Skip to main content

Spectroscopy and Its Advancements for Environmental Sustainability

  • Chapter
  • First Online:
Bioremediation of Environmental Pollutants

Abstract

Several chemical compounds and contaminants accumulate in our environment and cause pollution. Identification, detection, and disposal of these pollutants require modification of the existing and/or synthesis of the novel chemical compounds through a green approach. The morphological structure of chemicals can be analyzed through myriads spectroscopy techniques. Spectroscopy has proved itself as an important method for qualitative analysis and quantitative detection of pollutants. The role of spectroscopic techniques popularly involves the use of electromagnetic radiation to identify different chemicals and pollutants structures based on the principle of absorption and radiation. Spectroscopic techniques involving UV-Visible, Infra-Red (IR), X-ray, Nuclear magnetic resonance (NMR), and atomic absorption spectroscopy (AAS) are the most popular techniques to identify hazardous chemicals and their derivatives for making the environment clean and safe. In this chapter, we have discussed the important spectroscopy techniques and approaches that are being explored for environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed F, Bibi MH, Asaeda T, Mitchell CPJ, Ishiga H, Fukushima T (2012) Elemental composition of sediments in Lake Jinzai, Japan: assessment of sources and pollution. Environ Monit Assess 184:4383–4396

    Article  CAS  PubMed  Google Scholar 

  • Akoka S, Barantin L, Trierweiler M (1999) Concentration measurement by proton NMR using the ERETIC method. Anal Chem 71(13):2554–2557

    Article  CAS  PubMed  Google Scholar 

  • Ali N, Khan A, Malik S, Badshah S, Bilal M, Iqbal HM (2020) Chitosan-based green sorbent material for cations removal from an aqueous environment. J Environ Chem Eng 8(5):104064

    Article  CAS  Google Scholar 

  • Alves FEG, Alexandre e Silva LM, Ferreira AG (2007) Screening organic compounds in urban wastewater using a hyphenated system and NMR pattern recognition. eMagRes:173–186

    Google Scholar 

  • Alves FEG, Alexandre e Silva LM, Ferreira AG (2015) Advancements in waste water characterization through NMR spectroscopy. Magn Reson Chem 53(9):648–657

    Article  Google Scholar 

  • Anscombe N (2008) Attosecond analysis. Nat Photonics Tech Focus Spectrosc 2:548

    Article  Google Scholar 

  • Aydin F, Yilmaz E, Ölmez E, Soylak M (2020) Cu2O-CuO ball like/multiwalled carbon nanotube hybrid for fast and effective ultrasound-assisted solid phase extraction of uranium at ultra-trace level prior to ICP-MS detection. Talanta 207:120–295

    Article  Google Scholar 

  • Bohleber P, Roman M, Šala M, Barbante C (2020) Imaging the impurity distribution in glacier ice cores with LA-ICP-MS. J Anal At Spectrom 35(10):2204–2212

    Article  CAS  Google Scholar 

  • Bolea-Fernandez E, Rua-Ibarz A, Velimirovic M, Tirez K, Vanhaecke F (2020) Detection of microplastics using inductively coupled plasma-mass spectrometry (ICP-MS) operated in single-event mode. J Anal At Spectrom 35(3):455–460

    Article  CAS  Google Scholar 

  • Bon D, Gilard V, Massou S, Pérès G, Malet-Martino M, Martino R, Desmoulin F (2006) In vivo 31 P and 1 H HR-MAS NMR spectroscopy analysis of the unstarvedAporrectodeacaliginosa (Lumbricidae). Biol Fertil Soils 43(2):191–198

    Article  CAS  Google Scholar 

  • Bundy JG, Lenz EM, Bailey NJ, Gavaghan CL, Svendsen C, Spurgeon D, Hankard PK, Osborn D, Weeks JM, Trauger SA, Speir P, Sanders I, Lindon JC, Nicholson JK, Tang H (2002) Metabonomic assessment of toxicity of 4-fluoroaniline, 3, 5-difluoroaniline and 2-fluoro-4-methylaniline to the earthworm Eisenia veneta (Rosa): identification of new endogenous biomarkers. Environ Toxicol Chem 21(9):1966–1972

    Article  CAS  PubMed  Google Scholar 

  • Bundy JG, Davey MP, Viant MR (2009) Environmental metabolomics: a critical review and future perspectives. Metabolomics 5(1):3–21

    Article  CAS  Google Scholar 

  • Bunescu A, Garric J, Vollat B, Canet-Soulas E, Graveron-Demilly D, Fauvelle F (2010) In vivo proton HR-MAS NMR metabolic profile of the freshwater cladoceran Daphnia magna. Mol BioSyst 6(1):121–125

    Article  CAS  PubMed  Google Scholar 

  • Burda C, El-Sayed MA (2000) High-density femtosecond transient absorption spectros copy of semiconductor nanoparticles. A tool to investigate surface quality. Pure Appl Chem 72(1–2):165–177

    Article  CAS  Google Scholar 

  • Chakraborty J, Das S (2014) Characterization and cadmium-resistant gene expression of biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11. Environ Sci Pollut Res 21(24):14188–14201

    Article  CAS  Google Scholar 

  • Chakraborty J, Das S (2016) Characterization of the metabolic pathway and catabolic gene expression in biphenyl degrading marine bacterium Pseudomonas aeruginosa JP-11. Chemosphere 144:1706–1714

    Article  CAS  PubMed  Google Scholar 

  • Charlton AJ, Donarski JA, Jones SA, May BD, Thompson KC (2006) The development of cryoprobe nuclear magnetic resonance spectroscopy for the rapid detection of organic contaminants in potable water. J Environ Monit 8(11):1106–1110

    Article  CAS  PubMed  Google Scholar 

  • Conte P, Alonzo G (2007) Environmental NMR: fast-field-cycling Relaxometry. EMagRes:389–398

    Google Scholar 

  • Conte P, Spaccini R, Piccolo A (2004) State of the art of CPMAS 13C-NMR spectroscopy applied to natural organic matter. Prog Nucl Magn Reson Spectrosc 44(3–4):215–223

    Article  CAS  Google Scholar 

  • Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem Rev 104(2):939–986

    Article  CAS  PubMed  Google Scholar 

  • Courtier-Murias D, Farooq H, Masoom H, Botana A, Soong R, Longstaffe JG, Simpson MJ, Maas WE, Fey M, Andrew B, Struppe J, Hutchins H, Krishnamurthy S, Kumar R, Monette M, Stronks HJ, Hume A, Simpson AJ (2012) Comprehensive multiphase NMR spectroscopy: basic experimental approaches to differentiate phases in heterogeneous samples. J Magn Reson 217:61–76

    Article  CAS  PubMed  Google Scholar 

  • Cui C, Ma L, Shi J, Lin K, Luo Q, Liu Y (2014) Metabolic pathway for degradation of anthracene by halophilic Martelellasp. AD-3. Int Biodeterior Biodeg 89:67–73

    Article  CAS  Google Scholar 

  • Danieli E, Blümich B, Casanova F (2007) Mobile nuclear magnetic resonance. eMagRes 1:849–861

    Google Scholar 

  • Debbarma P, Raghuwanshi S, Singh J, Suyal DC, Zaidi MGH, Goel R (2017) Comparative in situ biodegradation studies of polyhydroxybutyrate film composites. 3Biotech 7(178):1–9. https://doi.org/10.1007/s13205-017-0789-3

    Article  Google Scholar 

  • Dixon WT, Schaefer J, Sefcik MD, Stejskal EO, McKay R (1982) Total suppression of sidebands in CPMAS C-13 NMR. J Magn Reson 49(2):341–345

    CAS  Google Scholar 

  • Doshi H, Ray A, Kothari IL (2007) Bioremediation potential of live and dead spirulina: spectroscopic, kinetics and SEM studies. Biotechnol Bioeng 96(6):1051–1063

    Article  CAS  PubMed  Google Scholar 

  • Doshi H, Ray A, Kothari IL (2008) Bioremediation potential of chlorella: spectroscopic, kinetics, and SEM studies. Int J Phytoremediation 10(4):264–277

    Article  CAS  PubMed  Google Scholar 

  • Dumas ME, Maibaum EC, Teague C, Ueshima H, Zhou B, Lindon JC, Nicholson JK, Stamler J, Elliott P, Chan Q, Holmes E (2006) Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP study. Anal Chem 78(7):2199–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn RC, Xie X, Simon JD (1993) Real-time spectroscopic techniques for probing conformational dynamics of heme proteins. Methods Enzymol 226:77–198

    Google Scholar 

  • Dyer JR (1965) Applications of absorption spectroscopy of organic compounds. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Farooq H, Courtier-Murias D, Soong R, Bermel W, Kingery WM, Simpson AJ (2013) HR-MAS NMR spectroscopy: a practical guide for natural samples. Curr Org Chem 17(24):3013–3031

    Article  CAS  Google Scholar 

  • Farooq H, Courtier-Murias D, Simspon MJ, Maas WE, Fey M, Andrew B, Struppe J, Hutchins H, Krishnamurthy S, Kumar R, Monette M, Stronks HJ, Simpson AJ (2015) Characterisation of oil contaminated soils by comprehensive multiphase NMR spectroscopy. Environ Chem 12(2):227–235

    Article  CAS  Google Scholar 

  • Ferreira AG, Lião LM, Monteiro MR (2007) Biofuels. eMagRes:529–540

    Google Scholar 

  • Flores K, Turley RS, Valdes C, Ye Y, Cantu J, Hernandez-Viezcas JA, Gardea-Torresdey JL (2021) Environmental applications and recent innovations in single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Appl Spectrosc Rev 56(1):1–26

    Article  CAS  Google Scholar 

  • Ghosh S, Prasanna VL, Sowjanya B, Srivani P, Alagaraja M, Banji D (2013) Inductively coupled plasma–optical emission spectroscopy: a review. Asian J Pharm Anal 3(1):24–33

    Google Scholar 

  • Godejohann M (2007) Environmental NMR: hyphenated methods. eMagRes 477–492

    Google Scholar 

  • Gudlavalleti SK, Szymanski CM, Jarrell HC, Stephens DS (2006) In vivo determination of Neisseria meningitidis serogroup a capsular polysaccharide by whole cell high-resolution magic angle spinning NMR spectroscopy. Carbohydr Res 341(4):557–562

    Article  CAS  PubMed  Google Scholar 

  • Hatcher PG, Bortiatynski JM, Minard RD, Dec J, Bollag JM (1993) Use of high-resolution carbon-13 NMR to examine the enzymatic covalent binding of carbon-13-labeled 2, 4-dichlorophenol to humic substances. Environ Sci Technol 27(10):2098–2103

    Article  CAS  Google Scholar 

  • Hertkorn N (2007) Environmental NMR: solution-state methods. eMagRes:55–74

    Google Scholar 

  • Holmes JD, Smith PR, Evans-Gowing R, Richardson DJ, Russell DA, Sodeau JR (1995) Energy-dispersive X-ray analysis of the extracellular cadmium sulfifide crystallites of Klebsiella aerogenes. Arch Microbiol 163(2):143–147

    Article  CAS  PubMed  Google Scholar 

  • Hou L (2013) Steady state and time resolved spectroscopy of photoswitchable systems. Doctoral dissertation, University of Groningen, Netherlands

    Google Scholar 

  • Hughes CE, Williams PA, Harris KD (2014) “CLASSIC NMR”: An in-situ NMR strategy for mapping the time-evolution of crystallization processes by combined liquid-state and solid-state measurements. Angew Chem 126(34):9085–9089

    Article  Google Scholar 

  • Jiménez-Lamana J, Marigliano L, Allouche J, Grassl B, Szpunar J, Reynaud S (2020) A novel strategy for the detection and quantification of nanoplastics by single particle inductively coupled plasma mass spectrometry (ICP-MS). Anal Chem 92(17):11664–11672

    Article  PubMed  Google Scholar 

  • Jones OA, Dias DA (2007) Environmental metabolomics of soil organisms. eMagRes:1–12

    Google Scholar 

  • Kazy SK, D’Souza SF, Sar P (2009) Uranium and thorium sequestration by a Pseudo monas sp.: mechanism and chemical characterization. J Hazard Mater 163(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Kohl SD, Toscano PJ, Hou W, Rice JA (2000) Solid-state 19F NMR investigation of hexafluorobenzene sorption to soil organic matter. Environ Sci Technol 34(1):204–210

    Article  CAS  Google Scholar 

  • Kour D, Kaur T, Devi R, Yadav A, Singh M et al (2021) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res 28:24917–24939

    Article  CAS  Google Scholar 

  • Krzewicka B (2010) Umbilicaria rhizinata comb. nov. (Lichenized ascomycota). Lichenologist 42:491–493

    Google Scholar 

  • Kuznetsova OV, Bychkova YV, Timerbaev AR (2020) Development and validation of a sector-field inductively coupled plasma–mass spectrometry (ICP-MS) method for analyzing the diagenesis-designating metals in marine sediments. Anal Lett 53(4):563–573

    Article  CAS  Google Scholar 

  • Lam B, Simpson AJ (2008) Direct 1H NMR spectroscopy of dissolved organic matter in natural waters. Analyst 133(2):263–269

    Article  CAS  PubMed  Google Scholar 

  • Lam B, Simpson AJ (2009) Investigating aggregation in Suwannee River, USA, dissolved organic matter using diffusion-ordered nuclear magnetic resonance spectroscopy. Environ Toxicol Chem 28(5):931–939

    Article  CAS  PubMed  Google Scholar 

  • Lam B, Diamond ML, Simpson AJ, Makar PA, Truong J, Hernandez-Martinez NA (2005) Chemical composition of surface films on glass windows and implications for atmospheric chemistry. Atmos Environ 39(35):6578–6586

    Article  CAS  Google Scholar 

  • Lam L, Soong R, Sutrisno A, de Visser R, Simpson MJ, Wheeler HL, Campbell M, Maas WE, Fey M, Gorissen A, Hutchins H, Andrew B, Struppe J, Krishnamurthy S, Kumar R, Monette M, Stronks HJ, Hume A, Simpson AJ (2014) Comprehensive multiphase NMR spectroscopy of intact 13C-labeled seeds. J Agric Food Chem 62(1):107–115

    Article  CAS  PubMed  Google Scholar 

  • Lankadurai BP, Nagato EG, Simpson MJ (2013) Environmental metabolomics: an emerging approach to study organism responses to environmental stressors. Environ Rev 21(3):180–205

    Article  CAS  Google Scholar 

  • Leblanc L, Dufour E (2002) Monitoring the identity of bacteria using their intrinsic fluorescence. FEMS Microbiol Lett 211(2):147–153

    Article  CAS  PubMed  Google Scholar 

  • Lelièvre C, Rouwane A, Poirier I, Bertrand M, Gallon RK, Murat A (2020) ED-XRF: a promising method for accurate and rapid quantification of metals in a bacterial matrix. Environ Technol:1–9

    Google Scholar 

  • Leśniewska B, Arciszewska Ż, Wawrzyńczak A, Jarmolińska S, Nowak I, Godlewska-Żyłkiewicz B (2020) Method development for determination of trace amounts of palladium in environmental water samples by ICP-MS/MS after pre-concentration on thiol-functionalized MCM-41 materials. Talanta 217:121004

    Article  PubMed  Google Scholar 

  • Levitt MH (2013) Spin dynamics: basics of nuclear magnetic resonance. Wiley, Chichester

    Google Scholar 

  • Li W (2006) Multidimensional HRMAS NMR: a platform for in vivo studies using intact bacterial cells. Analyst 131(7):777–781

    Article  CAS  PubMed  Google Scholar 

  • Lindon JC, Holmes E (1999) Metabonomics: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):1181–1189

    Article  PubMed  Google Scholar 

  • Longstaffe JG, Simpson MJ, Maas W, Simpson AJ (2010) Identifying components in dissolved humic acid that bind organofluorine contaminants using 1H {19F} reverse heteronuclear saturation transfer difference NMR spectroscopy. Environ Sci Technol 44(14):5476–5482

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Cao X, Olk DC, Chu W, Schmidt-Rohr K (2017) Advanced solid-state NMR spectroscopy of natural organic matter. Prog Nucl Magn Reson Spectrosc 100:17–51

    Article  CAS  PubMed  Google Scholar 

  • Margui E, Van Grieken R (2013) X-ray fluorescence spectrometry and related techniques: an introduction. Momentum Press, New York

    Book  Google Scholar 

  • Masoom H, Courtier-Murias D, Farooq H, Soong R, Kelleher BP, Zhang C, Maas WE, Fey M, Kumar R, Monette M, Stronks HJ, Simpson MJ, Simpson AJ (2016) Soil organic matter in its native state: unravelling the most complex biomaterial on earth. Environ Sci Technol 50(4):1670–1680

    Article  CAS  PubMed  Google Scholar 

  • Mazzei P, Piccolo A (2015) Interactions between natural organic matter and organic pollutants as revealed by NMR spectroscopy. Magn Reson Chem 53(9):667–678

    Article  CAS  PubMed  Google Scholar 

  • Merusomayajula KV, Tirukkovalluri SR, Kommula RS, Chakkirala SV, Vundavilli JK, Kottapalli PKS (2021) Development and validation of a simple and rapid ICP-OES method for quantification of elemental impurities in voriconazole drug substance. Futur J Pharm Sci 7(1):1–12

    Article  Google Scholar 

  • Michel N, Akoka S (2004) The application of the ERETIC method to 2D-NMR. J Magn Reson 168(1):118–123

    Article  CAS  PubMed  Google Scholar 

  • Moore EJ, Milner OI, Glass JR (1966) Application of atomic absorption spectroscopy to trace analyses of petroleum. Microchem J 10(1):148–157

    Article  CAS  Google Scholar 

  • Moreno-Andrade I, Regidor-Alfageme E, Durazo A, Field JA, Umlauf K, Sierra-Alvarez R (2020) LC-ICP-OES method for antimony speciation analysis in liquid samples. J Environ Sci Health A 55(4):457–463

    Article  CAS  Google Scholar 

  • Nagato EG, Simpson MJ (2007) NMR-based metabolomics of daphnia magna: insights into aquatic ecosystem health. eMagRes:315–324

    Google Scholar 

  • Nanny MA, Bortiatynski JM, Hatcher PG (1997) Non-covalent interactions between acenaphthenone and dissolved fulvic acid as determined by 13C NMR T 1 relaxation measurements. Environ Sci Technol 31(2):530–534

    Article  CAS  Google Scholar 

  • Nestle N, Morris R, Baumann T (2007) Environmental NMR: magnetic resonance imaging. eMagRes:575–586

    Google Scholar 

  • Nielsen UG, Paik Y, Julmis K, Schoonen MA, Reeder RJ, Grey CP (2005) Investigating sorption on iron−oxyhydroxide soil minerals by solid-state NMR spectroscopy: a 6Li MAS NMR study of adsorption and absorption on goethite. J Phys Chem B 109(39):18310–18315

    Article  CAS  PubMed  Google Scholar 

  • Pautler BG, Simpson AJ, Simpson MJ, Tseng LH, Spraul M, Dubnick A, Sharp MJ, Fitzsimons SJ (2011) Detection and structural identification of dissolved organic matter in Antarctic glacial ice at natural abundance by SPR-W5-WATERGATE 1H NMR spectroscopy. Environ Sci Technol 45(11):4710–4717

    Article  CAS  PubMed  Google Scholar 

  • Preston CM (2007) Environmental NMR: solid-state methods. eMagRes:29–42

    Google Scholar 

  • Rentz JA, Alvarez PJ, Schnoor JL (2008) Benzo [a] pyrene degradation by Sphingomo nasyanoikuyaeJAR02. Environ Pollut 151(3):669–677

    Article  CAS  PubMed  Google Scholar 

  • Righi V, Apidianakis Y, Mintzopoulos D, Astrakas L, Rahme LG, Tzika AA (2010) In vivo high-resolution magic angle spinning magnetic resonance spectroscopy of Drosophila melanogaster at 14.1 T shows trauma in aging and in innate immune-deficiency is linked to reduced insulin signaling. Int J Mol Med 26(2):175–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Righi V, Apidianakis Y, Psychogios N, Rahme LG, Tompkins RG, Tzika AA (2014) In vivo high-resolution magic angle spinning proton NMR spectroscopy of Drosophila melanogaster flies as a model system to investigate mitochondrial dysfunction in Drosophila GST2 mutants. Int J Mol Med 34(1):327–333

    Article  CAS  PubMed  Google Scholar 

  • Sachleben JR, Chefetz B, Deshmukh A, Hatcher PG (2004) Solid-state NMR characterization of pyrene cuticular matter interactions. Environ Sci Technol 38(16):4369–4376

    Article  CAS  PubMed  Google Scholar 

  • Samuel MS, Sivaramakrishna A, Mehta A (2014) Bioremediation of p-Nitrophenol by Pseudomonas putida 1274 strain. J Environ Health Sci Eng 12(1):53

    Article  PubMed  PubMed Central  Google Scholar 

  • Scepanovic OR, Volynskaya Z, Kong CR, Galindo LH, Dasari RR, Feld MS (2009) A multimodal spectroscopy system for real-time disease diagnosis. Rev Sci Instrum 80(4):043103

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahzad A, Kohler G, Knapp M, Gaubitzer E, Puchinger M, Edetsberger M (2009) Emerging applications of fluorescence spectroscopy in medical microbiology field. J Transl Med 7:99

    Article  PubMed  PubMed Central  Google Scholar 

  • Shamim K, Naik MM, Pandey A, Dubey SK (2013) Isolation and identifification of Aeromonas caviaestrain KS-1 as TBTC-and lead-resistant estuarine bacteria. Environ Monit Assess 185(6):5243–5249

    Article  CAS  PubMed  Google Scholar 

  • Simpson AJ (2002) Determining the molecular weight, aggregation, structures and interactions of natural organic matter using diffusion ordered spectroscopy. Magn Reson Chem 40(13):S72–S82

    Article  CAS  Google Scholar 

  • Simpson AJ, Lam B, Diamond ML, Donaldson DJ, Lefebvre BA, Moser AQ, Williams AJ, Larin NI, Kvasha MP (2006) Assessing the organic composition of urban surface films using nuclear magnetic resonance spectroscopy. Chemosphere 63(1):142–152

    Article  CAS  PubMed  Google Scholar 

  • Simpson AJ, McNally DJ, Simpson MJ (2011) NMR spectroscopy in environmental research: from molecular interactions to global processes. Prog Nucl Magn Reson Spectrosc 58(3–4):97–175

    Article  CAS  PubMed  Google Scholar 

  • Simpson AJ, Courtier-Murias D, Longstaffe JG, Masoom H, Soong R, Lam L, Sutrisno A, Farooq H, Simpson MJ, Maas WE, Fey M, Andrew B, Struppe J, Hutchins H, Krishnamurthy S, Kumar R, Monette M, Stronks HJ (2013) Environmental comprehensive multiphase NMR. eMagRes:399–414

    Google Scholar 

  • Simpson AJ, Simpson MJ, Soong R (2018) Environmental nuclear magnetic resonance spectroscopy: an overview and a primer. Anal Chem 90(1):628–639

    Article  CAS  PubMed  Google Scholar 

  • Šmejkalová D, Piccolo A (2008) Aggregation and disaggregation of humic supramolecular assemblies by NMR diffusion ordered spectroscopy (DOSY-NMR). Environ Sci Technol 42(3):699–706

    Article  PubMed  Google Scholar 

  • Stark RE, Yu B, Zhong J, Yan B, Wu G, Tian S (2007) Environmental NMR: high-resolution magic-angle spinning. eMagRes:377–388

    Google Scholar 

  • Sundstrom V (2008) Femtobiology. Annu Rev Phys Chem 59:53–77

    Article  PubMed  Google Scholar 

  • Tao XQ, Lu GN, Dang Z, Yang C, Yi XY (2007) A phenanthrene-degrading strain Sphingomonassp. GY2B isolated from contaminated soils. Process Biochem 42(3):401–408

    Article  CAS  Google Scholar 

  • Taves DR, Grey WS, Brey WS (1976) Organic fluoride in human plasma—its distribution and partial identification. Toxicol Appl Pharmacol 37:120

    Google Scholar 

  • Thorn KA, Kennedy KR (2002) 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose. Environ Sci Technol 36(17):3787–3796

    Article  CAS  PubMed  Google Scholar 

  • Thorn KA, Goldenberg WS, Younger SJ, Weber EJ (1996) Covalent binding of aniline to humic substances: comparison of nucleophilic addition, enzyme-, and metal-catalyzed reactions by 15N NMR. In: Gaffney JS, Marley NA, Clark SB (eds) Humic and fulvic acids. Am Chem Soc, Washington, DC, pp 299–326

    Chapter  Google Scholar 

  • Tighe M, Bielski M, Wilson M, Ruscio-Atkinson G, Peaslee GF, Lieberman M (2020) A sensitive XRF screening method for lead in drinking water. Anal Chem 92(7):4949–4953

    Article  CAS  PubMed  Google Scholar 

  • Tu C, Teng Y, Luo Y, Li X, Sun X, Li Z, Christie P (2011) Potential for biodegradation of polychlorinated biphenyls (PCBs) by Sinorhizobiummeliloti. J Hazard Mater 186(2):1438–1444

    Article  CAS  PubMed  Google Scholar 

  • Uhlik O, Strejcek M, Junkova P, Sanda M, Hroudova M, Vlcek C, Macek T (2011) Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry-and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Appl Environ Microbiol 77(19):6858–6866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viant MR (2005) Environmental metabolomics using 91H-NMR spectroscopy. Environ Genomics:137–150

    Google Scholar 

  • Viant MR (2009) Applications of metabolomics to the environmental sciences. Metabolomics 5:1–2

    Article  CAS  Google Scholar 

  • Williams RJ, Giles RG, Posner AM (1981) Solid state phosphorus NMR spectroscopy of minerals and soils. J Chem Soc Chem Commun 20:1051–1052

    Article  Google Scholar 

  • Woods GC, Simpson MJ, Simpson AJ (2012) Oxidized sterols as a significant component of dissolved organic matter: evidence from 2D HPLC in combination with 2D and 3D NMR spectroscopy. Water Res 46(10):3398–3408

    Article  CAS  PubMed  Google Scholar 

  • Yassin AA, Ghandour MA, Khalil MM (2021) Health risk assessment and micro determination of trace elements content in Egyptian olive oil using ICP-OES. IOP Conf Ser Mater Sci Eng 1046(1):012028

    Article  CAS  Google Scholar 

  • Zaeem M, Nadeem M, Pham TH, Ashiq W, Ali W, Gillani SSM, Thomas R (2021) Development of a hyperspectral imaging technique using LA-ICP-MS to show the spatial distribution of elements in soil cores. Geoderma 385:114831

    Article  CAS  Google Scholar 

  • Zhou Q, Zhang X, Huang Y, Li Z, Zhang Z (2011) Rapid detection of polychlorinated biphenyls at trace levels in real environmental samples by surface-enhanced Raman scattering. Sensors 11(11):10851–10858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Yuan Z, Cheng Q, Zhang Z, Yang J (2018) Rapid in situ determination of heavy metal concentrations in polluted water via portable XRF: using Cu and Pb as example. Environ Pollut 243:1325–1333

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prakash, O. et al. (2022). Spectroscopy and Its Advancements for Environmental Sustainability. In: Suyal, D.C., Soni, R. (eds) Bioremediation of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-030-86169-8_14

Download citation

Publish with us

Policies and ethics