Skip to main content

A Role for Fructose Metabolism in Development of Sheep and Pig Conceptuses

  • Chapter
  • First Online:
Recent Advances in Animal Nutrition and Metabolism

Abstract

The period of conceptus (embryo and extraembryonic membrane) development between fertilization and implantation in mammalian species is critical as it sets the stage for placental and fetal development. The trophectoderm and endoderm of pre-implantation ovine and porcine conceptuses undergo elongation, which requires rapid proliferation, migration, and morphological modification of the trophectoderm cells. These complex events occur in a hypoxic intrauterine environment and are supported through the transport of secretions from maternal endometrial glands to the conceptus required for the biochemical processes of cell proliferation, migration, and differentiation. The conceptus utilizes glucose provided by the mother to initiate metabolic pathways that provide energy and substrates for other metabolic pathways. Fructose, however, is in much greater abundance than glucose in amniotic and allantoic fluids, and fetal blood during pregnancy. Despite this, the role(s) of fructose is largely unknown even though a switch to fructosedriven metabolism in subterranean rodents and some cancers are key to their adaptation to hypoxic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BNC:

Binucleated trophoblast giant cells

DHAP:

Dihydroxyacetone phosphate

ESR1:

Estrogen receptor α

F1P:

Fructose-1-phosphate

F6P:

Fructose-6-phosphate

G6P:

Glucose-6-phosphate

G6PDH:

Glucose-6-phosphate dehydrogenase

GAP:

Glyceraldehyde-3-phosphate

HIF1A:

Hypoxia inducible factor-1α

IFNT:

Interferon tau

KHK:

Ketohexokinase

LE:

Luminal epithelia

NAD+/NADH:

Nicotinamide adenine dinucleotide

NADP+/NADPH:

Nicotinamide adenine dinucleotide phosphate

OXTR:

Oxytocin receptor

PFK:

Phosphofructokinase-1

PGF2α:

Prostaglandin F2α

PHGDH:

Phosphoglycerate dehydrogenase

PPP:

Pentose phosphate pathway

PSPH:

Phosphoserine phosphatase

SHMT:

Serine hydroxymethyltransferase

SLC2A:

Facilitative glucose transporter family

SLC5A:

Sodium-dependent glucose transporter family

TCA:

Tricarboxylic acid cycle

TGC:

Multinucleated trophoblast giant cell

UDP-glcNAc:

Uridine diphosphate N-acetylglucosamine

VEGF:

Vascular endothelial growth factor

References

  • Abbaszadeh Z, ÇeÅŸmeli S, Biray Avcı Ç (2020) Crucial players in glycolysis: Cancer progress. Gene 726:144158

    Google Scholar 

  • Adelman RC, Ballard FJ, Weinhouse S (1967) Purification and properties of rat liver fructokinase. J Biol Chem 242:3360–3365

    Article  PubMed  CAS  Google Scholar 

  • Alexander DP, Andrews RD, Huggett ASG, Nixon DA, Widdas WF (1955) The placental transfer of sugars in the sheep: studies with radioactive sugar. J Physiol 129:352–366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anthony RV, Helmer SD, Sharif SF, Roberts RM, Hansen PJ, Thatcher WW, Bazer FW (1988) Synthesis and processing of ovine trophoblast protein-1 and bovine trophoblast protein-1, conceptus secretory proteins involved in the maternal recognition of pregnancy. Endocrinology 123:1274–1280

    Article  PubMed  CAS  Google Scholar 

  • Augustin R (2010) The protein family of glucose transport facilitators: it’s not only about glucose after all. IUBMB Life 62:315–333

    PubMed  CAS  Google Scholar 

  • Bacon JS, Bell DJ (1948) Fructose and glucose in the blood of the foetal sheep. Biochem J 397–405

    Google Scholar 

  • Battaglia FC, Meschia G (1978) Principal Substrates of Fetal Metabolism. Physiol Rev 58:499–527

    Article  PubMed  CAS  Google Scholar 

  • Battaglia FC, Meschia G (1981) Foetal and placental metabolisms: their interrelationship and impact upon maternal metabolism. Proc Nutr Soc 40:99–113

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, First NL (1983) Pregnancy and parturition. J Anim Sci 57:425–460

    PubMed  CAS  Google Scholar 

  • Bazer FW, Thatcher WW (1977) Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin F2α by the uterine endometrium. Prostaglandins 14:397–400

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Johnson GA (2014) Pig blastocyst-uterine interactions. Differentiation 87:52–65

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Kim J, Song G, Ka H, Tekwe CD, Wu G (2012a) Select nutrients, progesterone, and interferon tau affect conceptus metabolism and development. Ann N Y Acad Sci 1271:88–96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bazer FW, Song G, Kim J, Dunlap KA, Satterfield MC, Johnson GA, Burghardt RC, Wu G (2012b) Uterine biology in pigs and sheep. J Anim Sci Biotechnol 3:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazer FW, Spencer TE, Thatcher WW (2012c) Growth and development of the ovine conceptus. J Anim Sci 90:159–170

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Burghardt RC, Johnson GA, Spencer TE, Wu G (2018) Mechanisms for the establishment and maintenance of pregnancy: Synergies from scientific collaborations. Biol Reprod 99:225–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazer FW, Seo H, Johnson GA, Wu G (2021) One-carbon metabolism and development of the conceptus during pregnancy: Lessons from studies with sheep and pigs. Adv Exp Med Biol 1285:1–15

    Article  PubMed  Google Scholar 

  • Boshier DP, Fairclough RJ, Holloway H (1987) Assessment of sheep blastocyst effects on neutral lipids in the uterine caruncular epithelium. J Reprod Fertil 79:569–573

    Article  PubMed  CAS  Google Scholar 

  • Brand KA, Hermfisse U (1997) Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J 11:388–395

    Article  PubMed  CAS  Google Scholar 

  • Brinsfield TH, Hawk HW (1973) Control by progesterone of the concentration of lipid droplets in epithelial cells of the sheep endometrium. J Anim Sci 36:919–922

    Article  PubMed  CAS  Google Scholar 

  • Broschat KO, Gorka C, Page JD, Martin-Berger CL, Davies MS, Huang H, Gulve EA, Salsgiver WJ, Kasten TP (2002) Kinetic Characterization of Human Glutamine-fructose-6-phosphate Amidotransferase I. J Biol Chem 277:14764–14770

    Article  PubMed  CAS  Google Scholar 

  • Butler JE, Williams JE (1991) Noninvasive measurement of pyruvate uptake by ovine preimplantation embryos and unfertilized ova. Theriogenology 36:1043–1048

    Article  CAS  Google Scholar 

  • Cao Y, Yao J, Sun X, Liu S, Martin GB (2021) Amino acids in the nutrition and production of sheep and goats. Adv Exp Med Biol 1285:63–79

    Article  PubMed  Google Scholar 

  • Cheung CY, Brace RA (1999) Developmental expression of vascular endothelial growth factor and its receptors in ovine placenta and fetal membranes. J Soc Gynecol Invest 6:179–185

    Article  CAS  Google Scholar 

  • Crosby IM, Gandolfi F, Moor RM (1988) Control of protein synthesis during early cleavage of sheep embryos. J Reprod Fertil 82:769–775

    Article  PubMed  CAS  Google Scholar 

  • Curi R, Newsholme P, Newsholme EA (1988) Metabolism of pyruvate by isolated rat mesenteric lymphocytes, lymphocyte mitochondria and isolated mouse macrophages. Biochem J 250:383–388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du ZF, Wales RG (1993) Glycolysis and glucose oxidation by the sheep conceptus at different oxygen concentrations. Reprod Fertil Dev 5:383–393

    Article  PubMed  CAS  Google Scholar 

  • Edwards EM, Rattenbury J, Varnam GC, Dhand UK, Jeacock MK, Shepherd DA (1997) Enzyme activities in the sheep placenta during the last three months of pregnancy. Biochim Biophys Acta 497:133–143

    Article  Google Scholar 

  • Fischer B, Bavister BD (1993) Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil 99:673–679

    Article  PubMed  CAS  Google Scholar 

  • Fleming JG, Spencer TE, Safe SH, Bazer FW (2006) Estrogen regulates transcription of the ovine oxytocin receptor gene through GC-rich SP1 promoter elements. Endocrinology 147:899–911

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Wu G, Spencer TE, Johnson GA, Bazer FW (2009a) Select nutrients in the ovine uterine lumen. II. Glucose transporters in the uterus and peri-implantation conceptuses. Biol Reprod 80:94–104

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Wu G, Spencer TE, Johnson GA, Li X, Bazer FW (2009b) Select nutrients in the ovine uterine lumen. I. Amino acids, glucose, and ions in uterine lumenal flushings of cyclic and pregnant ewes. Biol Reprod 80:86–93

    Article  PubMed  CAS  Google Scholar 

  • Gao W, Li N, Li Z, Xu J, Su C (2018) Ketohexokinase is involved in fructose utilization and promotes tumor progression in glioma. Biochem Biophys Res Commun 503:1298–1306

    Article  PubMed  CAS  Google Scholar 

  • Gardner DK (2015) Lactate production by the mammalian blastocyst: Manipulating the microenvironment for uterine implantation and invasion? BioEssays 37:364–371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gardner DK, Lane M, Batt P (1993) Uptake and metabolism of pyruvate and glucose by individual sheep preattachment embryos developed in vivo. Mol Reprod Dev 36:313–319

    Article  PubMed  CAS  Google Scholar 

  • Gilbreath KR, Bazer FW, Satterfield MC, Wu G (2021) Amino acid nutrition and reproductive performance in ruminants. Adv Exp Med Biol 1285:43–61

    Article  PubMed  Google Scholar 

  • Goncalves MD, Lu C, Tutnauer J, Hartman TE, Hwang S, Murphy CJ, Pauli C, Morris R, Taylor S, Bosch K, Yang S, Wang Y, Van Riper J, Lekaye HC, Roper J, Kim Y, Chen Q, Gross SS, Rhee KY, Cantley LC, Yun J (2019) High-fructose corn syrup enhances intestinal tumor growth in mice. Science 363:1345–1349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodwin RF (1956) Division of the common mammals into two groups according to the concentration of fructose in the blood of the foetus. J Physiol 132:146–156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gray CA, Adelson DL, Bazer FW, Burghardt RC, Meeusen ENT, Spencer TE (2004) Discovery and characterization of an epithelial-specific galectin in the endometrium that forms crystals in the trophectoderm. Proc Natl Acad Sci U S A 101:7982–7987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gray CA, Burghardt RC, Johnson GA, Bazer FW, Spencer TE (2002) Evidence that absence of endometrial gland secretions in uterine gland knockout ewes compromises conceptus survival and elongation. Reproduction 124:289–300

    Article  PubMed  CAS  Google Scholar 

  • Grazul-Bilska AT, Borowicz PP, Johnson ML, Minten MA, Bilski JJ, Wroblewski R, Redmer DA, Reynolds LP (2010) Placental development during early pregnancy in sheep: Vascular growth and expression of angiogenic factors in maternal placenta. Reproduction 140:165–174

    Article  PubMed  CAS  Google Scholar 

  • Guillomot M, Fléchon JE, Wintenberger-Torres S (1981) Conceptus attachment in the ewe: An ultrastructural study. Placenta 2:169–181

    Article  PubMed  CAS  Google Scholar 

  • Herring CM, Bazer FW, Wu G (2021) Amino acid nutrition for optimum growth, development, reproduction, and health of zoo animals. Adv Exp Med Biol 1285:233–253

    Article  PubMed  Google Scholar 

  • Hoskins EC, Halloran KM, Stenhouse C, Moses RM, Dunlap KA, Satterfield MC, Seo H, Johnson GA, Wu G, Bazer FW (2021) Pre-implantation exogenous progesterone and pregnancy in sheep: I. polyamines, nutrient transport, and progestamedins. J Anim Sci Biotechnol 12:1–17

    Article  Google Scholar 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153–1165

    Article  PubMed  CAS  Google Scholar 

  • Hou YQ, Hu SD, Li XY, He WL, Wu G (2020) Amino acid metabolism in the liver: nutritional and physiological significance. Adv Exp Med Biol 1265:21–37

    Article  PubMed  CAS  Google Scholar 

  • Johnson GA (2018) Domestic animal placentation. Encyclopedia of Reproduction, vol 2. Academic Press, Elsevier, pp 448–454

    Chapter  Google Scholar 

  • Johnson GA, Bazer FW, Burghardt RC, Wu G, Seo H, Kramer AC, McLendon BA (2018) Cellular events during ovine implantation and impact for gestation. Anim Reprod 15:843–855

    Article  Google Scholar 

  • Johnson GA, Burghardt RC, Spencer TE, Newton GR, Ott TL, Bazer FW (1999) Ovine osteopontin: II. Osteopontin and alpha-v beta-3 Integrin Expression in the Uterus and Conceptus During the Periimplantation Period. Biol Reprod 61:892–899

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Song G, Wu G, Bazer FW (2012) Functional roles of fructose. Proc Natl Acad Sci 109:E1619–E1628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klagsbrun M, D’Amore PA (1991) Regulators of angiogenesis. Annu Rev Physiol 53:217–239

    Article  PubMed  CAS  Google Scholar 

  • Kramer AC, Steinhauser CB, Seo GH, H, McLendon BA, Burghardt RC, Wu G, Bazer FW, Johnson GA, (2020) Steroids regulate SLC2A1 and SLC2A3 to deliver glucose into trophectoderm for metabolism via glycolysis. Endocrinology 161:1–19

    Article  Google Scholar 

  • Krisher RL, Prather RS (2012) A role for the Warburg effect in preimplantation embryo development: Metabolic modification to support rapid cell proliferation. Mol Reprod Dev 79:311–320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwon H, Spencer TE, Bazer FW, Wu G (2003) Developmental changes of amino acids in ovine fetal fluids. Biol Reprod 68:1813–1820

    Article  PubMed  CAS  Google Scholar 

  • Labuschagne CF, van den Broek NJF, Mackay GM, Vousden KH, Maddocks ODK (2014) Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep 7:1248–1258

    Article  PubMed  CAS  Google Scholar 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523–542

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Zheng SX, Wu G (2020) Amino acid metabolism in the kidneys: nutritional and physiological significance. Adv Exp Med Biol 1265:71–95

    Article  PubMed  CAS  Google Scholar 

  • Li P, He WL, Wu G (2021) Composition of amino acids in foodstuffs for humans and animals. Adv Exp Med Biol 1332:189–209

    Article  PubMed  Google Scholar 

  • Lin J, Fan L, Han Y, Guo J, Hao Z, Cao L, Kang J, Wang X, He J, Li J (2021) The mTORC1/eIF4E/HIF-1α Pathway Mediates Glycolysis to Support Brain Hypoxia Resistance in the Gansu Zokor, Eospalax cansus. Front Physiol 12:626240

    Google Scholar 

  • Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: Meeting the metabolic requirements of cellular proliferation. Annu Rev Cell Dev Biol 27:441–464

    Article  PubMed  CAS  Google Scholar 

  • McLendon BA, Seo H, Kramer AC, Burghardt RC, Bazer FW, Johnson GA (2020) Pig conceptuses secrete interferon gamma to recruit T cells to the endometrium during the peri-implantation period. Biol Reprod 103:1018–1029

    Article  PubMed  Google Scholar 

  • Meiser J, Schuster A, Pietzke M, Voorde JV, Athineos D, Oizel K, Burgos-Barragan G, Wit N, Dhayade S, Morton JP, Dornier E, Sumpton D, Mackay GM, Blyth K, Patel KJ, Niclou SP, Vazquez A (2018) Increased formate overflow is a hallmark of oxidative cancer. Nat Commun 9:1368

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer AE, Pfeiffer CA, Brooks KE, Spate LD, Benne JA, Cecil R, Samuel MS, Murphy CN, Behura S, McLean MK, Ciernia LA, Smith MF, Whitworth KM, Wells KD, Spencer TE, Prather RS, Geisert RD (2019) New perspective on conceptus estrogens in maternal recognition and pregnancy establishment in the pig. Biol Reprod 101:148–161

    Article  PubMed  Google Scholar 

  • Nagel AK, Ball LE (2015) Intracellular Protein O-GlcNAc Modification Integrates Nutrient Status with Transcriptional and Metabolic Regulation. In: Advances in Cancer Research, 1st edn. Elsevier, New York, pp 137–166

    Google Scholar 

  • Nakagawa T, Lanaspa MA, San Millan I, Mehdi F, Rivard JC, Sanchez-Lozada LG, Andres-Hernando A, Tolan DR, Johnson RJ (2020) Fructose contributes to the Warburg effect for cancer growth. Cancer Metab 8:1–12

    Article  Google Scholar 

  • Park TJ, Reznick J, Peterson BL, Blass G, OmerbaÅ¡ić D, Bennett NC, Henning P, Kuich JL, Zasada C, Browe BM, Hamann W, Applegate DT, Radke MH, Kosten T, Lutermann H, Gavaghan V, Eigenbrod O, Bégay V, Amoroso VG, Govind V, Minshall RD, Smith ESJ, Larson J, Gotthardt M, Kempa S, Lewin GR (2017) Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science 356:307–311

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507

    Article  PubMed  CAS  Google Scholar 

  • Polet F, Feron O (2013) Endothelial cell metabolism and tumour angiogenesis: Glucose and glutamine as essential fuels and lactate as the driving force. J Intern Med 273:156–165

    Article  PubMed  CAS  Google Scholar 

  • Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo H, Jang HG, Jha AK, Chen WW, Barrett FG, Stransky N, Tsun Z, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina K, Chan AM, Yuan B, Garraway LA, Root DE, Mino-Kenudson M, Brachtel EF, Driggers EM, Sabatini DM (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476:346–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Regnault TRH, Teng C, De Vrijer B, Galan HL, Wilkening RB, Battaglia FC (2010) The tissue and plasma concentration of polyols and sugars in sheep intrauterine growth retardation. Exp Biol Med 235:999–1006

    Article  CAS  Google Scholar 

  • Reynolds LP, Borowicz PP, Caton JS, Vonnahme KA, Luther JS, Buchanan DS, Hafez SA, Grazul-Bilska AT, Redmer DA (2010) Uteroplacental vascular development and placental function: An update. Int J Dev Biol 54:355–365

    Article  PubMed  CAS  Google Scholar 

  • Reynolds LP, Redmer DA (2001) Angiogenesis in the placenta. Biol Reprod 64:1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro ES, Santos JEP, Thatcher WW (2016) Role of lipids on elongation of the preimplantation conceptus in ruminants. Reproduction 152:R115–R126

    Article  PubMed  CAS  Google Scholar 

  • Santhekadur PK (2020) The dark face of fructose as a tumor promoter. Genes Dis 7:163–165

    Article  PubMed  Google Scholar 

  • Satterfield MC, Song G, Kochan KJ, Riggs PK, Simmons RM, Elsik CG, Adelson DL, Bazer FW, Zhou H, Spencer TE (2009) Discovery of candidate genes and pathways in the endometrium regulating ovine blastocyst growth and conceptus elongation. Physiol Genomics 39:85–99

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  PubMed  CAS  Google Scholar 

  • Seo H, Bazer FW, Burghardt RC, Johnson GA (2019) Immunohistochemical examination of trophoblast syncytialization during early placentation in sheep. Int J Mol Sci 20:4530

    Article  PubMed Central  CAS  Google Scholar 

  • Seo H, Li X, Wu G, Bazer FW, Burghardt RC, Bayless JK, Johnson GA (2020) Mechanotransduction drives morphogenesis to develop folding during placental development in pigs. Placenta 90:62–70

    Article  PubMed  CAS  Google Scholar 

  • Seo H, Johnson GA, Bazer FW, Wu G, McLendon BA, Kramer AC (2021) Cell-specific expression of enzymes for serine biosynthesis and glutaminolysis in farm animals. Adv Exp Med Biol 1285:17–28

    Article  PubMed  Google Scholar 

  • Seshagiri PB, Sen Roy S, Sireesha G, Rao RP (2009) Cellular and molecular regulation of mammalian blastocyst hatching. J Reprod Immunol 83:79–84

    Article  PubMed  CAS  Google Scholar 

  • Song G, Kim J, Bazer FW, Spencer TE (2008) Progesterone and interferon tau regulate hypoxia-inducible factors in the endometrium of the ovine uterus. Endocrinology 149:1926–1934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spencer TE (2013) Early pregnancy: Concepts, challenges, and potential solutions. Anim Front 3:48–55

    Article  Google Scholar 

  • Spencer TE, Bartol FF, Bazer FW, Johnson GA, Joyce MM (1999) Identification and characterization of glycosylation-dependent cell adhesion molecule 1-like protein expression in the ovine uterus. Biol Reprod 60:241–250

    Article  PubMed  CAS  Google Scholar 

  • Spencer TE, Bazer FW (1996) Ovine interferon tau suppresses transcription of the estrogen receptor and oxytocin receptor genes in the ovine endometrium. Endocrinology 137:1144–1147

    Article  PubMed  CAS  Google Scholar 

  • Spencer TE, Bazer FW (2004) Uterine and placental factors regulating conceptus growth in domestic animals. J Anim Sci 82 E-Suppl:4–13

    Google Scholar 

  • Spencer TE, Becker WC, George P, Mirando MA, Ogle TF, Bazer FW (1995a) Ovine interferon-Ï„ regulates expression of endometrial receptors for estrogen and oxytocin but not progesterone. Biol Reprod 53:732–745

    Article  PubMed  CAS  Google Scholar 

  • Spencer TE, Becker WC, George P, Mirando MA, Ogle TF, Bazer FW (1995b) Ovine Interferon-Ï„ Inhibits Estrogen Receptor Up-Regulation and Estrogen-Induced Luteolysis in Cyclic Ewes. Endocrinology 136:4932–4944

    Article  PubMed  CAS  Google Scholar 

  • Spencer TE, Forde N, Dorniak P, Hansen TR, Romero JJ, Lonergan P (2013) Conceptus-derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants. Reproduction 146:377–387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spencer TE, Forde N, Lonergan P (2017) Insights into conceptus elongation and establishment of pregnancy in ruminants. Reprod Fertil Dev 29:84–100

    Article  Google Scholar 

  • Spencer TE, Johnson GA, Bazer FW, Burghardt RC (2004) Implantation mechanisms: Insights from the sheep. Reproduction 128:657–668

    Article  PubMed  CAS  Google Scholar 

  • Spiro RG (2002) Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R-56R

    Article  PubMed  CAS  Google Scholar 

  • Steinhauser CB, Landers M, Myatt L, Burghardt RC, Vallet JL, Bazer FW, Johnson GA (2016) Fructose synthesis and transport at the uterine-placental interface of pigs: Cell-specific localization of SLC2A5, SLC2A8, and components of the polyol pathway. Biol Reprod 95:1–14

    Article  Google Scholar 

  • Teng CC, Tjoa S, Fennessey PV, Wilkening RB, Battaglia FC (2002) Transplacental carbohydrate and sugar alcohol concentrations and their uptakes in ovine pregnancy. Exp Biol Med 227:189–195

    Article  CAS  Google Scholar 

  • Thompson JGE, Simpson AC, Pugh PA, Wright Jnr RW, Tervit HR (1991) Glucose utilization by sheep embryos derived in vivo and in vitro. Reprod Fertil Dev 3:571–576

    Article  PubMed  CAS  Google Scholar 

  • To KKW, Huang LE (2005) Suppression of hypoxia-inducible factor 1α (HIF-1α) transcriptional activity by the HIF prolyl hydroxylase EGLN1. J Biol Chem 280:38102–38107

    Article  PubMed  CAS  Google Scholar 

  • Vallet JL, Freking BA (2007) Differences in placental structure during gestation associated with large and small pig fetuses. J Anim Sci 85:3267–3275

    Article  PubMed  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg Effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van der Lende T, Knol EF, Leenhouwers JI (2001) Prenatal development as a predisposing factor for perinatal losses in pigs. Reprod Suppl 58:247–261

    PubMed  Google Scholar 

  • Wales RG, Cuneo CL, Waugh EE (1989) Incorporation of glucose by the sheep conceptus between days 13 and 19 of pregnancy. Reprod Fertil Dev 1:137–145

    Article  PubMed  CAS  Google Scholar 

  • Wales RG, Du ZF (1993) Contribution of the pentose phosphate pathway to glucose utilization by preimplantation sheep embryos. Reprod Fertil Dev 5:329–340

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Li D, Wu G, Bazer FW (2016) Functional Roles of Fructose: Crosstalk between O-Linked Glycosylation and Phosphorylation of Akt-TSC2-MTOR Cell Signaling Cascade in Ovine Trophectoderm Cells. Biol Reprod 95:1–17

    Article  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The Metabolism of Tumors in the Body. J Gen Physiol 8:519–530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Washburn SE, Caudill MA, Malysheva O, MacFarlane AJ, Behan NA, Harnett B, MacMillan L, Pongnopparat T, Brosnan JT, Brosnan ME (2015) Formate metabolism in fetal and neonatal sheep. Am J Physiol 308:E921–E927

    CAS  Google Scholar 

  • Weinhouse S (1976) Regulation of glucokinase in liver. Curr Top Cell Regul 11:1–50

    Article  PubMed  CAS  Google Scholar 

  • Weis SM, Cheresh DA (2011) Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat Med 17:1359–1370

    Article  PubMed  CAS  Google Scholar 

  • White CE, Piper EL, Noland PR (1979) Conversion of glucose to fructose in the fetal pig. J Anim Sci 48:585–590

    Article  PubMed  CAS  Google Scholar 

  • Wood IS, Trayhurn P (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 89:3–9

    Article  PubMed  CAS  Google Scholar 

  • Wooding FPB, Burton G (2008) Synepitheliochorial placentation: Ruminants (ewe and cow). In: Comparative Placentation: Structures, Functions and Evolution. Springer, Berlin, Germany, pp 133–167

    Google Scholar 

  • Wu G (2013) Amino Acids: Biochemistry and Nutrition. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Wu G (2018a) Fructose metabolism in animal tissues. Principles of Animal Nutrition. CRC Press, Boca Raton, FL, pp 253–256

    Google Scholar 

  • Wu G (2018b) Pathway of Glycolysis. Principles of Animal Nutrition. CRC Press, Boca Raton, FL, pp 215–218

    Google Scholar 

  • Wu G (2022) Nutrition and metabolism: Foundations for animal growth, development, reproduction, and health. Adv Exp Med Biol 1354:1–24

    Google Scholar 

  • Xiao S, Li R, El Zowalaty AE, Diao H, Zhao F, Choi Y, Ye X (2017) Acidification of uterine epithelium during embryo implantation in mice. Biol Reprod 96:232–243

    Article  PubMed  Google Scholar 

  • Zavy MT, Clark WR, Sharp DC, Roberts RM, Bazer FW (1982) Comparison of glucose, fructose, ascorbic acid and glucosephosphate isomerase enzymatic activity in uterine flushings from nonpregnant and pregnant gilts and pony mares. Biol Reprod 27:1147–1158

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Hou YQ, Bazer FW, He WL, Posey EA, Wu G (2021) Amino acids in swine nutrition and production. Adv Exp Med Biol 1285:81–107

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Work in our laboratories was supported by Agriculture and Food Research Initiative Competitive Grant no. 2018-67015-28093 from the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuller W. Bazer .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moses, R.M., Kramer, A.C., Seo, H., Wu, G., Johnson, G.A., Bazer, F.W. (2022). A Role for Fructose Metabolism in Development of Sheep and Pig Conceptuses. In: Wu, G. (eds) Recent Advances in Animal Nutrition and Metabolism. Advances in Experimental Medicine and Biology, vol 1354. Springer, Cham. https://doi.org/10.1007/978-3-030-85686-1_3

Download citation

Publish with us

Policies and ethics