front. Comput. Neurosci. 14, 19 (2020)

    Article  Google Scholar 

  2. Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. In: ICLR (2017)

    Google Scholar 

  3. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 865–872 (2019)

    Google Scholar 

  4. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE TMI 39, 2494–2505 (2020)

    Google Scholar 

  5. Courty, N., Flamary, R., Tuia, D., Rakotomamonjy, A.: Optimal transport for domain adaptation. IEEE TPAMI 39, 1853–1865 (2017)

    Article  Google Scholar 

  6. Damodaran, B.B., Kellenberger, B., Flamary, R., Tuia, D., Courty, N.: DeepJDOT: deep joint distribution optimal transport for unsupervised domain adaptation. In: ECCV, pp. 447–463 (2018)

    Google Scholar 

  7. David, S.B., Lu, T., Luu, T., Pál, D.: Impossibility theorems for domain adaptation. In: The Thirteenth AISTATS, pp. 129–136 (2010)

    Google Scholar 

  8. Dou, Q., et al.: PnP-AdaNet: plug-and-play adversarial domain adaptation network at unpaired cross-modality cardiac segmentation. IEEE Access 7, 99065–99076 (2019)

    Article  Google Scholar 

  9. Gonzalez Duque, V., Al Chanti, D., Crouzier, M., Nordez, A., Lacourpaille, L., Mateus, D.: Spatio-temporal consistency and negative label transfer for 3D freehand US segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 710–720. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_69

    Chapter  Google Scholar 

  10. Heimann, T., Mountney, P., John, M., Ionasec, R.: Learning without labeling: domain adaptation for ultrasound transducer localization. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 49–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_7

    Chapter  Google Scholar 

  11. Huo, Y., et al.: SynSeg-Net: synthetic segmentation without target modality ground truth. IEEE TMI 38(4), 1016–1025 (2018)

    Google Scholar 

  12. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125–1134 (2017)

    Google Scholar 

  13. Kantorovich, L.V.: On the translocation of masses. Dokl. Akad. Nauk. USSR (NS) 37, 199–201 (1942)

    MathSciNet  MATH  Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2014)

    Google Scholar 

  15. Kumagai, A., Iwata, T.: Unsupervised domain adaptation by matching distributions based on the maximum mean discrepancy via unilateral transformations. In: AAAI Conference on Artificial Intelligence, vol. 33, pp. 4106–4113 (2019)

    Google Scholar 

  16. Li, F., Li, W., Qin, S., Wang, L.: MDFA-Net: multiscale dual-path feature aggregation network for cardiac segmentation on multi-sequence cardiac MR. KBS 106776 (2021)

    Google Scholar 

  17. Liu, K., Tang, W., Zhou, F., Qiu, G.: Spectral regularization for combating mode collapse in GANs. In: ICCV, pp. 6382–6390 (2019)

    Google Scholar 

  18. Ouyang, C., Kamnitsas, K., Biffi, C., Duan, J., Rueckert, D.: Data efficient unsupervised domain adaptation for cross-modality image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 669–677. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_74

    Chapter  Google Scholar 

  19. Painchaud, N., Skandarani, Y., Judge, T., Bernard, O., Lalande, A., Jodoin, P.M.: Cardiac segmentation with strong anatomical guarantees. IEEE TMI 39(11), 3703–3713 (2020)

    Google Scholar 

  20. Puybareau, É., et al.: Left atrial segmentation in a few seconds using fully convolutional network and transfer learning. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 339–347. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_37

    Chapter  Google Scholar 

  21. Redko, I., Courty, N., Flamary, R., Tuia, D.: Optimal transport for multi-source domain adaptation under target shift. In: The 22nd AISTATS, pp. 849–858 (2019)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: CVPR, pp. 7472–7481 (2018)

    Google Scholar 

  24. Wu, F., Zhuang, X.: CF distance: a new domain discrepancy metric and application to explicit domain adaptation for cross-modality cardiac image segmentation. IEEE TMI 39, 4274–4285 (2020)

    Google Scholar 

  25. Yang, J., et al.: Domain-agnostic learning with anatomy-consistent embedding for cross-modality liver segmentation. In: ICCV Workshops (2019)

    Google Scholar 

  26. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawood Al Chanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al Chanti, D., Mateus, D. (2021). OLVA: Optimal Latent Vector Alignment for Unsupervised Domain Adaptation in Medical Image Segmentation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87199-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87198-7

  • Online ISBN: 978-3-030-87199-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics