Skip to main content

Part of the book series: Environmental Science Research ((ESRH,volume 43))

Abstract

In reviewing this subject, it became clear to me that plankton ecologists fall out into two groups: Those who delight in finding the patterns in nature that can be explained by size, and those who delight in finding exceptions to the established size-dependent rules. I came to appreciate the degree to which the satisfaction of both groups is equally justified. The mechanisms underlying the size-dependent patterns have undoubtedly steered the general course of phytoplankton evolution, but the organisms that do not abide by the rules reveal the wonderful diversity of ways in which cells have managed to disobey the “laws” scripted for them. The simplicity of the general relationships serves as a stable backdrop against which the exceptions can shine. By understanding the forces that have driven the design of these exceptions, we can begin to understand the ecology that has shaped past and present planktonic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agusti, S., and Kalff, J., 1989, The influence of growth conditions on the size dependence of maximal algal density and biomass, Limnol. Oceanogr., 34:1104.

    Article  Google Scholar 

  • Agusti, S., Duarte, C. M., and Kalff, J., 1987, Algal cell size and the maximum density and biomass of phytoplankton, Limnol. Oceanogr., 32:983.

    Article  Google Scholar 

  • Agusti, S., Duarte, D. M., and Canfield, D. E., 1990, Phytoplankton abundance in Florida lakes: Evidence for frequent lack of nutrient limitation, Limnol. Oceanogr., 35:181.

    Article  CAS  Google Scholar 

  • Agusti, S., Duarte, D. M., and Canfield, D. E., 1991, Biomass partitioning in Florida phytoplankton communities, J. Plank. Res., 13:239.

    Article  Google Scholar 

  • Banse, K., 1982, Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial, Limnol. Oceanogr., 1059-1071.

    Google Scholar 

  • Banse, K., 1976, Rates of growth, respiration, and photosynthesis of unicellular algae as related to cell size—A review, J. Phycol., 12:135.

    Google Scholar 

  • Beers, J. R., Reid, F. M. H., and Stewart, G. L., 1982, Seasonal abundance of the microplankton population in the N. Pacific central gyre, Deep-Sea Res., 29:217.

    Article  Google Scholar 

  • Bienfang, P. K., and Takahashi, M., 1983, Ultraplankton growth rates in a subtropical ecosystem, Mar. Biol., 76:213.

    Article  CAS  Google Scholar 

  • Blasco, D., Packard, T. T., and Garfield, P. C., 1982, Size dependence of growth rate, respiratory electron transport system activity and chemical composition of marine diatoms in the laboratory, J. PhycoL, 18:58.

    Article  Google Scholar 

  • Borgmann, U., 1982, Particle-size-conversion efficiency and total animal production in pelagic ecosystems, Can. J. Fish. Aquat. Sci., 39:668.

    Article  Google Scholar 

  • Bricaud, A., Bedhomme, A.-L., and Morel, A., 1988, Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation, J. Plank. Res., 10:851.

    Article  CAS  Google Scholar 

  • Bruland, K. W., 1983, Trace elements in sea-water, in: “Chemical Oceanography, Vol. 8, J.P. Riley and R. Chester, eds., Academic Press, London.

    Google Scholar 

  • Button, D., and Robertson, B., 1989, Kinetics of bacterial processes in natural aquatic systems based on biomass as determined by high-resolution flow cytometry, Cytometry, 10:558.

    Article  PubMed  CAS  Google Scholar 

  • Calder, W. A. III, 1984, “Function and Life History,” Harvard University Press, Cambridge.

    Google Scholar 

  • Cavalier-Smith, T., 1980, R-and K-tactics in the evolution of protist developmental systems: Cell and genome size, phenotype diversifying selection, and cell cycle patterns, Biosystems, 12:43.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T., 1978, Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate and the solution of the DNA C-value paradox, J. Cell. Sci., 34:247.

    PubMed  CAS  Google Scholar 

  • Chan, A. T., 1978, Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size, I. Growth under continuous light, J. Phycol., 14:396.

    Article  Google Scholar 

  • Chavez, F. P., 1989, Size distribution of phytoplankton in the central and eastern tropical Pacific, Global Biogeochem. Cycles, 3:27.

    Article  Google Scholar 

  • Chavez, F. P., Buck, K. R., Coale, K., Martin, J. H., DiTullio, G. R., Welshmeyer, N. A., Jacobson, A. C., and Barber, R. T., 1991, Growth rates, grazing, sinking and iron limitation of equatorial Pacific phytoplankton, Limnol. Oceanogr., in press.

    Google Scholar 

  • Chisholm, S. W., and Costello, J. C., 1980, Influence of environmental factors and population composition on the timing of cell division in Thalassiosira fluviatilis (Bacillariophyceae) grown on light/dark cycles, J. Phycol., 16:375.

    Article  Google Scholar 

  • Chisholm, S. W., Olson, R. J., Zettler, E. R., Goericke, R., Waterbury, J., and Welschmeyer, N., 1988, A novel free-living prochlorophyte abundant in the oceanic euphotic zone, Nature, 334:340.

    Article  Google Scholar 

  • Chisholm, S. W., Frankel, S. L., Goericke, R., Olson, R. J., Palenik, B., Waterbury, J. B., West-Johnsrud, L., and Zettler, E. R., 1991, Prochlorococcus marinus nov. gen. nov. sp.: A oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b, Archiv. Microbiol., in press.

    Google Scholar 

  • Costello, J. C., and Chisholm, S. W., 1981, The influence of cell size on the growth rate of Thalassiosira weissflogii, J. Plank. Res., 3:415.

    Article  Google Scholar 

  • Douglas, D. J., 1984, Microautoradiography-based enumeration of photosynthetic picoplankton with estimates of carbon-specific growth rates, Mar Ecol. Prog. Ser., 14:223.

    Article  Google Scholar 

  • Duarte, C. M., Agusti, S., and Peters, H., 4987, An upper limit to the abundance of aquatic organisms, Oecologia (Berlin), 74:272.

    Article  Google Scholar 

  • Duarte, D. M., Agusti, S., and Canfield, D. E., 1990, Size plasticity of freshwater phytoplankton: Implications for community structure, Limnol. Oceanogr., 35:1846.

    Article  Google Scholar 

  • Dugdale, R. C., and Goering, J. J., 1967, Uptake of new and regenerated forms of nitrogen in primary productivity, Limnol. Oceanogr., 12:196.

    Article  CAS  Google Scholar 

  • Elton, C., 1927, “Animal Ecology,” Macmillan, New York.

    Google Scholar 

  • Eppley, R. W., and Sloan, P. R., 1965, Carbon balance experiments with marine phytoplankton, J. Fish. Res. Bd. Can., 22:1083.

    Article  CAS  Google Scholar 

  • Eppley, R. W., and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282:677.

    Article  Google Scholar 

  • Eppley, R. W., and Sloan, P. R., 1966, Growth rates of marine phytoplankton: Correlation with light absorption by cell chlorophyll a, Physiol. Plant., 19:47.

    Article  CAS  Google Scholar 

  • Eppley, R. W., and Koeve, W., 1990, Nitrate use by plankton in the eastern subtropical North Atlantic, March–April 1989, Limnol. Oceanogr., 35:1781.

    Article  CAS  Google Scholar 

  • Eppley, R. W., Sharp, J. H., Renger, E. H., Perry, M. J., and Harrison, W. G., 1977, Nitrogen assimilation by phytoplankton and other microorganisms in the surface waters of the central North Pacific Ocean, Mar. Biol., 39:111.

    Article  CAS  Google Scholar 

  • Falkowski, P. G., and Owens, T. G., 1978, Effects of light intensity on photosynthesis and dark respiration in six species of marine phytoplankton, Mar. Biol., 45:289.

    Article  CAS  Google Scholar 

  • Fenchel, T., 1974, Intrinsic rate of natural increase: The relationship with body size, Oecologia (Berlin), 14:317.

    Article  Google Scholar 

  • Fumas, M. J., 1983, Nitrogen dynamics in lower Narragansett Bay, Rhode Island, 1. Uptake by size-fractionated phytoplankton populations, J. Plank. Res., 5:657.

    Article  Google Scholar 

  • Furnas, M. J., and Mitchell, A. W., 1988, Photosynthetic characteristics of Choral Sea Picoplankton (<2 μm size fraction), Biol. Oceanogr., 5:163.

    Google Scholar 

  • Garside, C., 1982, A chemiluminescent technique for the determination of nanomolar concentrations of nitrate and nitrate, or nitrite alone in seawater, Mar. Chem., 11:159.

    Article  CAS  Google Scholar 

  • Gavis, J., 1976, Munk and Riley revisited: Nutrient diffusion transport and rates of phytoplankton growth, J. Mar. Res., 34:161.

    Google Scholar 

  • Geider, R. J., Platt, T., and Raven, J. A., 1986, Size dependence of growth and photosynthesis in diatoms: A synthesis, Mar. Ecol. Prog. Ser., 30:93.

    Article  CAS  Google Scholar 

  • Glover, H. E., Campbell, L., and Prezelin, B. B., 1986, Contribution of Synechococcus to size-fractionated primary productivity in three water masses in the Northwest Atlantic Ocean, Mar. Biol., 91:193.

    Article  Google Scholar 

  • Goericke, R., and Repeta, D., 1991, The pigments of Prochlorococcus marinus: The presence of divinyl-chlorophyll a and b in a marine cyanobacterium, Limnol. Oceanogr., in press.

    Google Scholar 

  • Goldman, J. C., 1988, Spatial and temporal discontinuities of biological processes in pelagic surface waters, in: “Toward a Theory on Biological Physical Interactions in the World Ocean,” B.J. Rothschild, ed., Kluwer Academic Publishers, New York.

    Google Scholar 

  • Grover, J. P., 1989, Influence of cell shape and size on algal competitive ability, J. Phycol., 25:402.

    Article  Google Scholar 

  • Harrison, W. G., and Wood, L. J. E., 1988, Inorganic nitrogen uptake by marine phytoplankton, Limnol. Oceanogr., 33:468.

    Article  CAS  Google Scholar 

  • Heinbokel, J. F., 1986, Occurrence of Richelia intracellularis (Cyanophyta) within the diatoms Hemiaulus haukii and H. membranaceus off Hawaii, J. Phycol., 22:399.

    Article  Google Scholar 

  • Herbland, A., Le Bouteiller, A., and Raimbault, P. L., 1985, Size structure of phytoplankton in the equatorial Atlantic Ocean, Deep-Sea Res., 32:819.

    Article  Google Scholar 

  • Herbland, A., and Le Bouteiller, A., 1981, The size distribution of phytoplankton and particulate organic matter in the Equatorial Atlantic Ocean, importance of ultraseston and consequences, J. Plank. Res., 3:6659.

    Article  Google Scholar 

  • Hopcroft, R. R., and Roff, J. C., 1990, Phytoplankton size fractions in a tropical neritic ecosystem near Kingston Jamaica, J. Plank. Res., 12:1069.

    Article  Google Scholar 

  • Hudson, R. J., and Morel, F. M. M., 1991, Trace metal transport by marine microorganisms: Implications of metal coordination kinetics, Deep-Sea Res., in press.

    Google Scholar 

  • Holm-Hansen, O., 1969, Algae: Amounts of DNA and organic carbon in single cells, Science, 163:87.

    Article  PubMed  CAS  Google Scholar 

  • Iturriaga, R., and Mitchell, B. G., 1986, Chroococcoid cyanobacteria: A significant component of the food web dynamics of the open ocean, Mar. Ecol. Prog. Ser., 28:291.

    Article  Google Scholar 

  • Iturriaga, R., and Marra, J., 1988, Temporal and spatial variability of chroococcoid cyanobacteria Synechococcus spp. specific growth rates and their contribution to primary production in the Sargasso Sea, Mar. Ecol. Prog. Ser., 44:175.

    Article  Google Scholar 

  • Kana, T. M., and Glibert, P. M., 1987, Effect of irradiances up to 2000 μE m-2 sec-1 on marine Synechococcus WH7803 — I. Growth, pigmentation, and cell composition, Deep-Sea Res., 34:479.

    Article  CAS  Google Scholar 

  • Karl, D. M., Bird, D. F., Hebel, D. V., Letelier, R., Sabine, C., and Winn, C. D., 1991b, Nitrogen fixation contributes to new production in the oligotrophic North Pacific Gyre, unpublished.

    Google Scholar 

  • Karl, D. M., Hebel, D. V., Bird, D. F., Letelier, R., and Winn, C. D., 1991a, Trichodesmium blooms and new nitrogen in the North Pacific Gyre, in: “Biology and Ecology of Diazotrophic Marine Organisms: Trichodesmium and Other Species,” E.J. Carpenter, D.G. Capone, and J.G. Rueter, eds., Kluwer Academic Publishers, New York.

    Google Scholar 

  • Kerr, S. R., 1974, Theory of size distribution in ecological communities, J. Fish. Res. Bd. Can., 31:1859.

    Article  Google Scholar 

  • Kiefer, D. A., and Berwald, J., 1992, A random encounter model for the microbial planktonic community, Limnol. Oceanogr., in press.

    Google Scholar 

  • Koike, I., Ronner, U., and Holm-Hansen, O., 1981, Microbial nitrogen metabolism in the Scotia Sea, Antarctic J., 16:165.

    Google Scholar 

  • Koike, I., Holm-Hansen, O., and Biggs, D. C., 1986, Inorganic nitrogen metabolism by Antarctic phytoplankton with special reference to ammonia cycling, Mar. Ecol. Prog. Ser., 30:105.

    Article  CAS  Google Scholar 

  • LaBarbera, M., 1989, Analyzing body size as a factor in ecology and evolution, Ann. Rev. Ecol. Syst., 20:97.

    Article  Google Scholar 

  • Langdon, C., 1987, On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton, I. A comparative study of the growth-irradiance relationship of three marine phytoplankton species: Skeletonema costatum, Olisthodiscus luteus and Gonyaulax tamarensis, J. Plank. Res., 9:459.

    Article  Google Scholar 

  • Langdon, C., 1988, On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton, II. A general review, J. Plank. Res., 10:1291.

    Article  Google Scholar 

  • Laws, E. A., 1975, The importance of respiration losses in controlling the size distribution of marine phytoplankton, Ecology, 56:419.

    Article  Google Scholar 

  • Laws, E. A., Redalje, D. G., Haas, L. W., Bienfang, P. K., Eppley, R. W., Harrison, W. G., Karl, D. M., and Marra, J., 1984, High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters, Limnol. Oceanogr., 29:1161.

    Article  CAS  Google Scholar 

  • Laws, E. A., Harrison, W. G., and DiTullio, G. R., 1985, A comparison of nitrogen assimilation rates based on N-15 uptake and autotrophic protein synthesis, Deep-Sea Res., 32:85.

    Article  CAS  Google Scholar 

  • Lewis, W. M., 1985, Nutrient scarcity as an evolutionary cause of haploidy, Amer. Nat., 125:692.

    Article  Google Scholar 

  • Logan, B. E., and Alldredge, A. L., 1989, Potential for increased nutrient uptake by flocculating diatoms, Mar. Biol., 101:433.

    Article  Google Scholar 

  • Mague, T. H., Weare, N. M., and Holm-Hansen, O., 1974, Nitrogen fixation in the north Pacific Ocean, Mar Biol., 24:109.

    Article  CAS  Google Scholar 

  • Malone, T., 1975, Environmental control of phytoplankton cell size, Limnol. Oceanogr., 20:490.

    Article  Google Scholar 

  • Malone, T., 1971, The relative importance of nannoplankton and netplankton as primary producers in the California current system, Fish. Bull., 69:799.

    Google Scholar 

  • Malone, T. C., 1980a, Algal size, in: “The Physiological Ecology of Phytoplankton,” I. Morris, ed., U. Calif. Press, Berkeley and Los Angeles.

    Google Scholar 

  • Malone, T. C., 1980b, Size-fractionated primary productivity of marine phytoplankton, in: “Primary Productivity in the Sea,” P.G. Faikowski, ed., Brookhaven Symposium in Biology, Plenum, New York.

    Google Scholar 

  • Maloney, C. L., and Field, J. G., 1985, Use of particle-size data to predict potential pelagic-fish yield of some South African areas, S. Afr. J. Mar Sci., 3:119.

    Article  Google Scholar 

  • Martin, J. H., Gordon, R. M., and Fitzwater, S. E., 1991, The case for iron, in: “What Controls Phytoplankton Production in Nutirent Rich Areas of the Open Sea?”, S.W. Chisholm and F.M.M. Morel, eds., Limnol. Oceanogr. (Special issue), in press.

    Google Scholar 

  • Martinez, L., Silver, M. W., King, J. M., and Alldredge, A. L., 1983, Nitrogen fixation by floating diatom mats: A source of new nitrogen to oligotrophic ocean waters, Science, 221:152.

    Article  PubMed  CAS  Google Scholar 

  • Morel, F. M. M., Hudson, R. J., and Price, N. M., 1991, Trace metal limitation in the sea, in: “What Controls Phytoplankton Production in Nutirent Rich Areas of the Open Sea?”, S.W. Chisholm and F.M.M. Morel, eds., Limnol. Oceanogr. (Special Issue), in press.

    Google Scholar 

  • Munk, W. H., and Riley, G. A., 1952, Absorption of nutrients by aquatic plants, J. Mar. Res., 11:215.

    Google Scholar 

  • Murphy, L. S., and Haugen, E. M., 1985, The distribution and abundance of phototrophic ultraplankton in the N. Atlantic, Limnol. Oceanogr., 30:47.

    Article  Google Scholar 

  • Nalewajko, C., and Garside, C., 1983, Methodological problems in the simultaneous assessment of photosynthesis and nutrient uptake in phytoplankton as functions of light intensity and cell size, Limnol. Oceanogr., 28:591.

    Article  CAS  Google Scholar 

  • Odate, T., and Maita, Y., 1988, Regional variation in the size composition of phytoplankton communities in the Western North Pacific Ocean, Spring 1985, Biol. Oceanogr., 6:65.

    Google Scholar 

  • Olson, R. J., Zettler, E. R., Dusenberry, J., and Chisholm, S. W., 1991, Advances in oceanography through flow cytometry, in: “Individual Cell and Particle Analysis in Oceanography, S. Demers and M. Lewis, eds., in press.

    Google Scholar 

  • Olson, R. J., Chisholm, S. W., Zettler, E. R., and Armbrust, E. V., 1988, Analysis of Synechococccus pigment types in the sea using single and dual beam flow cytometry, Deep-Sea Res., 35:425.

    Article  CAS  Google Scholar 

  • Olson, R.J., Chisholm, S.W., Zettler, E.R., and Armbrust, E.V., 1990a, Pigments, size, and distribution of Synechococcus in the North Atlantic and Pacific Oceans, Limnol. Oceanogr., 35:45.

    Article  CAS  Google Scholar 

  • Olson, R.J., Chisholm, S.W., Zettler, E.R., Altabet, M.A., and Dusenberry, J.A., 1990b, Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean, Deep-Sea Res., 37:1033.

    Article  Google Scholar 

  • Palenik, B.P., and Haselkorn, R., 1991, Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes, Nature, in press.

    Google Scholar 

  • Pasciak, W. J., and Gavis, J., 1974, Transport limitation of nutrient uptake in phytoplankton, Limnol. Oceanogr., 19:881.

    Article  Google Scholar 

  • Peters, R. H., 1978, Empirical physiological models of ecosystem processes, Verh. Int. Ver. Theor. Angew. Limnol., 20:110.

    Google Scholar 

  • Peters, R. H., 1983, “The Ecological Implications of Body Size,” Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Platt, T., 1985, Structure of the marine ecosystem: Its allometric basis, in: “Ecosystem Theory for Biological Oceanography,” R.E Ulanowicz and T. Platt, eds., Can. Bull. Fish. Aquat. Sci., 213:55.

    Google Scholar 

  • Platt, T., and Denman, K. L., 1977, Organization in the pelagic ecosystem, Helgolander wiss. Meeresunters, 30:575.

    Article  Google Scholar 

  • Platt, T., and Denman, K. L., 1978, The structure of pelagic marine ecosystems, Rapp. P.-V. Reun. Cons. Perm. Int. Explor. Mer., 173:60.

    Google Scholar 

  • Platt, T., and Silvert, W., 1981, Ecology, physiology, allometry and dimensionality, J. Theor. Biol, 93:885.

    Article  Google Scholar 

  • Platt, T., Subba Rao, D. V., and Irwin, B., 1983, Photosynthesis of picoplankton in the oligotrophic ocean, Nature, 301:702.

    Article  CAS  Google Scholar 

  • Platt, T., Lewis, M., and Geider, R., 1984, Thermodynamics of the pelagic ecosystem: Elementary closure conditions for biological production in the open ocean, in: “Flows of Energy and Materials in Marine Ecosystems,” M.J.R. Fasham, ed., Plenum, New York.

    Google Scholar 

  • Probyn, T. A., 1985, Nitrogen uptake by size-fractionated phytoplankton populations in the southern Benguela upwelling system, Mar. Ecol. Prog. Ser., 22:249.

    Article  CAS  Google Scholar 

  • Probyn, T. A., and Painting, S. J., 1985, Nitrogen uptake by size-fractionated phytoplankton populations in Antarctic surface waters, Limnol. Oceanogr., 30:1327.

    Article  CAS  Google Scholar 

  • Raimbault, P., Rodier, M., and Taupier-Letage, I., 1988, Size fraction of phytoplankton in the Ligurian Sea and the Algerian Basin (Mediterranean Sea): Size distribution versus total concentration, Mar. Microb. Food Webs, 3:1.

    Google Scholar 

  • Raven, J. A., 1986, Physiological consequences of extremely small size for autotrophic organisms in the sea, in: “Photosynthetic Picoplankton,” T. Platt and W.K. W. Li., eds., Can. Bull. Fish. Aquat. Sci., 214:583.

    Google Scholar 

  • Rodriguez, J., and Mullin, M. M., 1986, Relation between biomass and body weight of plankton in a steady-state oceanic ecosystem, Limnol. Oceanogr., 31:316.

    Article  Google Scholar 

  • Ronner, U., Sorennsson, F., and Holm-Hansen, O., 1983, Nitrogen assimilation by phytoplankton in the Scotia Sea, Polar Biol., 2:137.

    Article  Google Scholar 

  • Schlesinger, D. A., Molot, L. A., and Shuter, B. J., 1981, Specific growth rates of freshwater algae in relation to cell size and light intensity, Can. J. Fish. Aquat. Sci., 38:1052.

    Article  Google Scholar 

  • Sheldon, R. W., Prakash, A., and Sutcliffe, W. H., 1972, The size distribution of particles in the ocean, Limnol. Oceanogr., 17:327.

    Article  Google Scholar 

  • Sheldon, R. W., and Parsons, T. R., 1967, A continuous size spectrum for particulate matter in the sea, J. Fish. Res. Bd. Can., 24:909.

    Article  Google Scholar 

  • Sherr, E. B., Sherr, B. F., Berman, T., and McCarthy, J. J., 1982, Differences in nitrate and ammonia uptake among components of a phytoplankton population, J. Plankton Res., 4:961.

    Article  CAS  Google Scholar 

  • Silvert, W., and Platt, T., 1978, Energy flux in the pelagic ecosystem: A time-dependent equation, Limnol. Oceanogr., 23:813.

    Article  Google Scholar 

  • Silvert, W., and Platt, T., 1980, Dynamic energy flow model of the particle size distribution in pelagic ecosystems, in: “Evolution and Ecology of Zooplankton Communities,” W. Charles Kerfoot, ed., The University Press of New England, N.H.

    Google Scholar 

  • Smith, J. C., Platt, T., Li, W. W. K., Home, E. H. P., Harrison, W. G., Subba Rao, D. U., and Irwin, B. P., 1985, Arctic marine photoautrotophic picoplankton, Mar. Ecol. Prog. Ser., 20:207.

    Article  CAS  Google Scholar 

  • Sommer, U., 1989, Maximal growth rates of Antarctic phytoplankton: Only weak dependence on cell size, Limnol. Oceanogr., 34:1109.

    Article  Google Scholar 

  • Sprules, W. G., and Munawar, M., 1986, Plankton size spectra in relation to ecosystem productivity, size, and perturbation, Can. J. Fish. Aquat. Sci., 43:1789.

    Article  Google Scholar 

  • Sprules, W. G., Casselman, J. M., and Shuter, B. J., 1983, Size distribution of pelagic particles in lakes, Can. J. Fish. Aquat. Sci., 40:1761.

    Article  Google Scholar 

  • Strathmann, R. R., 1967, Estimating the organic carbon content of phytoplankton from cell volume or plasma volume, LimnoL Oceanogr., 12:411.

    Article  CAS  Google Scholar 

  • Sunda, W. G., Swift, D. G., and Huntsman, S. A., 1991, Low iron requirement in oceanic phytoplankton, Nature, 351:55.

    Article  CAS  Google Scholar 

  • Takahashi, M., and Bienfang, P. K., 1983, Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters, Mar. Biol., 76:203.

    Article  CAS  Google Scholar 

  • Taylor, A. H., and Joint, I., 1990, A steady state analysis of the ‘microbial loop’ in stratified systems, Mar. Ecol. Prog. Ser., 59:1.

    Article  Google Scholar 

  • Urbach, E. Robertson, D., and Chisholm, S. W., 1991, Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation, Nature, in press.

    Google Scholar 

  • Venrick, E. L., 1974, The distribution and significance of Richelia intracellularis Schmidt in the North Pacific Central Gyre, Limnol Oceanogr., 19:437.

    Article  Google Scholar 

  • Villareal, T. A., and Carpenter, E. J., 1989, Nitrogen fixation, suspension characteristics and chemical composition of Rhizosolenia mats in the central N. Pacific Gyre, Biol. Oceanogr., 6:327.

    Google Scholar 

  • Villareal, T. A., 1988, Positive buoyancy in the oceanic diatom Rhizosolenia debyana H. Peragallo, Deep-Sea. Res., 35:1037.

    Article  Google Scholar 

  • Waterbury, J. B., Watson, S. W., Valois, F. W., and Franks, D. G., 1986, Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus, in: “Photosynthetic Picoplankton,” T. Platt and W.K.W. Li., eds., Can. Bull Fish. Aquat. Sci., 214:583.

    Google Scholar 

  • Wheeler, P. A., and Kirchman, D. L., 1986, Utilization of inorganic and organic nitrogen by bacteria in marine systems, Limnol. Oceanogr., 31:998.

    Article  CAS  Google Scholar 

  • Yentsch, C. S., and Phinney, D. A., 1989, A bridge between ocean optics and microbial ecology, Limnol. Oceanogr., 34:1694.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chisholm, S.W. (1992). Phytoplankton Size. In: Falkowski, P.G., Woodhead, A.D., Vivirito, K. (eds) Primary Productivity and Biogeochemical Cycles in the Sea. Environmental Science Research, vol 43. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0762-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0762-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0764-6

  • Online ISBN: 978-1-4899-0762-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics