Skip to main content

Bio-inoculants for Biodegradation and Bioconversion of Agrowaste: Status and Prospects

  • Chapter
  • First Online:
Bioremediation of Environmental Pollutants

Abstract

The development of efficient, applied and cost-effective approaches for agro-waste biodegradation is important to explore them as bioresource. The advanced waste degradation technologies are farmer-friendly, easy to adopt and yield productive inputs for sustainable agricultural productivity alongside producing biogas. These technologies, based on the bio-inoculants for waste bioconversion have also been developed for the production of bio-ethanol, biofuel, and other products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abatenh E, Gizaw B, Tsegaye Z et al (2017a) Application of microorganisms in bioremediation—review. J Environ Microbiol 1(1):02–09

    Google Scholar 

  • Abatenh E, Gizaw B, Tsegaye Z, Wassie M (2017b) The role of microorganisms in bioremediation—a review. Open J Environ Biol 2(1):038–046

    Google Scholar 

  • Agrawal R, Satlewal A, Gaur R, Anshu M, Kumar R, Gupta RP et al (2015) Improved saccharification of pilot-scale acid pretreated wheat straw by exploiting the synergistic behavior of lignocellulose degrading enzymes. RSC Adv 5:71462–71471. https://doi.org/10.1039/C5RA13360B

    Article  CAS  Google Scholar 

  • Agrawal R, Bhadana B, Mathur AS, Kumar R, Gupta RP, Satlewal A (2018) Improved enzymatic hydrolysis of pilot scale pretreated Rice straw at high Total solids loading. Front Energy Res 6:115

    Google Scholar 

  • Ahmad M, Pataczek L, Hilger TH, Zahir ZA, Hussain A, Rasche F, Schafleitner R, Solberg SØ (2018) Perspectives of microbial inoculation for sustainable development and environmental management. Front Microbiol 9:2992

    PubMed  PubMed Central  Google Scholar 

  • Ahring BK (2003) Perspectives for anaerobic digestion. In: Ahring BK et al (eds) Biomethanation I. Advances in biochemical engineering/biotechnology, vol 81. Springer, Berlin

    Google Scholar 

  • Ainsworth GC, Bisby GR (1995) Dictionary of the fungi. Commonwealth Mycological Institute, Kew, p 445

    Google Scholar 

  • Alonso Bocchini Martins D, Ferreira Alves do Prado H, Simoes Ribeiro Leite R, Ferreira H, de Souza MM (2011) Agroindustrial wastes as substrates for microbial enzymes production and source of sugar for bioethanol production. In: Integrated waste management, vol 2. IntechOpen, London

    Google Scholar 

  • Angelidaki I, Ellegaard L, Ahring BK (1993) A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia inhibition. Biotechnol Bioeng 42:159–166

    CAS  PubMed  Google Scholar 

  • Bai ZH, Zhang HX, Qi HY, Peng XW, Li BJ (2004) Pectinase production by Aspergillus niger using waste water in solid state fermentation for eliciting plant disease resistance. Bioresour Technol 95:49–52

    CAS  PubMed  Google Scholar 

  • Bai X, Shi P, Liu Y (2014) Society: realizing China’s urban dream. Nature 509(7499):158–160

    PubMed  Google Scholar 

  • Bhuvaneshwari S, Hettiarachchi H, Meegoda JN (2019) Crop residue burning in India: policy challenges and potential solutions. Int J Environ Res Public Health 16:832

    CAS  PubMed Central  Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sust Energ Rev 16:1462–1476

    CAS  Google Scholar 

  • Chang AJ, Fan J, Wen X (2012) Screening of fungi capable of highly selective degradation of lignin in rice straw. Int Biodeterior Biodegrad 72:26–30

    CAS  Google Scholar 

  • Chiranjeevi T, Mattam AJ, Vishwakarma KK, Uma A, Peddy VR, Gandham S, Ravindra Velankar H (2018) Assisted single-step acid pretreatment process for enhanced delignification of rice straw for bioethanol production. ACS Sustain Chem Eng 6:8762–8774

    CAS  Google Scholar 

  • Cui J, Mai G, Wang Z, Liu Q, Zhou Y, Ma Y, Liu C (2019) Metagenomic insights into a cellulose-rich niche reveal microbial cooperation in cellulose degradation. Front Microbiol 10:618

    PubMed  PubMed Central  Google Scholar 

  • Dagar SS, Singh N, Goel N, Kumar S, Puniya AK (2015) Role of anaerobic fungi in wheat straw degradation and effects of plant feed additives on rumen fermentation parameters in vitro. Benefic Microbes 6(3):353–360

    CAS  Google Scholar 

  • Datta A, Mrinal A. Emmanuel, N. K. Ram, Sunil Dhingra (2020) Crop residue management: solution to achieve better air quality. TERI, Discussion report (2020)

    Google Scholar 

  • Dinis MJ, Bezerra RMF, Nunes F, Dias AA, Guedes CV, Ferreira LMM, Cone JW, Marques GSM, Barros ARN, Rodrigues MAM (2009) Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour Technol 100:4829–4835

    CAS  PubMed  Google Scholar 

  • Döhler H, Eckel H, Frisch J (2006) Energiepflanzen. KTBL, Darmstadt

    Google Scholar 

  • Dong Y, Butler EC, Philp RP, Krumholz LR (2011) Impacts of microbial community composition on isotope fractionation during reductive dechlorination of tetra chloroethylene. Biodegradation 22(2):431–444

    CAS  PubMed  Google Scholar 

  • EPA (1998) National air pollutant emission trends. 1990–1998

    Google Scholar 

  • Ganash MA, Abdel Ghany TM, Reyad AM (2016) Pleurotus ostreatus as a biodegradator for organophosphorus insecticide malathion. J Environ Anal Toxicol 6(369):2161–0525

    Google Scholar 

  • Gautam SP, Bundela PS, Pandey AK, Jamaluddin Awasthi MK, Sarsaiya S (2012) Diversity of cellulolytic microbes and the biodegradation of municipal solid waste by a potential strain. Int J Microbiol 1:325907. 12 p

    Google Scholar 

  • Giri K, Rai JPN, Pandey S, Mishra G, Kumar R, Suyal DC (2017a) Performance evaluation of isoproturon-degrading indigenous bacterial isolates in soil microcosm. Chem Ecol 33(9):817–825. https://doi.org/10.1080/02757540.2017.1393535

    Article  CAS  Google Scholar 

  • Giri K, Suyal DC, Mishra G, Pandey S, Kumar R, Meena DK, Rai JPN (2017b) Biodegradation of isoproturon by Bacillus pumilus K1 isolated from foothill agroecosystem of North West Himalaya. Proc Natl Acad Sci India Sect B Biol Sci 87(3):839–848. https://doi.org/10.1007/s40011-015-0667-x

    Article  CAS  Google Scholar 

  • Goel R, Debbarma P, Kumar P, Suyal DC, Kumar S, Mahapatra BS (2020) Assessment of soil chemical quality, soil microbial population and plant growth parameters under organic and conventional rice–wheat cropping system. Agric Res 10:193–204

    Google Scholar 

  • Gupta SK, Gupta S, Panigrahy K, Panda S, Shinde KP, Dey D (2017) Importance of livestock in Indian scenario: a review. Bhartiya Krishi Anusandhan Patrika 32:245249

    Google Scholar 

  • Himmel ME, Xu Q, Luo Y, Ding S-Y, Lamed R, Bayer EA (2010) Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1:323–341

    CAS  Google Scholar 

  • Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management. World Bank, Washington, DC

    Google Scholar 

  • Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkolazka A, Paszczynski A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41(6):941–962. https://doi.org/10.1093/femsre/fux049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayathilakan K, Sultana K, Radhakrishna K, Bawa AS (2012) Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. J Food Sci Technol 49:278–293

    CAS  PubMed  Google Scholar 

  • Joshi D, Chandra R, Suyal DC, Kumar S, Goel R (2019) Impact of bioinoculants Pseudomonas jesenii MP1 and Rhodococcus qingshengii S10107 on Cicer arietinum yield and soil nitrogen status. Pedosphere 29(3):388–399

    Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegr Life Sci 1:289–320

    Google Scholar 

  • Joyce BL, Stewart CN Jr (2012) Designing the perfect plant feedstock for biofuel production: using the whole buffalo to diversify fuels and products. Biotechnol Adv 30:1011–1022

    CAS  PubMed  Google Scholar 

  • Kausar H, Sariah M, Saud HM, Alam MZ, Ismail MR (2010) Development of compatible lignocellulolytic fungal consortium for rapid composting of rice straw. Inter Biodeter Biodegrad 64:594–600

    CAS  Google Scholar 

  • Kharrazi SM, Younesi H, Abedini-Torghabeh J (2014) Microbial biodegradation of waste materials for nutrients enrichment and heavy metals removal: an integrated composting-vermicomposting process. Int Biodeterior Biodegrad 92:41–48. https://doi.org/10.1016/j.ibiod.2014.04.011

    Article  CAS  Google Scholar 

  • Kornillowicz-Kowalska T, Bohacz J (2011) Biodegradation of keratin waste: theory and practical aspects. Waste Manag 31:1689–1701

    CAS  PubMed  Google Scholar 

  • Kour D, Kaur T, Devi R, Yadav A, Singh M et al (2021) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res 28:24917–24939

    CAS  Google Scholar 

  • Kumar BL, Sai Gopal DVR (2015) Effective role of indigenous microorganisms for sustainable environment. 3. Biotech 5:867–876

    Google Scholar 

  • Kumar S, Suyal DC, Bhoriyal M, Goel R (2018) Plant growth promoting potential of psychrotolerant Dyadobacter sp. for pulses and finger millet and impact of inoculation on soil chemical properties and diazotrophic abundance. J Plant Nutr 41(8):1035–1046

    CAS  Google Scholar 

  • Kumar P, Gupta SB, Anurag RS (2019) Bioremediation of Cadmium by mixed indigenous isolates Serratia liquefaciens BSWC3 and Klebsiella pneumoniae RpSWC3 isolated from Industrial and mining affected water samples. Pollution 5(2):351–360. https://doi.org/10.22059/poll.2018.268603.533

    Article  CAS  Google Scholar 

  • Kumar P, Dash B, Suyal DC, Gupta SB, Singh AK, Chowdhury T, Soni R (2021) Characterization of arsenic-resistant Klebsiella pneumoniae RnASA11 from contaminated soil and water samples and its bioremediation potential. Curr Microbiol. https://doi.org/10.1007/s00284-021-02602-w

  • Labeeuw L, Martone PT, Boucher Y et al (2015) Ancient origin of the biosynthesis of lignin precursors. Biol Direct 10:23

    PubMed  PubMed Central  Google Scholar 

  • Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31(4):575–584

    CAS  PubMed  Google Scholar 

  • Lasekan A, Bakar A, Hashim D (2013) Potential of chicken by-products as sources of useful biological resources. Waste Manag 33:552–565

    CAS  PubMed  Google Scholar 

  • Leisola M, Pastinen O, Axe DD (2012) Lignin-designed randomness. Biocomplexity 2012:1–11

    Google Scholar 

  • Lim S, Matu SU (2015) Utilization of agro-wastes to produce biofertilizer. Int J Energy Environ Eng 6:31–35. https://doi.org/10.1007/s40095-014-0147-8

    Article  CAS  Google Scholar 

  • Lo YC, Saratale GD, Chen WM, Bai MD, Chang JS (2009) Isolation of cellulose- hydrolytic bacteria and applications of the cellulolytic enzyme for cellulosic biohydrogen production. Enzym Microb Technol 44:417–425

    CAS  Google Scholar 

  • Loow Y-L, Wu TY, Lim YS, Tan KA, Siow LF, Md Jahim J, Mohammad AW (2017) Improvement of xylose recovery from the stalks of oil palm fronds using inorganic salt and oxidative agent. Energy Convers Manag 138:248–260

    CAS  Google Scholar 

  • Lundell TK, Makela MR, Hilden K (2010) Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review. J Basic Microbiol 50:5–20

    CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maza M, Pajot HF, Amoroso MJ (2014) Post-harvest sugarcane residue degradation by autochthonous fungi. Int Biodeterior Biodegrad 87:18–25

    CAS  Google Scholar 

  • Mittal S, Ahlgrena EO, Shukla PR (2018) Barriers to biogas dissemination in India: a review. Energy Policy 112:361–370

    CAS  Google Scholar 

  • MoA&FW (2019) Report of the committee on review of the scheme “promotion of agricultural mechanisation for in-situ management of crop residue in states of Punjab, Haryana, Uttar Pradesh and NCT of Delhi”. Department of Agriculture, Cooperation & Farmers Welfare, Ministry of Agriculture and Farmers Welfare, Government of India

    Google Scholar 

  • Negi H, Rani A, Joshi S, Sharma PK (2020) Biodiversity of microbial community: association with sustainable hill agroecosystems. In: Goel R, Soni R, Suyal DC (eds) Microbiological advancements for higher altitude agro-ecosystems & sustainability. Springer Nature, Singapore, pp 163–182

    Google Scholar 

  • Obi F, Ugwuishiwu B, Nwakaire J (2016) Agricultural waste concept, generation, utilization and management. Niger J Technol 35:957–964

    Google Scholar 

  • Olivier JGJ, Schure KM, Peters JAHW (2017) Trends in global CO2 and total greenhouse gas emissions, report (2017). PBL publication number: 2674. PBL Netherlands Environmental Assessment Agency, The Hague

    Google Scholar 

  • Pan I, Dam B, Sen SK (2012) Composting of common organic wastes using microbial inoculants. 3. Biotech 2:127–134

    Google Scholar 

  • Parte SG, Mohekar AD, Kharat AS (2017) Microbial degradation of pesticide: a review. Afr J Microbiol Res 11:992–1012

    CAS  Google Scholar 

  • Rajwar J, Chandra R, Suyal DC, Tomer S, Kumar S, Goel R (2018) Comparative phosphate solubilizing efficiency of psychrotolerant Pseudomonas jesenii MP1 and Acinetobacter sp. ST02 against chickpea for sustainable hill agriculture. Biologia 73(8):793–802

    CAS  Google Scholar 

  • Rao P, Rathod V (2018) Valorization of food and agricultural waste: a step towards greener future. Chem Rec 19(9):1858–1871

    PubMed  Google Scholar 

  • Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IMI, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    CAS  PubMed  Google Scholar 

  • Rawat N, Sharma M, Suyal DC, Singh DK, Joshi D, Singh P, Goel R (2019) Psyhcrotolerant bio-inoculants and their co-inoculation to improve Cicer arietinum growth and soil nutrient status for sustainable mountain agriculture. J Soil Sci Plant Nutr 19(3):639–647

    CAS  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996. https://doi.org/10.1104/pp.111.175448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE, O’Hara CP, Simpson RJ (2001) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil microorganisms. Plant Soil 229:47–56

    CAS  Google Scholar 

  • Sahu PK, Singh DP, Prabha R, Meena KK, Abhilash PC (2018) Connecting microbial capabilities with the soil and plant health: options for agricultural sustainability. Ecol Indic 105:601–612

    Google Scholar 

  • Sahu B, Singh AK, Chaubey AK, Soni R (2020) Effect of rhizobium and phosphate solubilizing bacteria inoculation on growth and yield performance of Lathyrus (Lathyrus sativus L.) in Chhattisgarh Plains. Curr J Appl Sci Technol 39(48):237–247

    Google Scholar 

  • Said S, Fonseca MJV, Siessere V (1991) Pectinase production byPenicillium frequentans. World J Microbiol Biotechnol 7:607–608

    CAS  PubMed  Google Scholar 

  • Santra SC, Mallick A, Samal AC (2015) Biofertilizer for bioremediation. Recent trends in biofertilizers. IK International Publishing House, New Delhi, pp 205–234

    Google Scholar 

  • Sarkar P, Chourasia R (2017) Bioconversion of organic solid wastes into biofortified compost using a microbial consortium. Int J Recycl Org Waste Agric 6:321–334

    Google Scholar 

  • Sárvári Horváth I, Tabatabaei M, Karimi K, Kumar R (2016) Recent updates on biogas production—a review. Biofuel Res J 10:394–402. https://doi.org/10.18331/BRJ2016.3.2.4

    Article  Google Scholar 

  • Sharma AK, Pandit J (2016) Biodegradation of chlorpyrifos by microbes—a review. Discov Biotechnol 7(18):1–10

    CAS  Google Scholar 

  • Singh S, Nain L (2014) Microorganisms in the conversion of agricultural wastes to compost. Proc Indian Natn Sci Acad 80(2):473–481

    Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471

    CAS  PubMed  Google Scholar 

  • Singh DP et al (2019) Agrowaste bioconversion and microbial fortification have prospects for soil health, crop productivity, and eco-enterprising. Int J Recycl Org Waste Agric:1–16. https://doi.org/10.1007/s40093-019-0243-0. Corpus ID: 91983679

  • Singh M, Singh D, Rai P, Suyal DC, Saurabh S, Soni R, Giri K, Yadav AN (2021) Fungi in remediation of hazardous wastes: current status and future. In: Yadav AN (ed) Recent trends in mycological research, fungal biology. Springer Nature, Switzerland

    Google Scholar 

  • Siracusa V (2019) Microbial degradation of synthetic biopolymers waste. Polymers 11(6):1066

    CAS  PubMed Central  Google Scholar 

  • Sonwani R, Gupta SB, Soni R (2020) Production of bioethanol from biodegraded alkali pretreated rice straw. Vegetos 33:128–134. https://doi.org/10.1007/s42535-019-00089-2

    Article  Google Scholar 

  • Suyal DC, Soni R, Singh DK, Goel R (2021) Microbiome change of agricultural soil under organic farming practices. Biologia 76:1315–1325

    CAS  Google Scholar 

  • Tian JH, Pourcher AM, Bouchez T et al (2014) Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl Microbiol Biotechnol 98:9527–9544

    CAS  PubMed  Google Scholar 

  • Tomer S, Suyal DC, Rajwar J, Yadav A, Shouche Y, Goel R (2017) Isolation and characterization of phosphate solubilizing bacteria from Western Indian Himalayan soils. 3Biotech 7(2):1–8

    Google Scholar 

  • Urbanová M, Šnajdr J, Baldrian P (2015) Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol Biochem 84:53–64

    Google Scholar 

  • Vishan I, Sivaprakasam S, Kalamdhad A (2017) Isolation and identification of bacteria from rotary drum compost of water hyacinth. Int J Recycl Org Waste Agric 6:245–253

    Google Scholar 

  • Wan C, Li Y (2010) Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzym Microb Technol 47:31–36

    CAS  Google Scholar 

  • Wei J, Liang G, Alex J, Zhang T, Ma C (2020) Research progress of energy utilization of agricultural waste in China: bibliometric analysis by citespace. Sustain 12. https://doi.org/10.3390/su12030812

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860. https://doi.org/10.1007/s00253-009-2246-7

    Article  CAS  PubMed  Google Scholar 

  • Willis JD, Klingeman WE, Oppert C, Oppert B, Jurat-Fuentes JL (2010) Characterization of cellulolytic activity from digestive fluids of Dissosteira carolina (Orthoptera: Acrididae). Comp Biochem Physiol B: Biochem Mol Biol 157(3):267–272

    Google Scholar 

  • Xie GH, Fang Y, Li S, Li M, Yang Y, Fu T, Bao W (2019) Review of the definition, classification, and resource assessment of biowaste. J China Agric Univ 24:1–9

    Google Scholar 

  • Xue S, Song J, Wang X, Shang Z, Sheng C, Li C, Zhu Y, Liu J (2020) A systematic comparison of biogas development and related policies between China and Europe and corresponding insights. Renew Sust Energ Rev 117:109474

    Google Scholar 

  • Zeng Y, De Guardia A, Dabert P (2016) Improving composting as a post-treatment of anaerobic digestate. Bioresour Technol 201:293–303

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V. et al. (2022). Bio-inoculants for Biodegradation and Bioconversion of Agrowaste: Status and Prospects. In: Suyal, D.C., Soni, R. (eds) Bioremediation of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-030-86169-8_16

Download citation

Publish with us

Policies and ethics