Skip to main content

Spatio-Temporal Consistency and Negative Label Transfer for 3D Freehand US Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

The manual segmentation of multiple organs in 3D ultrasound (US) sequences and volumes towards their quantitative analysis is very expensive and time-consuming. Fully supervised segmentation methods still require the collection of large volumes of annotated data while unlabeled images are abundant. In this work, we propose a novel semi-automatic deep learning approach modeled as a weak-label learning problem: given a few 2-D annotations for selected slices, the goal is to propagate the masks to the entire sequence. To this end, we make use of both positive and negative constraints induced by incomplete labels to penalize the segmentation loss function. Our model is composed of one encoder and two decoders to model the segmentation and an auxiliary reconstruction task. Moreover, we consider the spatio-temporal information by deploying a Convolutional Long Short Term Memory module. Our findings suggest that the reconstruction decoder and the Spatio-temporal information lead to a better geometrical estimation of the mask shape. We apply the model to the task of low-limb muscle segmentation in a dataset of 44 patients and 6160 images.

This work has been supported in part by the European Regional Development. Fund, the Pays de la Loire region on the Connect Talent scheme (MILCOM Project) and Nantes Métropole (Convention 2017–10470).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbelle, A., Raviv, T.R.: Microscopy cell segmentation via convolutional LSTM networks. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1008–1012. IEEE (2019)

    Google Scholar 

  2. Azad, R., Asadi-Aghbolaghi, M., Fathy, M., Escalera, S.: Bi-directional ConvLSTM U-net with Densley connected convolutions. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  3. Cerrolaza, J.J., et al.: Deep learning with ultrasound physics for fetal skull segmentation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 564–567. IEEE (2018)

    Google Scholar 

  4. Chen, J., Yang, L., Zhang, Y., Alber, M., Chen, D.Z.: Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation. In: Advances in Neural Information Processing Systems, pp. 3036–3044 (2016)

    Google Scholar 

  5. Crouzier, M., Lacourpaille, L., Nordez, A., Tucker, K., Hug, F.: Neuromechanical coupling within the human triceps surae and its consequence on individual force-sharing strategies. J. Exp. Biol. 221, 21 (2018)

    Article  Google Scholar 

  6. Dai, J., He, K., Sun, J.: Boxsup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1635–1643 (2015)

    Google Scholar 

  7. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2650–2658 (2015)

    Google Scholar 

  8. Fenster, A., Downey, D.B., Cardinal, H.N.: Three-dimensional ultrasound imaging. Phys. Med. Biol. 46(5), R67 (2001)

    Article  Google Scholar 

  9. Gee, A., Prager, R., Treece, G., Cash, C., Berman, L.: Processing and visualizing three-dimensional ultrasound data. Br. J. Radiol. suppl–77(2), S186–S193 (2004)

    Article  Google Scholar 

  10. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2014)

    Google Scholar 

  12. Kolesnikov, A., Lampert, C.H.: Seed, expand and constrain: three principles for weakly-supervised image segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 695–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_42

    Chapter  Google Scholar 

  13. Kuga, R., Kanezaki, A., Samejima, M., Sugano, Y., Matsushita, Y.: Multi-task learning using multi-modal encoder-decoder networks with shared skip connections. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 403–411 (2017)

    Google Scholar 

  14. Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with Siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018)

    Google Scholar 

  15. Liu, S., et al.: Deep learning in medical ultrasound analysis: a review. Engineering 5(2), 261–275 (2019)

    Article  MathSciNet  Google Scholar 

  16. Loram, I.D., Maganaris, C.N., Lakie, M.: Use of ultrasound to make noninvasive in vivo measurement of continuous changes in human muscle contractile length. J. Appl. Physiol. 100(4), 1311–1323 (2006)

    Article  Google Scholar 

  17. Lu, Z., Fu, Z., Xiang, T., Han, P., Wang, L., Gao, X.: Learning from weak and noisy labels for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(3), 486–500 (2016)

    Article  Google Scholar 

  18. Petit, O., Thome, N., Charnoz, A., Hostettler, A., Soler, L.: Handling missing annotations for semantic segmentation with deep ConvNets. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 20–28. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_3

    Chapter  Google Scholar 

  19. Pichiecchio, A., et al.: Muscle ultrasound elastography and MRI in preschool children with duchenne muscular dystrophy. Neuromuscul. Disord. 28(6), 476–483 (2018)

    Article  Google Scholar 

  20. Pillen, S., Arts, I.M., Zwarts, M.J.: Muscle ultrasound in neuromuscular disorders. Muscle Nerve: Official J. Am. Assoc. Electrodiagnostic Med. 37(6), 679–693 (2008)

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization. In: Advances in Neural Information Processing Systems, pp. 527–538 (2018)

    Google Scholar 

  23. Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation. In: Advances in Neural Information Processing Systems, pp. 2998–3006 (2015)

    Google Scholar 

  24. Treece, G.M., Prager, R.W., Gee, A.H., Berman, L.: Surface interpolation from sparse cross sections using region correspondence. IEEE Trans. Med. Imaging 19(11), 1106–1114 (2000)

    Article  Google Scholar 

  25. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  26. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Gonzalez Duque .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 708 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gonzalez Duque, V., Al Chanti, D., Crouzier, M., Nordez, A., Lacourpaille, L., Mateus, D. (2020). Spatio-Temporal Consistency and Negative Label Transfer for 3D Freehand US Segmentation. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12261. Springer, Cham. https://doi.org/10.1007/978-3-030-59710-8_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59710-8_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59709-2

  • Online ISBN: 978-3-030-59710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics