Skip to main content

Efficient Multi-class Fetal Brain Segmentation in High Resolution MRI Reconstructions with Noisy Labels

  • Conference paper
  • First Online:
Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis (ASMUS 2020, PIPPI 2020)

Abstract

Segmentation of the developing fetal brain is an important step in quantitative analyses. However, manual segmentation is a very time-consuming task which is prone to error and must be completed by highly specialized individuals. Super-resolution reconstruction of fetal MRI has become standard for processing such data as it improves image quality and resolution. However, different pipelines result in slightly different outputs, further complicating the generalization of segmentation methods aiming to segment super-resolution data. Therefore, we propose using transfer learning with noisy multi-class labels to automatically segment high resolution fetal brain MRIs using a single set of segmentations created with one reconstruction method and tested for generalizability across other reconstruction methods. Our results show that the network can automatically segment fetal brain reconstructions into 7 different tissue types, regardless of reconstruction method used. Transfer learning offers some advantages when compared to training without pre-initialized weights, but the network trained on clean labels had more accurate segmentations overall. No additional manual segmentations were required. Therefore, the proposed network has the potential to eliminate the need for manual segmentations needed in quantitative analyses of the fetal brain independent of reconstruction method used, offering an unbiased way to quantify normal and pathological neurodevelopment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schnabel, J.A.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16, 1550–1564 (2012). https://doi.org/10.1016/j.media.2012.07.004

    Article  Google Scholar 

  2. Kainz, B., et al.: Fast volume reconstruction from motion corrupted stacks of 2D slices. IEEE Trans. Med. Imaging 34, 1901–1913 (2015). https://doi.org/10.1109/TMI.2015.2415453

    Article  Google Scholar 

  3. Ebner, M., et al.: An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. NeuroImage 206, 116324 (2020). https://doi.org/10.1016/j.neuroimage.2019.116324

    Article  Google Scholar 

  4. Tourbier, S., Bresson, X., Hagmann, P., Thiran, J.-P., Meuli, R., Cuadra, M.B.: An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization. NeuroImage 118, 584–597 (2015). https://doi.org/10.1016/j.neuroimage.2015.06.018

    Article  Google Scholar 

  5. Jiang, S., Xue, H., Glover, A., Rutherford, M., Rueckert, D., Hajnal, J.V.: MRI of moving subjects using multislice snapshot images with volume reconstruction (SVR): application to fetal, neonatal, and adult brain studies. IEEE Trans. Med. Imaging 26, 967–980 (2007). https://doi.org/10.1109/TMI.2007.895456

    Article  Google Scholar 

  6. Rousseau, F., et al.: Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images. Acad. Radiol. 13, 1072–1081 (2006). https://doi.org/10.1016/j.acra.2006.05.003

    Article  Google Scholar 

  7. Kim, K., Habas, P.A., Rousseau, F., Glenn, O.A., Barkovich, A.J., Studholme, C.: Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation. IEEE Trans. Med. Imaging 29, 146–158 (2010). https://doi.org/10.1109/TMI.2009.2030679

    Article  Google Scholar 

  8. Tourbier, S., et al.: Automated template-based brain localization and extraction for fetal brain MRI reconstruction. NeuroImage 155, 460–472 (2017). https://doi.org/10.1016/j.neuroimage.2017.04.004

    Article  Google Scholar 

  9. Wright, R., et al.: Automatic quantification of normal cortical folding patterns from fetal brain MRI. NeuroImage 91, 21–32 (2014). https://doi.org/10.1016/j.neuroimage.2014.01.034

    Article  Google Scholar 

  10. Keraudren, K., et al.: Automated fetal brain segmentation from 2D MRI slices for motion correction. NeuroImage. 101, 633–643 (2014). https://doi.org/10.1016/j.neuroimage.2014.07.023

    Article  Google Scholar 

  11. Salehi, S.S.M., et al.: Real-time automatic fetal brain extraction in fetal MRI by deep learning. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 720–724 (2018). https://doi.org/10.1109/ISBI.2018.8363675

  12. Khalili, N., et al.: Automatic brain tissue segmentation in fetal MRI using convolutional neural networks. Magn. Reson. Imaging (2019). https://doi.org/10.1016/j.mri.2019.05.020

    Article  Google Scholar 

  13. Gholipour, A., Akhondi-Asl, A., Estroff, J.A., Warfield, S.K.: Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly. NeuroImage 60, 1819–1831 (2012). https://doi.org/10.1016/j.neuroimage.2012.01.128

    Article  Google Scholar 

  14. Payette, K., et al.: Longitudinal analysis of fetal MRI in patients with prenatal spina bifida repair. In: Wang, Q., et al. (eds.) PIPPI/SUSI - 2019. LNCS, vol. 11798, pp. 161–170. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32875-7_18

    Chapter  Google Scholar 

  15. Gholipour, A., et al.: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 7 (2017). https://doi.org/10.1038/s41598-017-00525-w

  16. Habas, P.A., Kim, K., Rousseau, F., Glenn, O.A., Barkovich, A.J., Studholme, C.: Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses. Hum. Brain Mapp. 31, 1348–1358 (2010). https://doi.org/10.1002/hbm.20935

    Article  Google Scholar 

  17. Yu, X., Liu, T., Gong, M., Zhang, K., Batmanghelich, K., Tao, D.: Transfer Learning with Label Noise (2017)

    Google Scholar 

  18. Moosavi-Dezfooli, S., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 86–94 (2017). https://doi.org/10.1109/CVPR.2017.17

  19. Karimi, D., Dou, H., Warfield, S.K., Gholipour, A.: Deep learning with noisy labels: exploring techniques and remedies in medical image analysis (2019)

    Google Scholar 

  20. Ghosh, A., Kumar, H., Sastry, P.S.: Robust loss functions under label noise for deep neural networks. In: AAAI. AAAI Publications (2017)

    Google Scholar 

  21. Cheplygina, V., de Bruijne, M., Pluim, J.P.W.: Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med. Image Anal. 54, 280–296 (2019). https://doi.org/10.1016/j.media.2019.03.009

    Article  Google Scholar 

  22. Deman, P., Tourbier, S., Meuli, R., Cuadra, M.B.: meribach/mevislabFetalMRI: MEVISLAB MIAL Super-Resolution Reconstruction of Fetal Brain MRI v1.0. Zenodo (2020). https://doi.org/10.5281/zenodo.3878564

  23. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841 (2002). https://doi.org/10.1016/s1053-8119(02)91132-8

    Article  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS - 2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  26. Avants, B.B., Tustison, N., Song, G.: Advanced normalization tools (ANTS). Insight J. 2, 1–35 (2009)

    Google Scholar 

  27. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15 (2015). https://doi.org/10.1186/s12880-015-0068-x

Download references

Acknowledgements

Financial support was provided by the OPO Foundation, Anna Müller Grocholski Foundation, the Foundation for Research in Science and the Humanities at the University of Zurich, EMDO Foundation, Hasler Foundation, the Forschungszentrum für das Kind Grant (FZK) and the PhD Grant from the Neuroscience Center Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly Payette .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 275 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Payette, K., Kottke, R., Jakab, A. (2020). Efficient Multi-class Fetal Brain Segmentation in High Resolution MRI Reconstructions with Noisy Labels. In: Hu, Y., et al. Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. ASMUS PIPPI 2020 2020. Lecture Notes in Computer Science(), vol 12437. Springer, Cham. https://doi.org/10.1007/978-3-030-60334-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60334-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60333-5

  • Online ISBN: 978-3-030-60334-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics