Skip to main content

Advertisement

Log in

Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Breast cancer cells can survive and proliferate under harsh conditions of nutrient deprivation, including limited oxygen and glucose availability. We hypothesized that such environments trigger metabolic adaptations of mitochondria, which promote tumor progression. Here, we mimicked aglycemia and hypoxia in vitro and compared the mitochondrial and cellular bioenergetic adaptations of human breast cancer (HTB-126) and non-cancer (HTB-125) cells that originate from breast tissue. Using high-resolution respirometry and western blot analyses, we demonstrated that 4 days of glucose deprivation elevated oxidative phosphorylation five-fold, increased the spread of the mitochondrial network without changing its shape, and decreased the apparent affinity of oxygen in cancer cells (increase in C 50 ), whereas it remained unchanged in control cells. The substrate control ratios also remained constant following adaptation. We also observed the Crabtree effect, specifically in HTB-126 cells. Likewise, sustained hypoxia (1% oxygen during 6 days) improved cell respiration in non-cancer cells grown in glucose or glucose-deprived medium (+ 32% and +38%, respectively). Conversely, under these conditions of limited oxygen or a combination of oxygen and glucose deprivation for 6 days, routine respiration was strongly reduced in cancer cells (−36% in glucose medium, −24% in glucose-deprived medium). The data demonstrate that cancer cells behave differently than normal cells when adapting their bioenergetics to microenvironmental conditions. The differences in hypoxia and aglycemia tolerance between breast cancer cells and non-cancer cells may be important when optimizing strategies for the treatment of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acebo P, Giner D, Calvo P, Blanco-Rivero A, Ortega AD, Fernandez PL, Roncador G, Fernandez-Malave E, Chamorro M, Cuezva JM (2009) Transl Oncol 2:138–145

    Google Scholar 

  • Arismendi-Morillo G (2009) Int J Biochem Cell Biol 41:2062–2068

    Article  CAS  Google Scholar 

  • Arismendi-Morillo GJ, Castellano-Ramirez AV (2008) J Electron Microsc (Tokyo) 57:33–39

    Article  Google Scholar 

  • Baffert F, Usson Y, Tranqui L (2001) Eur J Cell Biol 80:78–86

    Article  CAS  Google Scholar 

  • Bellance N, Benard G, Furt F, Begueret H, Smolkova K, Passerieux E, Delage J, Baste J, Moreau P, Rossignol R (2009) Int J Biochem Cell Biol

  • Bellance N, Lestienne P, Rossignol R (2009b) Front Biosci 14:4015–4034

    Google Scholar 

  • Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, Rossignol R (2007) J Cell Sci 120:838–848

    Article  CAS  Google Scholar 

  • Benard G, Faustin B, Passerieux E, Galinier A, Rocher C, Bellance N, Delage JP, Casteilla L, Letellier T, Rossignol R (2006) Am J Physiol Cell Physiol

  • Borenfreund E, Puerner JA (1985) Toxicol Lett 24:119–124

    Article  CAS  Google Scholar 

  • Bratslavsky G, Sudarshan S, Neckers L, Linehan WM (2007) Clin Cancer Res 13:4667–4671

    Article  CAS  Google Scholar 

  • Chatterjee A, Mambo E, Sidransky D (2006) Oncogene 25:4663–4674

    Article  CAS  Google Scholar 

  • Crabtree HG (1928) Biochem J 22:1289–1298

    CAS  Google Scholar 

  • Cuezva JM, Chen G, Alonso AM, Isidoro A, Misek DE, Hanash SM, Beer DG (2004) Carcinogenesis 25:1157–1163

    Article  CAS  Google Scholar 

  • Cuezva JM, Krajewska M, de Heredia ML, Krajewski S, Santamaria G, Kim H, Zapata JM, Marusawa H, Chamorro M, Reed JC (2002) Cancer Res 62:6674–6681

    CAS  Google Scholar 

  • Cuezva JM, Ostronoff LK, Ricart J, Lopez de Heredia M, Di Liegro CM, Izquierdo JM (1997) J Bioenerg Biomembr 29:365–377

    Article  CAS  Google Scholar 

  • Denko NC (2008) Nat Rev Cancer 8:705–713

    Article  CAS  Google Scholar 

  • Diaz-Ruiz R, Averet N, Araiza D, Pinson B, Uribe-Carvajal S, Devin A, Rigoulet M (2008) J Biol Chem 283:26948–26955

    Article  CAS  Google Scholar 

  • Donnely M, Scheffler I (1976) J cell Physiol 89:39–52

    Article  Google Scholar 

  • Dufour SP, Ponsot E, Zoll J, Doutreleau S, Lonsdorfer-Wolf E, Geny B, Lampert E, Fluck M, Hoppeler H, Billat V, Mettauer B, Richard R, Lonsdorfer J (2006) J Appl Physiol 100:1238–1248

    Article  CAS  Google Scholar 

  • Essop MF (2007) J Physiol 584:715–726

    Article  CAS  Google Scholar 

  • Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV (2009) Nature 458:762–765

    Article  CAS  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Nat Rev Cancer 4:891–899

    Article  CAS  Google Scholar 

  • Gatenby RA, Gillies RJ (2008) Nat Rev Cancer 8:56–61

    Article  CAS  Google Scholar 

  • Gnaiger E (2001) Respir Physiol 128:277–297

    Article  CAS  Google Scholar 

  • Gnaiger E (2008) Polarographic oxygen sensors, the oxygraph and high-resolution respirometry to assess mitochondrial function. In Mitochondrial dysfunction in drug-induced toxicity. D.J.a.W. Y, ed. (Wiley), pp. 327–352

  • Gnaiger E (2009) Int J Biochem Cell Biol 41:1837–1845

    Article  CAS  Google Scholar 

  • Gnaiger E, Kemp RB (1990) Biochim Biophys Acta 1016:328–332

    Article  CAS  Google Scholar 

  • Gnaiger E, Lassnig B, Kuznetsov AV, Margreiter R (1998) Biochim Biophys Acta 1365:249–254

    Article  CAS  Google Scholar 

  • Gnaiger E, Steinlechner-Maran R, Mendez G, Eberl T, Margreiter R (1995) J Bioenerg Biomembr 27:583–596

    Article  CAS  Google Scholar 

  • Gstraunthaler G, Seppi T, Pfaller W (1999) Cell Physiol Biochem 9:150–172

    Article  CAS  Google Scholar 

  • Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA, Thompson CB (2005) Cancer Cell 8:311–321

    Article  CAS  Google Scholar 

  • Hutter E, Renner K, Pfister G, Stockl P, Jansen-Durr P, Gnaiger E (2004) Biochem J 380:919–928

    Article  CAS  Google Scholar 

  • Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J (2008) Science 320:661–664

    Article  CAS  Google Scholar 

  • Ježek P, Plecitá-Hlavatá L, Smolkova K, Rossignol R (2009) Int J Biochem Cell Biol

  • John AP (2001) Med Hypotheses 57:429–431

    Article  CAS  Google Scholar 

  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) Cell Metab 3:177–185

    Article  Google Scholar 

  • King A, Selak MA, Gottlieb E (2006) Oncogene 25:4675–4682

    Article  CAS  Google Scholar 

  • Kroemer G, Pouyssegur J (2008) Cancer Cell 13:472–482

    Article  CAS  Google Scholar 

  • Liu H, Savaraj N, Priebe W, Lampidis TJ (2002) Biochem Pharmacol 64:1745–1751

    Article  CAS  Google Scholar 

  • Mathupala SP, Rempel A, Pedersen PL (1997) J Bioenerg Biomembr 29:339–343

    Article  CAS  Google Scholar 

  • Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E (2007) Febs J 274:1393–1418

    Article  CAS  Google Scholar 

  • Nouette-Gaulain K, Bellance N, Prevost B, Passerieux E, Pertuiset C, Galbes O, Smolkova K, Masson F, Miraux S, Delage JP, Letellier T, Rossignol R, Capdevila X, Sztark F (2009) Anesthesiology 110:648–659

    Article  CAS  Google Scholar 

  • Pecina P, Gnaiger E, Zeman J, Pronicka E, Houstek J (2004) Am J Physiol Cell Physiol 287:C1384–1388

    Article  CAS  Google Scholar 

  • Pedersen P (1978) Tumor mitochondria and the bioenergetic of cancer cells. In: Karger S (ed) Progress in experimental tumor research. Basel, New York, pp 190–274

    Google Scholar 

  • Pedersen PL (2007) J Bioenerg Biomembr 39:211–222

    Article  CAS  Google Scholar 

  • Plecitá-Hlavatá L, Lessard M, Šantorová J, Bewersdorf J, Ježek P (2008) Biochim Biophys Acta 1777:834–846

    Article  Google Scholar 

  • Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, Olpin S, Moat SJ, Hargreaves IP, Heales SJ, Chung YL, Griffiths JR, Dalgleish A, McGrath JA, Gleeson MJ, Hodgson SV, Poulsom R, Rustin P, Tomlinson IP (2005) Hum Mol Genet 14:2231–2239

    Article  CAS  Google Scholar 

  • Reitzer L, Wice B, Kennel D (1979) JBC 254:2669–2676

    CAS  Google Scholar 

  • Rodriguez-Enriquez S, Juarez O, Rodriguez-Zavala JS, Moreno-Sanchez R (2001) Eur J Biochem 268:2512–2519

    Article  CAS  Google Scholar 

  • Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA (2004) Cancer Res 64:985–993

    Article  CAS  Google Scholar 

  • Simonnet H, Alazard N, Pfeiffer K, Gallou C, Beroud C, Demont J, Bouvier R, Schagger H, Godinot C (2002) Carcinogenesis 23:759–768

    Article  CAS  Google Scholar 

  • Simonnet H, Demont J, Pfeiffer K, Guenaneche L, Bouvier R, Brandt U, Schagger H, Godinot C (2003) Carcinogenesis 24:1461–1466

    Article  CAS  Google Scholar 

  • Steinlechner-Maran R, Eberl T, Kunc M, Margreiter R, Gnaiger E (1996) Am J Physiol 271:C2053–2061

    CAS  Google Scholar 

  • Vaupel P (2008) Oncologist 13(3):21–26

    Article  CAS  Google Scholar 

  • Vaupel P, Hockel M (2000) Int J Oncol 17:869–879

    CAS  Google Scholar 

  • Vaupel P, Hockel M, Mayer A (2007) Antioxid Redox Signal 9:1221–1235

    Article  CAS  Google Scholar 

  • Vaupel P, Mayer A (2005) Effects of anemia and hypoxia on tumor biology. In Anemia in Cancer. European scholl of oncology scientific updates. C. Bokemeyer, and H. Ludwig, eds., pp. 47–54.

  • Vaupel P, Mayer A, Briest S, Hockel M (2003) Cancer Res 63:7634–7637

    CAS  Google Scholar 

  • Ventura-Clapier R, Garnier A, Veksler V (2008) Cardiovasc Res 79:208–217

    Article  CAS  Google Scholar 

  • Warburg (1930) Metabolisn of tumors. Arnold Constable, London

    Google Scholar 

  • Willems PH, Smeitink JA, Koopman WJ (2009) Int J Biochem Cell Biol 41:1773–1782

    Article  CAS  Google Scholar 

  • Zu XL, Guppy M (2004) Biochem Biophys Res Commun 313:459–465

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigue Rossignol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolková, K., Bellance, N., Scandurra, F. et al. Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia. J Bioenerg Biomembr 42, 55–67 (2010). https://doi.org/10.1007/s10863-009-9267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-009-9267-x

Keywords

Navigation