Skip to main content

Microbes Assisted Bioremediation: A Green Technology to Remediate Pollutants

  • Chapter
  • First Online:
Bioremediation of Environmental Pollutants

Abstract

Pollutants and toxicants in the environment are a major source of concern through around the world; pollutants include heavy metals, pesticides, organic compounds, dye, oil or industrial waste. There have been a slew of reports over last decades on cost effective waste cleanup technologies. Pollutant removal from the ecosystem is problematic due to their longevity, inability to biodegrade and pervasiveness. Environmental pollutant removal through the microbial perspective is apprises eco-friendly as well as a better alternative to conventional approaches. Microbes remove toxins by enzymatic or metabolic reactions such as eradication, immobilization, oxidation or detoxification. Various biotic or abiotic factors may influence the degradation mechanism, but various in situ or ex situ bioremediation techniques are used to degrade toxins all over the planet. Maximum bioremediation processes occurs in aerobic conditions, but for recalcitrant molecules anaerobic conditions are suitable. Microbial aided remediation demonstrates novel strategies for reducing pollutant and toxicant level in environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasian F, Lockington R, Mallavarapu M, Naidu R (2015) A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol 176:670–699

    CAS  PubMed  Google Scholar 

  • Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86(5):1323–1336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmadnezhad Z, Vaezihir A, Schüth C, Zarrini G (2021) Combination of zeolite barrier and bio sparging techniques to enhance efficiency of organic hydrocarbon remediation in a model of shallow groundwater. Chemosphere 273:128555. https://doi.org/10.1016/j.chemosphere.2020.128555

    Article  CAS  PubMed  Google Scholar 

  • Ajaz M, Shakeel S, Rehman A (2020) Microbial use for azo dye degradation—a strategy for dye bioremediation. Int Microbiol 23(2):149–159

    CAS  PubMed  Google Scholar 

  • Al-Ghouti MA, Al-Kaabi MA, Ashfaq MY, Dana DA (2019) Produced water characteristics, treatment and reuse: a review. J Water Process Eng 28:222–239

    Google Scholar 

  • Al-Hawash AB, Alkooranee JT, Abbood HA, Zhang J, Sun J, Zhang X, Ma F (2018a) Isolation and characterization of two crude oil-degrading fungi strains from Rumaila oil field. Iraq Biotechnol Rep 17:104–109

    Google Scholar 

  • Al-Hawash AB, Zhang X, Ma F (2018b) Removal and biodegradation of different petroleum hydrocarbons using the filamentous fungus Aspergillus sp. RFC-1. Microbiology open e00619

    Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem:1–14. https://doi.org/10.1155/2019/6730305

  • Alsohim AS, Taylor TB, Barrett GA, Gallie J, Zhang XX, Altamirano-Junqueira AE, Johnson LJ, Rainey PB, Jackson RW (2014) The biosurfactant viscosin produced by Pseudomonas fluorescens SBW 25 aids spreading motility and plant growth promotion. Environ Microbiol 16(7):2267–2281

    CAS  PubMed  Google Scholar 

  • Aranciaga N, Durruty I, González J, Wolski E (2012) Aerobic biotransformation of 2, 4, 6–trichlorophenol by Penicillium chrysogenum in aqueous batch culture: degradation and residual phytotoxicity. Water SA 38(5). https://doi.org/10.4314/wsa.v38i5.5

  • Asthana M, Kumar A, Sharma B S (2017) Wastewater treatment. In: Principles and applications of environmental biotechnology for a sustainable future. Springer, Singapore, pp 173–232

    Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11). https://doi.org/10.1007/s11274-016-2137-x

  • Ball A, Truskewycz A (2013) Polyaromatic hydrocarbon exposure: an ecological impact ambiguity. Environ Sci Pollut Res 20(7):4311–4326

    CAS  Google Scholar 

  • Banerjee P, Hazra A, Ghosh P, Ganguly A, Murmu NC, Chatterjee PK (2019) Solid waste management in India: a brief review. In: Ghosh S (ed) Waste management and resource efficiency. Springer, Singapore

    Google Scholar 

  • Benazir JF, Suganthi R, Rajvel D, Pooja MP, Mathithumilan B (2010) Bioremediation of chromium in tannery effluent by microbial consortia. Afr J Biotechnol 9(21):3140–3143

    Google Scholar 

  • Bharagava RN, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol Environ Safe 147:102–109

    CAS  Google Scholar 

  • Bhatt P, Rene ER, Kumar AJ, Kumar AJ, Zhang W, Chen S (2020) Binding interaction of allethrin with esterase: bioremediation potential and mechanism. Bioresour Technol 315:13845

    Google Scholar 

  • Bhatt P, Bhatt K, Sharma A, Zhang W, Mishra S, Chen S (2021a) Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit Rev Biotechnol 41(3):317–338

    PubMed  Google Scholar 

  • Bhatt P, Joshi T, Bhatt K, Zhang W, Huang Y, Chen S (2021b) Binding interaction of glyphosate oxidoreductase and C-P lyase: molecular docking and molecular dynamics simulation studies. J Hazard Mater 5:409:124927

    Google Scholar 

  • Bhattacharya A, Gupta A, Kaur A, Malik D (2014) Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system. App Microbiol Biotechnol 98(23):9829–9841

    CAS  Google Scholar 

  • Bilal M, Iqbal HM (2020) Microbial bioremediation as a robust process to mitigate pollutants of environmental concern. Case Stud Chem Environ Eng 2:100011

    Google Scholar 

  • Brown LM, Gunasekera TS, Striebich RC, Ruiz ON (2016) Draft genome sequence of Gordonia sihwensis strain 9, a branched alkane-degrading bacterium. Genome Announc 4:e00622–16

    Google Scholar 

  • Bwapwa JK, Jaiyeola AT, Chetty R (2017) Bioremediation of acid mine drainage using algae strains: a review. South Afr J Chem Eng 24:62–70. https://doi.org/10.1016/j.sajce.2017.06.005

    Article  Google Scholar 

  • Cha JS, Cooksey DA (1991) Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci USA 88(20):8915–8919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zhao Y, Zhang C, Zhang D, Yao C, Meng Q, Zhao R, Wei Z (2020) Speciation, toxicity mechanism and remediation ways of heavy metals during composting: a novel theoretical microbial remediation method is proposed. J Environl Mngmt 272:111109

    CAS  Google Scholar 

  • Cho O, Choi KY, Zylstra GJ, Kim YS, Kim SK, Lee JH, Sohn HY, Kwon GS, Kim YM, Kim E (2005) Catabolic role of a three-component salicylate oxygenase from Sphingomonas yanoikuyae B1 in polycyclic aromatic hydrocarbon degradation. Biochem Biophys Res Commun 327(3):656–662

    CAS  PubMed  Google Scholar 

  • Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N (2020) Lignocellulolytic enzymes in biotechnological and industrial processes: a review. Sustainability 12(18):7282. https://doi.org/10.3390/su12187282

    Article  CAS  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mat 146(1–2):270–277

    CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 1–13. https://doi.org/10.4061/2011/941810

  • Daverey A, Pakshirajan K (2009) Production of sophorolipids by the yeast Candida bombicola using simple and low-cost fermentative media. Food Res Int 42(4):499–504

    CAS  Google Scholar 

  • Debbarma P, Raghuwanshi S, Singh J, Suyal DC, Zaidi MGH, Goel R (2017) Comparative in situ biodegradation studies of polyhydroxybutyrate film composites. 3Biotech 7(178):1–9. https://doi.org/10.1007/s13205-017-0789-3

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61(1):47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diaconu M, Pavel LV, Hlihor RM, Rosca M, Fertu DI, Lenz M, Corvini PX, Gavrilescu M (2020) Characterization of heavy metal toxicity in some plants and microorganisms-a preliminary approach for environmental bioremediation. New Biotechnol 56:130–139

    CAS  Google Scholar 

  • Diaz LF, Golueke CG, Savage GM, Eggerth LL (2020) Composting and recycling municipal solid waste. CRC Press

    Google Scholar 

  • Elshafie AE, Joshi SJ, Al-Wahaibi YM, Al-Bemani AS, Al-Bahry SN, Al-Maqbali D, Banat IM (2015) Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery. Front Microbiol 6:1324

    PubMed  PubMed Central  Google Scholar 

  • Eskandari S, Hoodaji M, Tahmourespour A, Abdollahi A, Mohammadian-Baghi T, Eslamian S (2017) Bioremediation of polycyclic aromatic hydrocarbons by Bacillus licheniformis ATHE9 and Bacillus mojavensis ATHE13 as newly strains isolated from oil-contaminated soil. J Geogr Environ Earth Sci Int 11:1–11

    Google Scholar 

  • Ferronato N, Torretta V (2019) Waste mismanagement in developing countries: a review of global issues. Int J Environ Res Public Health 16(6):1060. https://doi.org/10.3390/ijerph16061060

    Article  CAS  PubMed Central  Google Scholar 

  • Fondi M, Maida I, Perrin E, Orlandini V, La Torre L, Bosi E, Negroni A, Zanaroli G, Fava F, Decorosi F, Fani R (2016) Genomic and phenotypic characterization of the species Acinetobacter venetianus. Sci Rep 6(1):1–12

    Google Scholar 

  • Gallo G, Piccolo LL, Renzone G, La Rosa R, Scaloni A, Quatrini P, Puglia AM (2012) Differential proteomic analysis of an engineered Streptomyces coelicolor strain reveals metabolic pathways supporting growth on n-hexadecane. Appl Microbiol Biotechnol 94(5):1289–1301

    CAS  PubMed  Google Scholar 

  • Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N (2020) The fungal cell wall: candida, cryptococcus, and aspergillus species. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.02993

  • Gargouri B, Karray F, Mhiri N, Aloui F, Sayadi S (2014) Bioremediation of petroleum hydrocarbons-contaminated soil by bacterial consortium isolated from an industrial wastewater treatment plant. J Chem Technol Biotechnol 89(7):978–987

    CAS  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4(3):219–232

    CAS  Google Scholar 

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369

    PubMed  PubMed Central  Google Scholar 

  • Giri K, Rai JPN, Pandey S, Mishra G, Kumar R, Suyal DC (2017a) Performance evaluation of isoproturon-degrading indigenous bacterial isolates in soil microcosm. Chem Ecol 33(9):817–825. https://doi.org/10.1080/02757540.2017.1393535

  • Giri K, Suyal DC, Mishra G, Pandey S, Kumar R, Meena DK, Rai JPN (2017b) Biodegradation of isoproturon by Bacillus pumilus K1 isolated from foothill agroecosystem of North West Himalaya. Proc Natl Acad Sci India Sect B-Biol Sci 87(3):839–848. https://doi.org/10.1007/s40011-015-0667-x

    Article  CAS  Google Scholar 

  • Goel R, Zaidi MGH, Soni R, Kusumlata, Shouche YS (2008) Implication of Arthrobacter and Enterobacter species for polycarbonate degradation. Int Biodeterior Biodegrad 61(2):167–172

    CAS  Google Scholar 

  • Gouma S, Fragoeiro S, Bastos AC, Magan N (2014) Bacterial and fungal bioremediation strategies. In: Microbial Biodegradation and Bioremediation, pp 301–323. https://doi.org/10.1016/b978-0-12-800021-2.00013-3

  • Gudiña EJ, Teixeira JA, Rodrigues LR (2016) Biosurfactants produced by marine microorganisms with therapeutic applications. Mar Drugs 14(2):38

    PubMed Central  Google Scholar 

  • Gunatilake SK (2015) Methods of removing heavy metals from industrial wastewater. Methods 1(1):14

    Google Scholar 

  • Guo Q, Dong W, Li S, Lu X, Wang P, Zhang X, Wang Y, Ma P (2014) Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res 169(7–8):533–540

    CAS  PubMed  Google Scholar 

  • Hakeem KR, Bhat RA, Qadri H (eds) (2020) Bioremediation biotechnology. https://doi.org/10.1007/978-3-030-35691-0

  • Han H, Cai H, Wang X, Hu X, Chen Z, Yao L (2020) Heavy metal-immobilizing bacteria increase the biomass and reduce the Cd and Pb uptake by pakchoi (Brassica chinensis L.) in heavy metal-contaminated soil. Ecotoxicol Environ Safe 195:110375

    Google Scholar 

  • Hassan MH, Kalam MA (2013) An overview of biofuel as a renewable energy source: development and challenges. Procedia Eng 56:39–53

    Google Scholar 

  • Higham DP, Sadler PJ, Scawen MD (1986) Cadmium-binding proteins in pseudomonas putida: Pseudothioneins. Environ Health Perspect 65:5–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hossan S, Hossain S, Islam MR, Kabir MH, Ali S, Islam MS, Imran KM et al (2020) Bioremediation of hexavalent chromium by chromium resistant bacteria reduces phytotoxicity. Int J Environ Res Pub Health 17(17):6013

    CAS  Google Scholar 

  • Hudson-Edwards KA, Jamieson HE, Lottermoser BG (2011) Mine wastes: past, present, future. Elements 7(6):375–380

    Google Scholar 

  • Hussaini SZ, Shaker M, Iqbal MA (2013) Isolation of bacterial for degradation of selected pesticides. Adv Biores 4(3):82–85

    Google Scholar 

  • Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AGT et al (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. https://doi.org/10.1007/s13225-019-00430-9

  • Igiri BE, Okoduwa S I, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol 1–16

    Google Scholar 

  • Ihsanullah I, Jamal A, Ilyas M, Zubair M, Khan G, Atieh MA (2020) Bioremediation of dyes: current status and prospects. J Water Process Eng 38:101680

    Google Scholar 

  • Ilori MO, Amobi CJ, Odocha AC (2005) Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere 61(7):985–992

    CAS  PubMed  Google Scholar 

  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01617

  • Jafari SA, Cheraghi S, Mirbakhsh M, Mirza R, Maryamabadi A (2015) Employing response surface methodology for optimization of mercury bioremediation by Vibrio parahaemolyticus PG02 in coastal sediments of Bushehr, Iran. CLEAN–Soil, Air, Water 43(1):118–126

    CAS  Google Scholar 

  • Jahromi H, Fazaelipoor MH, Ayatollahi S, Niazi A (2014) Asphaltenes biodegradation under shaking and static conditions. Fuel 117:230–235

    CAS  Google Scholar 

  • Jha S, Dikshit S, Pandy G (2011) Comparative study of agitation rate and stationary phase for the removal of Cu2+ by A. lentulus. Int J Pharm Biol Sci 2:208–211

    CAS  Google Scholar 

  • Joshi-Navare K, Khanvilkar P, Prabhune A (2013) Jatropha oil derived sophorolipids: production and characterization as laundry detergent additive. Biochem Res Int

    Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegradation-Life Sci 289–320

    Google Scholar 

  • Juwarkar AA, Singh SK, Mudhoo AA (2010) Comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288

    CAS  Google Scholar 

  • Kalemelawa F, Nishihara E, Endo T, Ahmad Z, Yeasmin R, Tenywa MM, Yamamoto S (2012) An evaluation of aerobic and anaerobic composting of banana peels treated with different inoculums for soil nutrient replenishment. Bioresour Technol 126:375–382

    CAS  PubMed  Google Scholar 

  • Kandelbauer A, Guebitz GM (2005) Bioremediation for the decolorization of textile dyes—a review. Environ Chem:269–288

    Google Scholar 

  • Kanissery RG, Sims GK (2011) Biostimulation for the enhanced degradation of herbicides in soil. App Environ Soil Sci 1–10. https://doi.org/10.1155/2011/843450

  • Kao CM, Chen CY, Chen SC, Chien HY, Chen YL (2008) Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: field and microbial evaluation. Chemosphere 70(8):1492–1499. https://doi.org/10.1016/j.chemosphere.2007.08.029

    Article  CAS  PubMed  Google Scholar 

  • Kapahi M, Sachdeva S (2019) Bioremediation options for heavy metal pollution. J Health Poll 9(24):191203. https://doi.org/10.5696/2156-9614-9.24.191203

    Article  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res:1–11. https://doi.org/10.4061/2011/805187

  • Khatoon H, Rai JPN, Jillani A (2021) Role of fungi in bioremediation of contaminated soil. In: Fungi bio-prospects in sustainable agriculture, environment and nano-technology, pp 121–156

    Google Scholar 

  • Kim IH, Choi JH, JooJO KYK, Choi JW, Oh BK (2015) Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater. J Microbiol Biotechnol 25(9):1542–1546

    CAS  PubMed  Google Scholar 

  • Kügler JH, Roes-Hill L, Syldatk C, Hausmann R (2015) Surfactants tailored by the class actinobacteria. Front Microbiol 6:212

    PubMed  PubMed Central  Google Scholar 

  • Kumar S (2011) Composting of municipal solid waste. Crit Rev Biotechnol 31(2):112–136

    CAS  PubMed  Google Scholar 

  • Kumar M, León V, Materano ADS, Ilzins OA, Luis L (2008) Biosurfactant production and hydrocarbon-degradation by halotolerant and thermotolerant Pseudomonas sp. World J Microbiol Biotechnol 24(7):1047–1057

    CAS  Google Scholar 

  • Kumar R, Bhatia D, Singh R, Rani S, Bishnoi NR (2011) Sorption of heavy metals from electroplating effluent using immobilized biomass Trichoderma viride in a continuous packed-bed column. Int Biodeterior Biodegradation 65(8):1133–1139

    CAS  Google Scholar 

  • Kumaran NS, Sundaramanicam A, Bragadeeswaran S (2011) Adsorption studies on heavy metals by isolated cyano bacterial strain (Nostoc sp.) from Uppanar estuarine water, southeast coast of India. J App Sci Res 7(11):1609–1615

    Google Scholar 

  • Kurt Z, Spain JC (2013) Biodegradation of chlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene in the vadose zone. Environ Sci Technol 47(13):6846–6854. https://doi.org/10.1021/es3049465

    Article  CAS  PubMed  Google Scholar 

  • Lah L, Podobnik B, Novak M, Korošec B, Berne S, Vogelsang M, Kraševec N, Zupanec N, Stojan J, Bohlmann J, Komel R (2011) The versatility of the fungal cytochrome P450 monooxygenase system is instrumental in xenobiotic detoxification. Mole Microbiol 81(5):1374–1389. https://doi.org/10.1111/j.1365-2958.2011.07772.x

    Article  CAS  Google Scholar 

  • Lee EH, Cho KS (2008) Characterization of cyclohexane and hexanedegradation by Rhodococcus sp. EC1. Chemosphere 71:1738–1744

    CAS  PubMed  Google Scholar 

  • Li H, Tanikawa T, Sato Y, Nakagawa Y, Matsuyama T (2005) Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family. Microbiol Immunol 49(4):303–310

    CAS  PubMed  Google Scholar 

  • Li X, Peng W, Jia Y, Lu L, Fan W (2016) Removal of cadmium and zinc from contaminated wastewater using Rhodobacter sphaeroides. Water Sci Technol 75(11):2489–2498. https://doi.org/10.2166/wst.2016.608

    Article  CAS  Google Scholar 

  • Lima AIG, Corticeiro SC, de Almeida EM (2006) Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzyme Microb Technol 39(4):763–769

    CAS  Google Scholar 

  • Lin L, Xu F, Ge X, Li Y (2018) Improving the sustainability of organic waste management practices in the food-energy-water nexus: a comparative review of anaerobic digestion and composting. Renew Sustain Energ Rev 89:151–167

    CAS  Google Scholar 

  • Liu L, Bilal M, Duan X, Iqbal HM (2019) Mitigation of environmental pollution by genetically engineered bacteria—current challenges and future perspectives. Sci Total Environ 667:444–454

    CAS  PubMed  Google Scholar 

  • Lu P, Hong YF, Hong Q, Jiang X, Li SP (2008) Construction of a stable genetically engineered microorganism for degrading HCH & methyl parathion and its characteristics. Huan Jing Ke Xue 29(7):1973–1976 (Chinese)

    Google Scholar 

  • Ma YL, Lu W, Wan LL, Luo N (2015) Elucidation of fluoranthene degradative characteristics in a newly isolated Achromobacter xylosoxidans DN002. Appl Biochem Biotechnol 175:1294–1305

    CAS  PubMed  Google Scholar 

  • Ma M, Du H, Wang D (2019) Mercury methylation by anaerobic microorganisms: a review. Crit Rev Environ Sci Technol 49(20):1893–1936

    CAS  Google Scholar 

  • Machado MD, Janssens S, Soares HMVM, Soares EV (2009) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. J App Microbiol 106(6):1792–1804. https://doi.org/10.1111/j.1365-2672.2009.04170.x

    Article  CAS  Google Scholar 

  • Machineni L (2019) Review on biological wastewater treatment and resources recovery: attached and suspended growth systems. Water Sci Technol 80(11):2013–2026

    CAS  PubMed  Google Scholar 

  • Mahmound A, Aziza Y, Abdeltif A, Rachida M (2008) Biosurfactant production by Bacillus strain injected in the petroleum reservoirs. J Ind Microbiol Biotechnol 35(2):1303–1306

    Google Scholar 

  • Mane PC, Bhosle AB (2012) Bioremoval of some metals by living algae Spirogyra sp. and Spirullina sp. from aqueous solution. Int J Environ Res 6(2):571–576

    CAS  Google Scholar 

  • Mani S, Chowdhary P, Zainith S (2020) Microbes mediated approaches for environmental waste management. Microorg Sustain Environ Health 17

    Google Scholar 

  • Massa V, Infantino A, Radice F, Orlandi V, Tavecchio F, Giudici R, Conti F, Urbini G, Barbieri P (2009) Efficiency of natural and engineered bacterial strains in the degradation of 4-chlorobenzoic acid in soil slurry. Int Biodeterior Biodegradation 63(1):112–115

    CAS  Google Scholar 

  • Matsinhe CDC (2011) Studies on the influence of organic waste biodegradability in the composting process (Doctoral dissertation)

    Google Scholar 

  • Mire CE, Tourjee JA, O’Brien WF, Ramanujachary KV, Hecht GB (2004) Lead precipitation by Vibrio harveyi: evidence for novel quorum-sensing interactions. App Environ Microbiol 70(2):855–864

    CAS  Google Scholar 

  • Mishra A, Malik A (2013) Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol 43(11):1162–1222

    CAS  Google Scholar 

  • Mnif S, Sayadi S, Chamkha M (2014) Biodegradative potential and characterization of a novel aromatic-degrading bacterium isolated from ageothermal oil field under saline and thermophilic conditions. Int Biodeterior Biodegrad 86:258–264

    CAS  Google Scholar 

  • Mohamed AT, El-Hussein AA, El-Siddig MA, Osman AG (2011) Degradation of oxyfluorfen herbicide by soil microorganisms biodegradation of herbicides. Biotechnol 10(3):274–279

    CAS  Google Scholar 

  • Mohd S, Kushwaha AS, Shukla J, Mandrah K, Shankar J, Arjaria N, Saxena PN et al (2019) Fungal mediated biotransformation reduces toxicity of arsenic to soil dwelling microorganism and plant. Ecotoxicol Environ Safe 176:108–118

    CAS  Google Scholar 

  • Mollea C, Bosco F, Ruggeri B (2005) Fungal biodegradation of naphthalene: microcosms studies. Chemosphere 60(5):636–643

    CAS  PubMed  Google Scholar 

  • Mónica P, Darwin RO, Manjunatha B, Zúñiga JJ, Diego R, Bryan RB, Maddela NR (2016) Evaluation of various pesticides-degrading pure bacterial cultures isolated from pesticide-contaminated soils in Ecuador. Afr J Biotechnol 15(40):2224–2233

    Google Scholar 

  • Mukherjee S, Bardolui NK, Karim S, Patnaik VV, Nandy RK, Bag PK (2010) Isolation and characterization of a monoaromatic hydrocarbon degrading bacterium, Pseudomonas aeruginosa from crude oil. J Environ Sci Health 45:1048–1053

    CAS  Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci:736–747

    Google Scholar 

  • Naidoo S, Olaniran AO (2014) Treated wastewater effluent as a source of microbial pollution of surface water resources. Int J Env Res Public Health 11(1):249–270

    Google Scholar 

  • Nayak AK, Panda SS, Basu A, Dhal NK (2018) Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. Int J Phytoremediation 20(7):682–691

    CAS  PubMed  Google Scholar 

  • Ndeddy Aka RJ, Babalola OO (2016) Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of brassica juncea. Int J Phytoremediation 18(2):200–209

    CAS  PubMed  Google Scholar 

  • Ngoc UN, Schnitzer H (2009) Sustainable solutions for solid waste management in southeast Asian countries. Waste Manag 29(6):1982–1995

    PubMed  Google Scholar 

  • Nguyen HT, Kim Y, Choi JW, Jeong S, Cho K (2021) Soil microbial communities-mediated bioattenuation in simulated aquifer storage and recovery (ASR) condition: long-term study. Environ Res 197:111069. https://doi.org/10.1016/j.envres.2021.111069

    Article  CAS  PubMed  Google Scholar 

  • Niti C, Sunita S, Kamlesh K, Rakesh K (2013) Bioremediation: an emerging technology for remediation of pesticides. Res J Chem Environ 17(4)

    Google Scholar 

  • Noor E, Eden E, Milo R, Alon U (2010) Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Mol Cell 39(5):809–820

    CAS  PubMed  Google Scholar 

  • Nzila A, Razzak S, Zhu J (2016) Bioaugmentation: an emerging strategy of industrial wastewater treatment for reuse and discharge. Int J Environ Res Public Health 13(9):846. https://doi.org/10.3390/ijerph13090846

    Article  CAS  PubMed Central  Google Scholar 

  • Ojuederie O, Babalola O (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504. https://doi.org/10.3390/ijerph14121504

    Article  CAS  PubMed Central  Google Scholar 

  • Okoduwa SIR, Igiri B, Udeh CB, Edenta C, Gauje B (2017) Tannery effluent treatment by yeast species isolates from watermelon. Toxics 5(1):6

    PubMed Central  Google Scholar 

  • Parween T, Bhandari P, Sharma R, Jan S, Siddiqui ZH, Patanjali PK (2017) Bioremediation: a sustainable tool to prevent pesticide pollution. In: Modern age environmental problems and their remediation, pp 215–227. https://doi.org/10.1007/978-3-319-64501-8_12

  • Passarini MR, Rodrigues MV, da Silva M, Sette LD (2011) Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar Pollut Bull 62(2):364–370

    CAS  PubMed  Google Scholar 

  • Patel S, Homaei A, Patil S, Daverey A (2019) Microbial biosurfactants for oil spill remediation: pitfalls and potentials. Appl Microbiol Biotechnol 103(1):27–37

    CAS  PubMed  Google Scholar 

  • Peñaloza-Vazquez A, Mena GL, Herrera-Estrella L, Bailey AM (1995) Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei. Appl Environ Microbiol 61(2):538–543

    PubMed  PubMed Central  Google Scholar 

  • Quansah A, Ntaryamira T, Rwemera J (2018) Sludge wastewater management by conventional treatment process: case study-Bujumbura municipal sewage. Int J Sci 7:52–65

    Google Scholar 

  • Ramasamy K, Kamaludeen S, Parwin B (2006) Bioremediation of metals microbial processes and techniques. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, New York, pp 173–187

    Google Scholar 

  • Ran ZHAO, Bi WANG, Cai QT, Li XX, Min LIU, Dong HU, Chun FAN (2016) Bioremediation of hexavalent chromium pollution by Sporosarcinasaromensis M52 isolated from offshore sediments in Xiamen, China. Biomed Environ Sci 29(2):127–136

    Google Scholar 

  • Ravi RK, Bhawana P, Fulekar MH (2015) Bioremediation of persistent pesticides in rice field soil environment using surface soil treatment reactor. Int J Curr Microbiol Appl Sci 4(2):359–369

    CAS  Google Scholar 

  • Ren N, Wang A, Gao L, Xin L, Lee DJ, Su A (2008) Bioaugmented hydrogen production from carboxymethyl cellulose and partially delignified corn stalks using isolated cultures. Int J Hydrogen Energy 33(19):5250–5255. https://doi.org/10.1016/j.ijhydene.2008.05.020

    Article  CAS  Google Scholar 

  • Salehizadeh H, Shojaosadati SA (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37(17):4231–4235

    CAS  PubMed  Google Scholar 

  • Sales da Silva IG, Gomes de Almeida FC, Padilha da Rocha e Silva NM, Casazza AA, Converti A, Asfora Sarubbo L (2020) Soil bioremediation: overview of technologies and trends. Energies 13(18):4664. https://doi.org/10.3390/en13184664

    Article  CAS  Google Scholar 

  • Samer M (2015) Biological and chemical wastewater treatment processes. In: Waste water treatment engineering, pp 150

    Google Scholar 

  • Samin G, Pavlova M, Arif MI, Postema CP, Damborsky J, Janssen DB (2014) A Pseudomonas putida strain genetically engineered for 1,2,3-Trichloropropane bioremediation. App Environ Microbiol 80(17):5467–5476. https://doi.org/10.1128/aem.01620-14

    Article  Google Scholar 

  • Samstag RW, Ducoste JJ, Griborio A, Nopens I, Batstone DJ, Wicks JD, Laurent J (2016) CFD for wastewater treatment: an overview. Water Sci Technol 74(3):549–563

    CAS  PubMed  Google Scholar 

  • Sandoval Á, Arias-Barrau E, Bermejo F, Cañedo L, Naharro G, Olivera ER, Luengo JM (2005) Production of 3-hydroxy-n-phenylalkanoic acids by a genetically engineered strain of pseudomonas putida. Appl Microbiol Biotechnol 67(1):97–105

    CAS  PubMed  Google Scholar 

  • Sharma PK, Balkwill DL, Frenkel, Vairavamurthy MA (2000) A new Klebsiellaplanticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. App Environ Micro 66(7):3083–3087

    CAS  Google Scholar 

  • Shuaib M, Azam N, Bahadur S, Romman M, Yu Q, Xuexiu C (2021) Variation and succession of microbial communities under the conditions of persistent heavy metal and their survival mechanism. Micro Patho 150:104713

    CAS  Google Scholar 

  • Singh R (2013) Microbial waste management. Lap lambert Academic Publishing

    Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480(1–2):1–9

    CAS  PubMed  Google Scholar 

  • Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: a state of art review and future applications. Compos Part B Eng 115:409–422

    CAS  Google Scholar 

  • Sonune A, Ghate R (2004) Developments in wastewater treatment methods. Desalination 167:55–63

    CAS  Google Scholar 

  • Sood N, Patle S, Lal B (2009) Bioremediation of acidic oily sludge-contaminated soil by the novel yeast strain Candida digboiensis TERI ASN6. Environ Sci Pollut Res 17(3):603–610. https://doi.org/10.1007/s11356-009-0239-9

    Article  CAS  Google Scholar 

  • Srivastava AK, Srivastava M, Kashyap PL, Srivastava AK (2016) Prospects of biocomposting in organic farming and environment management. In: Gupta RK, Singh SS (eds) Environmental biotechnology: a new approach. Environmental biotechnology: a new approach. Daya Publishing House, New Delhi, pp 147–178

    Google Scholar 

  • Strong LC, McTavish H, Sadowsky MJ, Wackett LP (2000) Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environ Microbiol 2(1):91–98

    CAS  PubMed  Google Scholar 

  • Sutherland DL, Ralph PJ (2019) Microalgal bioremediation of emerging contaminants – opportunities and challenges. Water Res 114921. https://doi.org/10.1016/j.watres.2019.114921

  • Suyal DC, Soni R, Singh DK, Goel R (2021) Microbiome change of agricultural soil under organic farming practices. Biologia 76:1315–1325

    CAS  Google Scholar 

  • Tabatabaee A, Assadi MM, Noohi AA, Sajadian VA (2005) Isolation of biosurfactant producing bacteria from oil reservoirs. J Environ Health Sci Eng 2(1):6–12

    Google Scholar 

  • Tang X, Huang Y, Li Y, Wang L, Pei X, Zhou D, He P, Hughes SS (2021) Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms. Ecotoxicol Environ Safe 208:111699

    CAS  Google Scholar 

  • Toribio J, Escalante AE, Soberón-Chávez G (2010) Rhamnolipids: production in bacteria other than Pseudomonas aeruginosa. Eur J Lipid Sci Technol 112(10):1082–1087

    CAS  Google Scholar 

  • Tripathi N, Singh RS, Hills CD (2019) Microbial removal of sulphur from petroleum coke (petcoke). Fuel 235:1501–1505

    CAS  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CCCR (2010) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22(2):231–241. https://doi.org/10.1007/s10532-010-9394-4

    Article  CAS  PubMed  Google Scholar 

  • Ubando AT, Africa ADM, Maniquiz-Redillas MC, Culaba AB, Chen WH, Chang JS (2021) Microalgalbiosorption of heavy metals: a comprehensive bibliometric review. J Hazard Mt 402:123431

    CAS  Google Scholar 

  • Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286

    CAS  PubMed  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotech Adv 26(3):266–291

    CAS  Google Scholar 

  • Villaverde J, Láiz L, Lara-Moreno A, González-Pimentel JL, Morillo E (2019) Bioaugmentation of PAH-contaminated soils with novel specific degrader strains isolated from a contaminated industrial site effect of hydroxypropyl-β-cyclodextrin as PAH bioavailability enhancer. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.02588

  • Volke-Sepúlveda TL, Gutiérrez-Rojas M, Favela-Torres E (2003) Biodegradation of hexadecane in liquid and solid-state fermentations by Aspergillus niger. Bioresour Technol 87(1):81–86

    PubMed  Google Scholar 

  • Wang CL, Ozuna SC, Clark DS, Keasling JD (2002) A deep-sea hydrothermal vent isolate, Pseudomonas aeruginosa CW961, requires thiosulfate for Cd2+ tolerance and precipitation. Biotech Lett 24(8):637–641

    CAS  Google Scholar 

  • Wang XB, Chi CQ, Nie Y, Tang YQ, Tan Y, Wu G (2011) Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Bioresour Technol 102:7755–7761

    CAS  PubMed  Google Scholar 

  • Whang LM, Liu PWG, Ma CC, Cheng SS (2008) Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151(1):155–163

    CAS  PubMed  Google Scholar 

  • White DA, Hird LC, Ali ST (2013) Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J Appl Microbiol 115(3):744–755

    CAS  PubMed  Google Scholar 

  • Wu HK, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mat 174(1–3):1–8

    CAS  Google Scholar 

  • Xu X, Liu W, Tian S, Wang W, Qi Q, Jiang P, Gao X, Li F, Li H, Yu H (2018) Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.02885

  • Yang J, Liu R, Song W, Yang Y, Cui F, Qiao C (2012) Construction of a genetically engineered microorganism that simultaneously degrades organochlorine and organophosphate pesticides. Appl Biochem Biotechnol 166(3):590–598

    CAS  PubMed  Google Scholar 

  • Yang T, Chen M, Wang J (2015) Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. Trend Analyt Chem 66:90–102

    CAS  Google Scholar 

  • Youssef N, Simpson DR, Duncan KE, McInerney MJ, Folmsbee M, Fincher T, Knapp RM (2007) In situ biosurfactant production by bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol 73(4):1239–1247

    CAS  PubMed  Google Scholar 

  • Yuan X, Xue N, Han Z (2021) A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. J Environ Sci 101:217–226

    Google Scholar 

  • Zeriouh H, Romero D, García-Gutiérrez L, Cazorla FM, de Vicente A, Pérez-García A (2011) The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol Plant-Microbe Interact 24(12):1540–1552

    CAS  PubMed  Google Scholar 

  • Zhang L, Zhang C, Cheng Z, Yao Y, Chen J (2013) Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by the bacterium Mycobacteriumcosmeticumbyf-4. Chemosphere 90:1340–1347

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tak, Y., Kaur, M., Tilgam, J., Kaur, H., Kumar, R., Gautam, C. (2022). Microbes Assisted Bioremediation: A Green Technology to Remediate Pollutants. In: Suyal, D.C., Soni, R. (eds) Bioremediation of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-030-86169-8_2

Download citation

Publish with us

Policies and ethics