Skip to main content

Metabolic Reprogramming and Cancer

  • Chapter
  • First Online:
Essential Aspects of Immunometabolism in Health and Disease

Abstract

Cancer cell metabolism reprograming has been investigated for many years. What started with the idea that cancer cells had respiratory deficiencies and survived by adapting to use the glycolytic pathway, is understood today as a complex and dynamic set of changes in metabolic pathways that are influenced by intrinsic (mutations, oncogene activity) and/or extrinsic (nutrient availability) factors. Metabolic reprogramming allows cancer cells to survive, proliferate and guarantee redox balance even in very adverse conditions. Moreover, metabolites secreted or depleted from the microenvironment by cancer cells influence the activity of stromal cells causing, for example, immune suppression. In this chapter, we will address cancer cell metabolism reprograming, identifying mechanisms that control metabolic pathways, as well, as the effects of these alterations on the tumor microenvironment and cancer cells themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of Cancer: The Next Generation. Cell 144:646–674

    Article  CAS  Google Scholar 

  2. Garcia-Heredia JM, Carnero A (2015) Decoding Warburg’s hypothesis: tumor related mutations in the mitochondrial respiratory chain. Oncotarget 6:41582–41599

    Article  Google Scholar 

  3. Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703–707

    Article  CAS  Google Scholar 

  4. Israelsen WJ, Dayton TL, Davidson SM, Fiske BP, Hosios AM, Bellinger G et al (2013) PKM2 Isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155:397–409

    Article  CAS  Google Scholar 

  5. Zhang B, Pan X, Cobb GP, Anderson TA (2007) MicroRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12

    Article  CAS  Google Scholar 

  6. Duronio RJ, Xiong Y. Signaling pathways that control cell proliferation. Cold Spring Harbor Perspect Biol. 2013, 5: a008904.

    Google Scholar 

  7. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: Cancer’s Achilles Heel. Cancer Cell Rev. 13:472–482

    Article  CAS  Google Scholar 

  8. Lis P, Dylag M, Niedzwiecka K, Ko YH, Pedersen PL, Goffeau A, Ulaszewski S (2016) The HK2 dependent “Warburg Effect”and Mitochondrial Oxidative Phosphorylation in Cancer: Targets for Effective Therapy with 3-Bromopyruvate. Molecules 21:1730

    Article  Google Scholar 

  9. Madan E, Parker TM, Pelham CJ, Palma AM, Peixoto ML, Nagane M et al (2019) HIF-transcribed p53 chaperones HIF-1α. Nucl Acids Res. 47:10212–10234

    Article  CAS  Google Scholar 

  10. Yang L, Venneti S, Nagrath D (2017) Glutaminolysis: a hallmark of cancer metabolism. Annu Rev Biomed Eng 19:163–194

    Article  CAS  Google Scholar 

  11. Jose C, Bellance N, Rossignol R. Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Bioch Biophys Acta—Bioenerg. 2011, 1807: 552–561.

    Google Scholar 

  12. Koizume S, Miyagi Y (2016) Lipid droplets: a key cellular organelle associated with cancer cell survival under normoxia and hypoxia. Int J Mol Sci 17:1430

    Article  Google Scholar 

  13. Carracedo A, Cantley LW, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer. 2013, 13: 227 - 232.

    Google Scholar 

  14. Koundouros N, Poulogiannis G (2019) Reprogramming of fatty acid metabolism in cancer. British J Cancer. 122:4–22

    Article  Google Scholar 

  15. Selvarajah B, Azuelos I, Platé M, Guillotin D, Forty EJ, Contento G et al (2019) mTORC1 amplifies the ATF4-dependent de novo serine-glycine pathway to supply glycine during TGF-α1-induced collagen biosynthesis. Sci Sig. 12:3048

    Article  Google Scholar 

  16. Mattaini KR, Sullivan MR, Vander Heiden. The importance of serine metabolism in cancer. J Cell Biol. 2016, 213: 249—257.

    Google Scholar 

  17. Smolková K, Bellance N, Scandurra F, Génot E, Gnaiger E, Plecitá-Hlavatá L et al (2010) Mitochondrial bioenergetic adaptations of breast cells to aglycemia and hypoxia. J Bioenerg Biomemb 24:55–67

    Article  Google Scholar 

  18. Dang CV, O’Donell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16:253–264

    Article  CAS  Google Scholar 

  19. Soga T (2013) Cancer metabolism: key players in metabolic reprogramming. Cancer Sci 104:275–281

    Article  CAS  Google Scholar 

  20. Saxton RA, Sabatini DM (2017) mTOR Signaling in Growth, Metabolism, and Disease. Cell 168:960–976

    Article  CAS  Google Scholar 

  21. Tsouko E, Khan Ma, White MA, Han JJ, Shi Y, Merchant FA, et al. Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth. Oncogenesis. 2014, 3: e103.

    Google Scholar 

  22. Bentley J, Itchayanan D, Barnes K, McIntosh E, Tang X, Downes CP et al (2003) Interleukin-3-mediated cell survival signals include phosphatidylinositol 3-kinase-dependent translocation of glucose transporter GLUT1 to the cell surface. L Biol Chem 278:39337–39348

    Article  CAS  Google Scholar 

  23. Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB (2003) Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 23:7315–7328

    Article  CAS  Google Scholar 

  24. Bott AJ, Peng IC, Fan Y, Faubert B, Zhao L, Li J et al (2015) Oncogenic Myc induces expression of glutamine synthetase through promoter demethylation. Cell Metab 22:1068–1077

    Article  CAS  Google Scholar 

  25. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical uses. Cold Spring Harbor Perspect Biol. 2010, 2: a001008.

    Google Scholar 

  26. Gomes AS, Ramos H, Soares J, Saraiva L (2018) p53 and glucose metabolism: an orchestra to be directed in cancer therapy. Pharmacol Res 131:75–86

    Article  CAS  Google Scholar 

  27. De la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, García-Carrancá A, Manzo-Merino J (2019) Lactate in the regulation of tumor microenvironment and therapeutic approaches. Frontiers Oncol. 9:1143

    Article  Google Scholar 

  28. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG et al (2009) The Reverse Warburg Effect: Aerobic Glycolysis in the Cancer Associated Fibroblasts and the Tumor Stroma. Cell Cycle 8:3984–4001

    Article  CAS  Google Scholar 

  29. Elia I, Doglioni G, Fendt SM (2018) Metabolic hallmarks of metastasis. Trends Cell Biol 28:673–684

    Article  CAS  Google Scholar 

  30. Thews O, Riemann A (2019) Tumor pH and metastasis: a malignant process beyond hypoxia. Cancer Met Rev. 38:113–129

    Article  CAS  Google Scholar 

  31. Chang C, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD et al (2015) Metabolic Competition in the Tumor Microenvironment is a Driver of Cancer Progression. Cell 162:1229–1241

    Article  CAS  Google Scholar 

  32. Pacheco R, Gallart T, Lluis C, Franco R (2007) Role of glutamate on T-cell mediated immunity. J Neuroimmunol 185:9–19

    Article  CAS  Google Scholar 

  33. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C et al (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176:6752–6761

    Article  CAS  Google Scholar 

  34. Baltazar R, Afonso J, Costa M, Granka S (2020) Lactate beyond a waste metabolite: metabolic affairs and signaling in malignancy. Front Oncol 10:231

    Article  Google Scholar 

  35. Ranganathan P, Shanmugam A, Swafford D, Suryawanshi A, Bhattacharjee P, Hussein MS et al (2018) GPR81, a cell-surface receptor for lactate, regulates intestinal homeostasis and protects mice from experimental colitis. J Immunol 200:1781–1789

    CAS  PubMed  Google Scholar 

  36. Feng J, Yang H, Zhang Y, Wei H, Zhu Z, Zhu B et al (2017) Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene 36:5829–5839

    Article  CAS  Google Scholar 

  37. Sun NY, Yang MH (2020) Metabolic Reprogramming and Epithelial-Mesenchymal Plasticity: Opportunities and Challenges for Cancer Therapy. Front Oncol 10:792

    Article  Google Scholar 

  38. Anderson NM, Mucka P, Kern JG, Feng H (2018) The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell 9:216–237

    Article  CAS  Google Scholar 

  39. Gonçalves MD, Hopkins BD, Cantley LW (2018) Phosphatidylinositol 3-kianse, growth disorders, and cancer. NEJM 379:2052–2062

    Article  Google Scholar 

  40. Hunter T (1997) Oncoprotein networks. Cell 88:333–346

    Article  CAS  Google Scholar 

  41. Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: Cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25:4777–4786

    Article  CAS  Google Scholar 

  42. Nagao A, Kobayashi M, Koyasu S, Chow CCT, Haranda H (2019) HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance. Int J Mol Sci 20:238–251

    Article  Google Scholar 

  43. Patra KC, Hay N (2014) The pentose phosphate pathway and cancer. Trends Biochem Sci 39:347–354

    Article  CAS  Google Scholar 

  44. Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E et al (2015) The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev 90:927–963

    Article  Google Scholar 

  45. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Lepique .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lepique, A.P., Boccardo, E., de Miranda, F.S. (2022). Metabolic Reprogramming and Cancer. In: Camara, N.O.S., Alves-Filho, J.C., Moraes-Vieira, P.M.M.d., Andrade-Oliveira, V. (eds) Essential Aspects of Immunometabolism in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-86684-6_9

Download citation

Publish with us

Policies and ethics