Skip to main content

Role of Iron Fertilization on the Changes of Chlorophyll Concentration and Fish Production in the Brackish Water Ponds of Indian Sundarbans

  • Chapter
  • First Online:
Pond Ecosystems of the Indian Sundarbans

Part of the book series: Water Science and Technology Library ((WSTL,volume 112))

  • 193 Accesses

Abstract

In the present study, chlorophyll-a and nutrients were studied in the pond water collected from three brackish water ponds of Namkhana, Indian Sundarbans. Within these three ponds, one pond is treated with iron fertilizer and another one is with mangrove litter. The third pond acted as a control pond. The maximum value of chlorophyll concentration in the iron fertilized pond indicates the higher concentration of phytoplankton due to iron enhancement. Moreover, low nutrient concentrations accorded with the maximum chl-a concentration in the iron-fertilized pond. This observation indicated that the nutrients were used by phytoplankton during the higher rate of photosynthesis in the presence of higher iron value. The present study can be used to enhance the fish production of aquaculture ponds of Indian Sundarbans as well as link up with the future adaptation policies related to increasing the income of the vulnerable communities of Indian Sundarban.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhter M, Reza MdS, Jamil NAHM, Uddin Nazim Md (2018) Assessment water quality and seasonal variations based on aquatic biodiversity of Sundarbans Mangrove Forest, Bangladesh. IOSR J Biotechnol Biochem 4(1):06–15

    Google Scholar 

  • Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Glob Biogeochem Cycles 20(2)

    Google Scholar 

  • Banerjee K, Senthilkumar B, Purvaja R, Ramesh R (2012) Sedimentation and trace metal distribution in selected locations of Sundarbans mangroves and Hooghly estuary, Northeast coast of India. Environ Geochem Health 34:27–42

    Article  CAS  Google Scholar 

  • Biswas G, Kumar P, Kailasam M, Ghoshal TK, Bera A, Vijayan KK (2019) Application of integrated multi trophic aquaculture (IMTA) concept in Brackishwater ecosystem: the first exploratory trial in the Sundarban, India. J Coast Res 86(SI):49–55

    Google Scholar 

  • Boyd CE (1995) Bottom soils, sediment, and pond aquaculture. Chapman and Hall, New York

    Book  Google Scholar 

  • Boyd CE (1997) Practical aspects of chemistry in pond aquaculture. Prog Fish-Cult 59(2):85–93

    Article  Google Scholar 

  • Çelekli A, Öztürk B, Kapı M (2014) Relationship between phytoplankton composition and environmental variables in an artificial pond. Algal Res 5:37–41

    Article  Google Scholar 

  • Census (2011) Census report for the state of West Bengal. Government of India

    Google Scholar 

  • Chand BK, Trivedi RK, Biswas A, Dubey SK, Beg MM (2012) Study on impact of saline water inundation on freshwater aquaculture in Sundarban using risk analysis tools. Explor Anim Med Res 2:170–178

    Google Scholar 

  • Chisholm SW (1992) Phytoplankton size. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York, pp 213–237

    Chapter  Google Scholar 

  • Chisholm SW, Morel FMM (1991) What controls phytoplankton production in nutrient-rich areas of the open sea? Limnol Oceanogr 38:1507–1964

    Google Scholar 

  • Coale KH (1991) Effects of iron, manganese, copper and zinc enrichments on productivity and biomass in the subarctic Pacific. Limnol Oceanogr 36:1865–1878

    Article  Google Scholar 

  • Crossetti LO, Bicudo CEDM (2008) Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garças Pond): the assemblage index application. Hydrobiologia 610(1):161–173

    Article  CAS  Google Scholar 

  • Danielsson LG, Magnusson B, Westerlund S (1978) An improved metal extraction procedure for the determination of trace metals in seawater by atomic absorption spectrometry with electrothermal atomization. Anal Chem Acta 98:45–57

    Article  Google Scholar 

  • DasGupta R, Hashimoto S, Okuro T, Basu M (2019) Scenario-based land change modelling in the Indian Sundarban delta: an exploratory analysis of plausible alternative regional futures. Sustain Sci 14(1):221–240

    Article  Google Scholar 

  • De Baar HJW, Buma AGJ, Nolting RF, Cadée GC, Jacques G, Tréguer P (1990) On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotias seas. Mar Ecol Progr Ser 65:105–122

    Article  Google Scholar 

  • Dubey SK, Chand BK, Trivedi RK, Mandal B, Rout SK (2016) Evaluation on the prevailing aquaculture practices in the Indian Sundarban delta: an insight analysis. J Food Agric Environ 14(2):133–141

    CAS  Google Scholar 

  • Dubey SK, Trivedi RK, Chand BK, Mandal B, Rout SK (2017) Farmers’ perceptions of climate change, impacts on freshwater aquaculture and adaptation strategies in climatic change hotspots: a case of the Indian Sundarban delta. Environ Dev 21:38–51

    Article  Google Scholar 

  • Gervais F, Riebesell U, Gorbunov MY (2002) Changes in primary productivity and chlorophyll-a in response to iron fertilization in the Southern Polar Frontal Zone. Limnol Oceanogr 47(5):1324–1335

    Article  CAS  Google Scholar 

  • Grasshoff K, Kremling K, Manfred E (1999) Methods of seawater analysis. Wiley-VCH, New York, p 600

    Book  Google Scholar 

  • Huot Y, Babin M, Bruyant F, Grob C, Twardowski MS, Claustre H (2007) Does chlorophyll-a provide the best index of phytoplankton biomass for primary productivity studies? Biogeosci Discuss 4(2):707–745

    Google Scholar 

  • Jewel MAS, Affan MA, Khan S (2003) Fish mortality due to cyanobacterial blooms in an aquaculture pond in Bangladesh. Pak J Biol Sci 6:1046–1050

    Article  Google Scholar 

  • Kattner G (1999) Storage of dissolved inorganic nutrients in seawater: poisoning with mercuric chloride. Mar Chem 67:61–66

    Article  CAS  Google Scholar 

  • Kumar N, Anderson RF, Mortlock RA, Froelich PN, Kubik P, Dittrich HB, Suter M (1995) Increased biological productivity and export production in the glacial Southern Ocean. Nature 378:675–680

    Article  CAS  Google Scholar 

  • Landry MR, Barber RT, Bidigare RR, Chai F, Coale KH, Dam HG, Lewis MR, Lindley ST, McCarthy JJ, Roman MR, Stoecker DK, Verity PG, White JR (1997) Iron and grazing constraints on primary production in the central equatorial Pacific: an EqPac synthesis. Limnol Oceanogr 42(3):405–418

    Article  CAS  Google Scholar 

  • Martin P, Vander Loeff MR, Cassar N, Vandromme P, d’Ovidio F, Stemmann L, Naqvi SWA (2013) Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX. Global Biogeochem Cycles 27(3):871–881

    Article  CAS  Google Scholar 

  • Mitra A, Banerjee K, Bhattacharyya DP (2004) The other face of Mangroves. Department of Environment, Govt. of West Bengal, India

    Google Scholar 

  • Mitra A, Zaman S, Kanti Ray S, Sinha S, Banerjee K (2012) Interrelationship between phytoplankton cell volume and aquatic salinity in Indian Sundarbans. Natl Acad Sci Lett. https://doi.org/10.1007/s40009-012-0083-1

    Article  Google Scholar 

  • Mukherjee N, Siddique G (2018) Climate change and vulnerability assessment in Mousuni Island: South 24 Parganas District. Spat Inf Res. https://doi.org/10.1007/s41324-018-0168-0

    Article  Google Scholar 

  • Pollard RT, Salter I, Sanders RJ, Lucas MI, Moore CM, Mills RA, Zubkov MV (2009) Southern Ocean deep-water carbon export enhanced by natural iron fertilization. Nature 457(7229):577–580

    Article  CAS  Google Scholar 

  • Price NM, Andersen LF, Morel FM (1991) Iron and nitrogen nutrition of equatorial Pacific plankton. Deep-Sea Res 38:1361–1378

    Article  Google Scholar 

  • Price NM, Ahner BA, Morel FMM (1994) The equatorial Pacific Ocean: grazer-controlled phytoplankton in an iron-limited ecosystem. Limnol Oceanogr 69:520–534

    Article  Google Scholar 

  • Sánchez-Triana E, Ortolano L, Paul T (2016) Managing water-related risks in 481 the West Bengal Sundarbans: policy alternatives and institutions. Int J Water Resour Dev. https://doi.org/10.1080/07900627.2016.1202099

    Article  Google Scholar 

  • Sara G (2007a) Ecological effects of aquaculture in living and non-living suspended fractions of the water column: a meta-analysis. Water Res 41:3187–3200

    Article  CAS  Google Scholar 

  • Sara G (2007b) Aquaculture effects on some physical and chemical properties of the water column: a meta-analysis. Chem Ecol 23:251–262

    Google Scholar 

  • Siegenthaler U (1986) Carbon dioxide its natural cycle and anthropogenic perturbations. In: Buat-Menard P (ed) The role of an sea exchange in geochenucal C\clim>. Reidel, pp 209–247

    Google Scholar 

  • Thakur S, Maity D, Mondal I, Basumatary G, Ghosh PB, Das P, De TK (2021) Assessment of changes in land use, land cover, and land surface temperature in the mangrove forest of Sundarbans, northeast coast of India. Environ Dev Sustain 23(2):1917–1943

    Article  Google Scholar 

  • Zaman S, Bhattacharyya SB, Pramanick P, Raha AK, Chakraborty S, Mitra A (2014) Rising water salinity: a threat to mangroves of Indian Sundarbans. In: Water insecurity: a social dilemma. Emerald Group Publishing Limited

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S. (2022). Role of Iron Fertilization on the Changes of Chlorophyll Concentration and Fish Production in the Brackish Water Ponds of Indian Sundarbans. In: Das, S., Chanda, A., Ghosh, T. (eds) Pond Ecosystems of the Indian Sundarbans. Water Science and Technology Library, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-030-86786-7_5

Download citation

Publish with us

Policies and ethics