Skip to main content

Label-Set Loss Functions for Partial Supervision: Application to Fetal Brain 3D MRI Parcellation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Deep neural networks have increased the accuracy of automatic segmentation, however their accuracy depends on the availability of a large number of fully segmented images. Methods to train deep neural networks using images for which some, but not all, regions of interest are segmented are necessary to make better use of partially annotated datasets. In this paper, we propose the first axiomatic definition of label-set loss functions that are the loss functions that can handle partially segmented images. We prove that there is one and only one method to convert a classical loss function for fully segmented images into a proper label-set loss function. Our theory also allows us to define the leaf-Dice loss, a label-set generalisation of the Dice loss particularly suited for partial supervision with only missing labels. Using the leaf-Dice loss, we set a new state of the art in partially supervised learning for fetal brain 3D MRI segmentation. We achieve a deep neural network able to segment white matter, ventricles, cerebellum, extra-ventricular CSF, cortical gray matter, deep gray matter, brainstem, and corpus callosum based on fetal brain 3D MRI of anatomically normal fetuses or with open spina bifida. Our implementation of the proposed label-set loss functions is available at https://github.com/LucasFidon/label-set-loss-functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/LucasFidon/label-set-loss-functions.

  2. 2.

    https://github.com/LucasFidon/fetal-brain-segmentation-partial-supervision-miccai21.

References

  1. Aertsen, M., et al.: Reliability of MR imaging-based posterior fossa and brain stem measurements in open spinal Dysraphism in the era of fetal surgery. Am. J. Neuroradiol. 40(1), 191–198 (2019)

    Article  Google Scholar 

  2. Benkarim, O.M., et al.: Toward the automatic quantification of in utero brain development in 3D structural MRI: a review. Hum. Brain Mapp. 38(5), 2772–2787 (2017)

    Article  Google Scholar 

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. Danzer, E., Joyeux, L., Flake, A.W., Deprest, J.: Fetal surgical intervention for myelomeningocele: lessons learned, outcomes, and future implications. Dev. Med. Child Neurol. 62(4), 417–425 (2020)

    Article  Google Scholar 

  5. Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019)

    Google Scholar 

  6. Dorent, R., et al.: Learning joint segmentation of tissues and brain lesions from task-specific hetero-modal domain-shifted datasets. Med. Image Anal. 67, 101862 (2021)

    Google Scholar 

  7. Ebner, M., et al.: An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. NeuroImage 206, 116324 (2020)

    Google Scholar 

  8. Fang, X., Yan, P.: Multi-organ segmentation over partially labeled datasets with multi-scale feature abstraction. IEEE Trans. Med. Imaging 39(11), 3619–3629 (2020)

    Article  Google Scholar 

  9. Fetit, A.E., et al.: A deep learning approach to segmentation of the developing cortex in fetal brain mri with minimal manual labeling. In: Medical Imaging with Deep Learning, pp. 241–261. PMLR (2020)

    Google Scholar 

  10. Fidon, L., et al.: Generalised Wasserstein Dice score for imbalanced multi-class segmentation using holistic convolutional networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 64–76. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_6

    Chapter  Google Scholar 

  11. Fidon, L., et al.: A spatio-temporal atlas of the developing fetal brain with spina bifida aperta. Open Research Europe (2021)

    Google Scholar 

  12. Gholipour, A., et al.: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 7(1), 1–13 (2017)

    Article  MathSciNet  Google Scholar 

  13. Khalili, N., et al.: Automatic brain tissue segmentation in fetal MRI using convolutional neural networks. Magnet. Resonan. Imaging 64, 77–89 (2019)

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  16. Moise Jr., K.J., et al.: Current selection criteria and perioperative therapy used for fetal myelomeningocele surgery. Obstetrics Gynecol. 127(3), 593–597 (2016)

    Google Scholar 

  17. Payette, K., et al.: A comparison of automatic multi-tissue segmentation methods of the human fetal brain using the FeTA dataset. arXiv preprint arXiv:2010.15526 (2020)

  18. Payette, K., Kottke, R., Jakab, A.: Efficient multi-class fetal brain segmentation in high resolution MRI reconstructions with noisy labels. In: Hu, Y., et al. (eds.) ASMUS/PIPPI -2020. LNCS, vol. 12437, pp. 295–304. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60334-2_29

    Chapter  Google Scholar 

  19. Payette, K., et al.: Longitudinal analysis of fetal MRI in patients with prenatal spina bifida repair. In: Wang, Q., et al. (eds.) PIPPI/SUSI -2019. LNCS, vol. 11798, pp. 161–170. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32875-7_18

    Chapter  Google Scholar 

  20. Ranzini, M., Fidon, L., Ourselin, S., Modat, M., Vercauteren, T.: MONAIfbs: MONAI-based fetal brain MRI deep learning segmentation. arXiv preprint arXiv:2103.13314 (2021)

  21. Roulet, N., Slezak, D.F., Ferrante, E.: Joint learning of brain lesion and anatomy segmentation from heterogeneous datasets. In: International Conference on Medical Imaging with Deep Learning, pp. 401–413. PMLR (2019)

    Google Scholar 

  22. Sacco, A., et al.: Fetal surgery for open spina bifida. Obstetrician Gynaecologist 21(4), 271 (2019)

    Article  Google Scholar 

  23. Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Med. Image Anal. 101979 (2021)

    Google Scholar 

  24. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  25. Zarutskie, A., et al.: Prenatal brain imaging for predicting need for postnatal hydrocephalus treatment in fetuses that had neural tube defect repair in utero. Ultrasound Obstetrics Gynecol. 53(3), 324–334 (2019)

    Article  Google Scholar 

  26. Zhou, Y., et al.: Prior-aware neural network for partially-supervised multi-organ segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10672–10681 (2019)

    Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement TRABIT No 765148. This work was supported by core and project funding from the Wellcome [203148/Z/16/Z; 203145Z/16/Z; WT101957], and EPSRC [NS/A000049/1; NS/A000050/1; NS/A000027/1]. TV is supported by a Medtronic / RAEng Research Chair [RCSRF1819\(\backslash \)7\(\backslash \)34].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Fidon .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 197 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fidon, L. et al. (2021). Label-Set Loss Functions for Partial Supervision: Application to Fetal Brain 3D MRI Parcellation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12902. Springer, Cham. https://doi.org/10.1007/978-3-030-87196-3_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87196-3_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87195-6

  • Online ISBN: 978-3-030-87196-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics