Skip to main content

Amino Acids in the Nutrition and Production of Sheep and Goats

  • Chapter
  • First Online:
Amino Acids in Nutrition and Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1285))

Abstract

In sheep and goats, amino acid nutrition is essential for the maintenance of health and productivity. In this review, we analysed literature, mostly from the past two decades, focusing on assessment of amino acid requirements, especially on the balance of amino acid profiles between ruminal microbial protein and animal production protein (foetal growth, body weight gain, milk and wool). Our aim was to identify amino acids that might limit genetic potential for production. We propose that much attention should be paid to amino acid nutrition of individuals with greater abilities to produce meat, milk or wool, or to nourish large litters. Moreover, research is warranted to identify interactions among amino acids, particularly these amino acids that can send positive and negative signals at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCAA:

branched-chain amino acids

GIT:

gastrointestinal tract

MP:

metabolizable proteins

PDV:

portal-drained viscera

References

  • Agricultural and Food Research Countil Technical Committee on Responses to Nutrients (1993) Energy and protein requirements of ruminants. CAB International, Wallingford

    Google Scholar 

  • Agricultural Research Council (1984) The nutrient requirements of ruminants livestock. Commonwealth Agricultural Bureaux, Slough

    Google Scholar 

  • Aledo JC (2004) Glutamine breakdown in rapidly dividing cells: waste or investment? BioEssays 26:778–785

    Article  CAS  PubMed  Google Scholar 

  • Banchero G, Milton J, Lindsay D, Martin G, Quintans G (2015) Colostrum production in ewes: a review of regulation mechanisms and of energy supply. Animal 9:831–837

    Article  CAS  PubMed  Google Scholar 

  • Bauchart-Thevret C, Stoll B, Burrin DG (2009) Intestinal metabolism of sulfur amino acids. Nutr Res Rev 22:175–187

    Article  CAS  PubMed  Google Scholar 

  • Bazer FW, Song G, Kim J, Dunlap KA, Satterfield MC, Johnson GA, Burghardt RC, Wu G (2012) Uterine biology in pigs and sheep. J Anim Sci Biotechnol 3:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Bielli A, Pérez R, Pedrana G, Milton JT, Lopez Á, Blackberry MA, Duncombe G, Rodriguez-Martinez H, Martin GB (2002) Low maternal nutrition during pregnancy reduces the number of Sertoli cells in the newborn lamb. Reprod Fertil Dev 14:333–337

    Article  Google Scholar 

  • Calder PC, Newsholme P (2002) Glutamine and the immune system. In: Calder P, Field C, Gill H (eds) Nutrition and immune function. CAB International, Wallingford, pp 109–132

    Chapter  Google Scholar 

  • Ceballos LS, Morales ER, de la Torre Adarve G, Castro JD, Martínez LP, Sampelayo MRS (2009) Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. J Food Composition Analysis 22:322–329

    Article  CAS  Google Scholar 

  • Chung M, Teng C, Timmerman M, Meschia G, Battaglia FC (1998) Production and utilization of amino acids by ovine placenta in vivo. Am J Physiol Endocrinol Metab 274:E13–E22

    Article  CAS  Google Scholar 

  • Crawford J, Cohen HJ (1985) The essential role of L-glutamine in lymphocyte differentiation in vitro. J Cell Physiol 124:275–282

    Article  CAS  PubMed  Google Scholar 

  • Deldicque L, Canedo CS, Horman S, De Potter I, Bertrand L, Hue L, Francaux M (2008) Antagonistic effects of leucine and glutamine on the mTOR pathway in myogenic C2C12 cells. Amino Acids 35:147–155

    Article  CAS  PubMed  Google Scholar 

  • Dharmani P, Sirivastava V, Kissoon-Singh V, Chadee K (2009) Role of intestinal mucins in innate host defense mechanisms against pathogens. J Innate Immunity 1:123–135

    Article  CAS  Google Scholar 

  • Downing J, Joss J, Scaramuzzi R (1995) A mixture of the branched chain amino acids leucine, isoleucine and valine increases ovulation rate in ewes when infused during the late luteal phase of the oestrous cycle: an effect that may be mediated by insulin. J Endocrinol 145:315–323

    Article  CAS  PubMed  Google Scholar 

  • Downing J, Joss J, Scaramuzzi R (1996) The effects of N-methyl-D, L-aspartic acid and aspartic acid on the plasma concentration of gonadotrophins, GH and prolactin in the ewe. J Endocrinol 149:65–72

    Article  CAS  PubMed  Google Scholar 

  • Downing J, Joss J, Scaramuzzi R (1997) Ovulation rate and the concentrations of LH, FSH, GH, prolactin and insulin in ewes infused with tryptophan, tyrosine or tyrosine plus phenylalanine during the luteal phase of the oestrous cycle. Anim Reprod Sci 45:283–297

    Article  CAS  PubMed  Google Scholar 

  • Duff M, Daly J (2002) Arginine and immune functions. In: Calder P, Field C, Gill H (eds) Nutrition and immune function. CAB International, Wallingford, pp 93–108

    Chapter  Google Scholar 

  • Everitt G (1967) Residual effects of prenatal nutrition on the postnatal performance of Merino sheep. Proceedings of the New Zealand Society of Animal Production 27:52–68

    Google Scholar 

  • Fang Z, Huang F, Luo J, Wei H, Ma L, Jiang S, Peng J (2010) Effects of DL-2-hydroxy-4-methylthiobutyrate on the first-pass intestinal metabolism of dietary methionine and its extra-intestinal availability. Br J Nutr 103:643–651

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein JD (1990) Methionine metabolism in mammals. J Nutr Biochem 5:228–237

    Article  Google Scholar 

  • Flores A, Mendoza G, Pinos-Rodriguez JM, Plata F, Vega S, Bárcena R (2009) Effects of rumen-protected methionine on milk production of dairy goats. Italian J Anim Sci 8:271–275

    Article  Google Scholar 

  • Foote AP, Freetly HC (2016) Effect of abomasal butyrate infusion on net nutrient flux across the portal-drained viscera and liver of growing lambs12. J Anim Sci 94:2962–2972

    Article  CAS  PubMed  Google Scholar 

  • Foster D, Ebling F, Vannerson L, Bucholtz D, Wood R, Micka A, Suttie J (1989) Modulation of gonadotropin secretion during development by nutrition and growth. In: 11th international congress on animal reproduction and artificial insemination, Belfield Campus, University College Dublin (Ireland), 26–30 June, 1988

    Google Scholar 

  • Fratini A, Powell BC, Hynd PI, Keough RA, Rogers GE (1994) Dietary cysteine regulates the levels of mRNAs encoding a family of cysteine-rich proteins of wool. J Invest Dermatol 102:178–185

    Article  CAS  PubMed  Google Scholar 

  • Freetly HC, Ferrell CL, Archibeque S (2010) Net flux of amino acids across the portal-drained viscera and liver of the ewe during abomasal infusion of protein and glucose12. J Anim Sci 88:1093–1107

    Article  CAS  PubMed  Google Scholar 

  • Galbraith H (2000) Protein and Sulphur amino acid nutrition of hair fibre-producing angora and cashmere goats. Livest Prod Sci 64:81–93

    Article  Google Scholar 

  • Gannon NP, Vaughan RA (2016) Leucine-induced anabolic-catabolism: two sides of the same coin. Amino Acids 48:321–336

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Wu G, Spencer TE, Johnson GA, Li X, Bazer FW (2009) Select nutrients in the ovine uterine lumen. I. Amino acids, glucose, and ions in uterine lumenal flushings of cyclic and pregnant ewes. Biol Rprod 80:86–93

    Article  CAS  Google Scholar 

  • Gardner D, Van Bon B, Dandrea J, Goddard P, May S, Wilson V, Stephenson T, Symonds M (2006) Effect of periconceptional undernutrition and gender on hypothalamic–pituitary–adrenal axis function in young adult sheep. J Endocrinol 190:203–212

    Article  CAS  PubMed  Google Scholar 

  • Gerchev G, Mihaylova G, Tsochev I (2005) Amino acid composition of milk from Tsigai and Karakachanska sheep breeds reared in the Central Balkan mountains region. Biotechnol Anim Husbandry 21:111–115

    Article  Google Scholar 

  • Gilbreath KR, Nawaratna GI, Wickersham TA, Satterfield MC, Bazer FW, Wu G (2019) Ruminal microbes of adult steers do not degrade extracellular L-citrulline and have a limited ability to metabolize extra-cellular L-glutamate. J Anim Sci 97:3611–3616

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbreath KR, Nawaratna GI, Wickersham TA, Satterfield MC, Bazer FW, Wu G (2020a) Metabolic studies reveal that ruminal microbes of adult steers do not degrade rumen-protected or unprotected L-citrulline. J Anim Sci 98:skz370

    Google Scholar 

  • Gilbreath KR, Bazer FW, Satterfield MC, Cleere JJ, Wu G (2020b) Ruminal microbes of adult sheep do not degrade extracellular L-citrulline. J Anim Sci 98:skaa164

    Article  PubMed  PubMed Central  Google Scholar 

  • Goulas C, Zervas G, Papadopoulos G (2003) Effect of dietary animal fat and methionine on dairy ewes milk yield and milk composition. Anim Feed Sci Technol 105:43–54

    Article  CAS  Google Scholar 

  • Greenwood PL, Hunt AS, Hermanson JW, Bell AW (2000) Effects of birth weight and postnatal nutrition on neonatal sheep: II. Skeletal muscle growth and development. J Anim Sci 78:50–61

    Article  CAS  PubMed  Google Scholar 

  • Grencis RK, Humphreys NE, Bancroft AJ (2014) Immunity to gastrointestinal nematodes: mechanisms and myths. Immunol Rev 260:183–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groebner AE, Rubio-Aliaga I, Schulke K, Reichenbach HD, Daniel H, Wolf E, Meyer HH, Ulbrich SE (2011) Increase of essential amino acids in the bovine uterine lumen during preimplantation development. Reproduction: REP-10-0533

    Google Scholar 

  • Growdom J, Wurtman F (1979) Neurotransmitter synthesis: control by availability of dietary precursors. In: Carenz L, Panchei P, Zichella L (eds) Clinical Psychoneuroendocrinology in reprodution. Academic, London, pp 127–138

    Google Scholar 

  • Harris PM, Lee J, Sinclair BR, Treloar BP (1994) The effect of whole body cysteine supplementation on cysteine utilization by the skin of a well-fed sheep. In: The New Zealand Society of Animal Production, pp 139–142

    Google Scholar 

  • Harris PM, Sinclair BR, Treloar BP, Lee J (1997) Short-term changes in whole body and skin sulfur amino acid metabolism of sheep in response to supplementary cysteine. Australian J Agric Res 48:137–146

    Article  CAS  Google Scholar 

  • Hoskin S, Lobley G, Coop R, Jackson F (2002) The effect of cysteine ad glutamine supplementation on sheep infected with Trichostrongylus colubriformis. In: Proceedings – New Zealand Societ of Animal Production. New Zealand Society of Animal Production; 1999. pp 72–76

    Google Scholar 

  • Kim JY, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW (2011) Select nutrients in the ovine uterine lumen. VII. Effects of arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration. Biol Reprod 84:62–69

    Article  CAS  PubMed  Google Scholar 

  • Kimball SR, Jefferson LS (2006) Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J Nutr 136:227S–231S

    Article  CAS  PubMed  Google Scholar 

  • Lane M, Gardner DK (1997) Differential regulation of mouse embryo development and viability by amino acids. Reproduction 109:153–164

    Article  CAS  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA, Li P, Li X, Satterfield MC, Spencer TE, Wu G (2009) Intravenous admistration of L-citrulline to pregnant ewes is more effective than L-arginine for increasing arginine availability in the fetus. J Nutr 139:660–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA, Datta S, Keisler DH, Satterfield MC, Spencer T, Wu G (2011) Parenteral administration of L-arginine enhances fetal survival and growth in sheep carrying multiple fetuses. J Nutr 141:849–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao SF, Wang T, Regmi N (2015) Lysine nutrition in swine and the related monogastric animals: muscle protein biosynthesis and beyond. Springerplus 4:147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lien KA, Sauer WC, He JM (2001) Dietary influences on the secretion into and degradation of mucin in the digestive tract of monogastric animals and humans. J Anim Feed Sci 10:223–245

    Article  Google Scholar 

  • Liu SM, Masters DG (2000) Quantitative analysis of methionine and cysteine requirements for wool production of sheep. Anim Sci 71:175–185

    Article  CAS  Google Scholar 

  • Liu SM, Masters DG (2003) In: D’Mello JPF (ed) Amino acid utilization for wool production. In: amino acid in animal nutrition, 2nd edn. CAB International, pp 309–328

    Google Scholar 

  • Liu SM, Zhang L, Chang C, Pen DH, Xu Z, Wang YZ, Chen Q, Cao WJ, Yuan DZ (1992) The nutrient requirements of Angora rabbits. 1. Digestible energy, crude protein and methionine and lysine. J Appl Rabbit Res 14:260–265

    Google Scholar 

  • Liu SM, Travendale M, Bermingham EN, Roy NC, McNabb WC, Lee J (2002) The effects of parasite infection on methionine metabolism in sheep. Anim Prod Australia 24:133–136

    Google Scholar 

  • Liu SM, Smith TL, Palmer DG, Karlsson LJE, Besier RB, Greeff JC (2005) Biochemical differences in Merino sheep selected for resistance against gastro-intestinal nematodes and genetic and nutritional effects on faecal egg count and egg output. Anim Sci 81:149–157

    Article  CAS  Google Scholar 

  • Liu SM, Smith TL, Briegel J, Gao SB, Pen WK (2007) Fraction protein synthesis rate and polyamine concentrations in tissues of Merino sheep selected for gastrointestinal nematode resistance. Livest Sci 106:65–75

    Article  Google Scholar 

  • Lobley GE (1994) Amino acid and protein metabolism in the whole body and individual tissues of ruminants. In: Asplund JM (ed) Principles of protein nutrition of ruminants. CRC Press, Boca Raton, pp 147–178

    Google Scholar 

  • Lobley GE, Connell A, Milne E (1994) Protein synthesis in splanchnic tissues of sheep offered two levels of intake. Br J Nutr 71:3–12

    Article  CAS  PubMed  Google Scholar 

  • Lobley GE, Hoskin SO, McNeil CJ (2001) Glutamine in animal science and production. J Nutr 131:2525S–2531S

    Article  CAS  PubMed  Google Scholar 

  • Lobley GE, Shen X, Le G, Bremner DM, Milne E, Calder AG, Anderson SE, Dennison N (2003) Oxidation of essential amino acids by the ovine gastrointestinal tract. Br J Nutr 89:617–629

    Article  CAS  PubMed  Google Scholar 

  • Loest C, Titgemeyer E, Van Metre GS-JD, Smith J (2002) Methionine as a methyl group donor in growing cattle. J Anim Sci 80:2197–2206

    CAS  PubMed  Google Scholar 

  • Lupton C (2010) Fibre production. In: Solaiman SG (ed) Goat science and production. Wiley-Blackwell, Iowa, pp 293–321

    Google Scholar 

  • Ma X, Han M, Li D, Hu S, Gilbreath KR, Bazer FW, Wu G (2017) L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway. Amino Acids 49:957–964

    Article  CAS  PubMed  Google Scholar 

  • MacRae JC, Walker A, Brown D, Lobley GE (1993) Accretion of total protein and individual amino acids by organs and tissues of growth lambs and the ability of nitrogen balance techniques to quantitate protein retention. Anim Prod 57:237–245

    CAS  Google Scholar 

  • MacRae JC, Bruce LA, Brown DS, Calder AG (1997) Amino acid use by the gastrointestinal tract of sheep given lucerne forage. Am J Physiol Gastrointest Liver Physiol 273:G1200–G1207

    Article  CAS  Google Scholar 

  • Madsen TG, Nielsen L, Nielsen MO (2005) Mammary nutrient uptake in response to dietary supplementation of rumen protected lysine and methionine in late and early lactating dairy goats. Small Ruminant Res 56:151–164

    Article  Google Scholar 

  • Martin C, Bernard L, Michalet-Doreau B (1996) Influence of sampling time and diet on amino acid composition of protozoal and bacterial fractions from bovine ruminal contents. J Anim Sci 74:1157–1163

    Article  CAS  PubMed  Google Scholar 

  • Masters DG, Liu SM, Purvis IW, Hartofillis M (2000) Wool growth and protein synthesis in the skin of superfine Merinos with high and low fleece-weight. Asian-Australian J Anim Sci 13(Supplement A):457–460

    CAS  Google Scholar 

  • McBride B, Kelly J (1990) Energy cost of absorption and metabolism in the ruminant gastrointestinal tract and liver: a review. J Anim Sci 68:2997–3010

    Article  CAS  PubMed  Google Scholar 

  • McCoard S, Sales F, Wards N, Sciascia Q, Oliver M, Koolaard J, van der Linden D (2013) Parenteral administration of twin-bearing ewes with L-arginine enhances the birth weight and brown fat stores in sheep. Springerplus 2:684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCoard SA, Sales FA, Sciascia QL (2016) Amino acids in sheep production. Front Biosci Elite edition 8:264–288

    Article  Google Scholar 

  • McNeil CJ, Hoskin SO, Bremner DM, Holtrop G, Lobley GE (2016) Whole-body and splanchnic amino acid metabolism in sheep during an acute endotoxin challenge. Br J Nutr 116:211–222

    Google Scholar 

  • Menzies M, Reverter A, Andronicos N, Hunt P, Windon R, Ingham A (2010) Nematode challenge induces differential expression of oxidant, antioxidant and mucous genes down the longitudinal axis of the sheep gut. Parasite Immunol 32:36–46

    Article  CAS  PubMed  Google Scholar 

  • Miller FM, Blair HT, Birtles MJ, Reynolds GW, Gill HS, Revell DK (2000) Cysteine may play a role in the immune response to internal parasites in sheep. Australian J Agric Res 51:793–799

    Article  CAS  Google Scholar 

  • Ministry of Agriculture and Fishries and Food Standing Committee on Tables of Feed Composition (1990) UK tables of nutritive value and chemical composition of Feedingstaffs. Rowett Research Services, Aberdeen

    Google Scholar 

  • Morentin P, Martinez-Sanchez N, Roa J, Ferno J, Nogueiras R, Tena-Sempere M, Dieguez C, Lopez M (2014) Hypothalamic mTOR: the rookie energy sensor. Curr Mol Med 14:3–21

    Article  CAS  Google Scholar 

  • Mortimer SI, Hatcher S, Fogarty NM, van der Werf JHJ, Brown DJ, Swan AA, Greeff JC, Refshauge G, Edwards JEH, Gaunt GM (2017) Genetic parameters for wool traits, live weight, and ultrasound carcass traits in Merino sheep. J Anim Sci 95:1879–1891

    CAS  PubMed  Google Scholar 

  • Mukkur TKS, Watson DL, Saini KS, Lascelles AK (1985) Purification and characterization of goblet-cell mucin of high Mr from the samll intestine of sheep. Biochem J 229:419–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neutze SA, Gooden JM, Oddy VH (1997) Measurement of protein turnover in the small intestine of lambs. 2. Effects of feed intake. J Agric Sci 128:233–246

    Article  Google Scholar 

  • Park YW, Juárez M, Ramos M, Haenlein GFW (2007) Physico-chemical characteristics of goat and sheep milk. Small Ruminant Res 68:88–113

    Article  Google Scholar 

  • Pastoret P-P, Griebel P, Bazin H, Govaerts A (1998) Handbook of vertebrate immunology. Academic, San Diego

    Google Scholar 

  • Peine JL, Jia G, Van Emon ML, Neville TL, Kirsch JD, Hammer CJ, O'Rourke ST, Reynolds LP, Caton JS (2018) Effects of maternal nutrition and rumen-protected arginine supplementation on ewe performance and postnatal lamb growth and internal organ mass. J Anim Sci 96:3471–3481

    Article  PubMed  PubMed Central  Google Scholar 

  • Popescu C, Höcker H (2007) Hair—the most sophisticated biological composite material. Chem Soc Rev 36:1282–1291

    Article  CAS  PubMed  Google Scholar 

  • Prizant RL, Barash I (2008) Negative effects of the amino acids Lys, His, and Thr on S6K1 phosphorylation in mammary epithelial cells. J Cell Biochem 105:1038–1047

    Article  CAS  PubMed  Google Scholar 

  • Reis PJ (1979) Effects of amino acids on the growth and properties of wool. In: Black JL, Reis PJ (eds) Physilogical and environmental limitations to wool growth. University of New England Publishing Unit, Armidale, pp 223–242

    Google Scholar 

  • Rezaei R, Wu Z, Hou Y, Bazer FW, Wu G (2016) Amino acids and mammary gland development: nutritional implications for milk production and neonatal growth. J Anim Sci Biotechnol 7:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rhind SM, Rae MT, Brooks AN (2001) Effects of nutrition and environmental factors on the fetal programming of the reproductive axis. Reproduction 122:205–214

    Article  CAS  PubMed  Google Scholar 

  • Rich P (2003) The molecular machinery of Keilin's respiratory chain. Biochem Soc Trans 31:1095–1105

    Article  CAS  PubMed  Google Scholar 

  • Saevre C, Caton J, Luther J, Meyer A, Dhuyvetter D, Musser R, Kirsch J, Kapphahn M, Redmer D, Schauer C (2011) Effects of rumen-protected arginine supplementation on ewe serum-amino-acid concentration, circulating progesterone, and ovarian blood flow. Sheep Goat Res J 26:8–12

    Google Scholar 

  • Sakkas P, Jones LA, Houdijk JGM, Athanasiadou S, Knox DP, Kyriazakis I (2013) Leucine and methionine deficiency impairs immunity to gastrointestinal parasites during lactation. Br J Nutr 109:273–282

    Article  CAS  PubMed  Google Scholar 

  • Sales F, Sciascia Q, Van der Linden D, Wards N, Oliver M, McCoard S (2016) Intravenous maternal L-arginine administration to twin-bearing ewes, during late pregnancy, is associated with increased fetal muscle mTOR abundance and postnatal growth in twin female lambs. J Anim Sci 94:2519–2531

    Article  CAS  PubMed  Google Scholar 

  • Sang D, Sun H, Guo J (2010) Effects of leucine on protein synthesis in sheep. Chinese J Anim Nutr 22:951–955

    CAS  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G (2012) Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids 43:1593–1603

    Article  CAS  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G (2013) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 45:489–499

    Article  CAS  PubMed  Google Scholar 

  • Scaramuzzi R, Baird D, Campbell B, Driancourt M-A, Dupont J, Fortune J, Gilchrist R, Martin G, McNatty K, McNeilly A (2011) Regulation of folliculogenesis and the determination of ovulation rate in ruminants. Reprod Fertil Dev 23:444–467

    Article  CAS  PubMed  Google Scholar 

  • Sen U, Sirin E, Yildiz S, Aksoy Y, Ulutas Z, Kuran M (2016) The effect of maternal nutrition level during the periconception period on fetal muscle development and plasma hormone concentrations in sheep. Animal 10:1689–1696

    Article  CAS  PubMed  Google Scholar 

  • Simpson H, Umair S, Hoang V, Savoian M (2016) Histochemical study of the effects on abomasal mucins of Haemonchus contortus or Teladorsagia circumcincta infection in lambs. Vet Parasitol 226:210–221

    Article  CAS  PubMed  Google Scholar 

  • Souri M, Galbraith H, Scaife JR (1998a) Comparisons of the effect of genotype and protected methionine supplementation on growth, digestive characteristics and fibre yield in cashmere-yielding and Angora goats. Anim Sci 66:217–223

    Article  CAS  Google Scholar 

  • Souri M, Galbraith H, Scaife JR (1998b) Conversion of methionine to cysteine by transsulphuration in isolated anagen secondary hair follicles of Angora goats. Proceedings of the British Society of Animal Science. p 139

    Google Scholar 

  • Standing Committee on Agriculture RS (1990) Feeding standards for Australian livestock – ruminants. CSIRO Publications, East Melbourne

    Google Scholar 

  • Storm E, Ørskov E, Smart R (1983) The nutritive value of rumen micro-organisms in ruminants: 2. The apparent digestibility and net utilization of microbial N for growing lambs. Br J Nutr 50:471–478

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Zhang H, Wang Z, Fan Y, Guo Y, Wang F (2018) Dietary rumen-protected arginine and N-carbamylglutamate supplementation enhances fetal growth in underfed ewes. Reprod Fertil Dev 30:1116–1127

    Article  CAS  PubMed  Google Scholar 

  • Sykes AR, Coop RL (2001) Interactoin between nutrition and gastrointestinal parasitism in sheep. New Zealand Vet J 49:222–226

    Article  CAS  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    Article  CAS  PubMed  Google Scholar 

  • Theodoropoulos G, Hicks SJ, Corfield AP, Miller BG, Carrington SD (2001) The role of mucins in host–parasite interactions: part II–helminth parasites. Trends Parasitol 17:130–135

    Article  CAS  PubMed  Google Scholar 

  • Thureen PJ, Baron KA, Fennessey PV, Hay WW (2002) Ovine plcental and fetal arginine metabolism at normal and increased maternal plasma arginine concentrations. Pediatr Res 51:464

    Article  CAS  PubMed  Google Scholar 

  • van der Linden DS, Sciascia Q, Sales F, Wards NJ, Oliver MH, McCoard SA (2015) Intravenous maternal L-arginine administration to twin-bearing ewes during late pregnancy enhances placental growth and development1. J Anim Sci 93:4917–4925

    Article  PubMed  Google Scholar 

  • van Nolte JE, Loest CA, Ferreira AV, Waggoner J, Mathis C (2008) Limiting amino acids for growing lambs fed a diet low in ruminally undegradable protein. J Anim Sci 86:2627–2641

    Article  CAS  Google Scholar 

  • Van Winkle LJ (2001) Amino acid transport regulation and early embryo development. Biol Reprod 64:1–12

    Article  PubMed  Google Scholar 

  • Vinoles C, Paganoni B, McNatty KP, Heath DA, Thompson A, Glover K, Milton J, Martin G (2014) Follicle development, endocrine profiles and ovulation rate in adult Merino ewes: effects of early nutrition (pre-and post-natal) and supplementation with lupin grain. Reproduction 147:101–110

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Chen L, Xinmei G, Fan Z, Daofu C, Chenli L (2017) Investigation of the postruminal methionine requirement of growing lambs by using the indicator amino acid oxidation technique. Anim Feed Sci Technol 228:83–90

    Article  CAS  Google Scholar 

  • Wester TJ, Lobley GE, Birnie LM, Brompton L, Brown S, Buchan V, Clader A, Milne E, Lomax M (2004) Effect of plasma insulin and branched-chain amino acids on skeletal muscle protein synthesis in fasted lambs. Br J Nutr 92:401–409

    Article  CAS  PubMed  Google Scholar 

  • White A, Bardocz S (1999) Estimation of the polyamine body pool: contribution by de novo biosynthesis, diet and luminal bacteria. In: Bardocz S, White A (eds) Polyamines in health and nutrition. Kluwer Academic Publishers, Boston, pp 117–122

    Google Scholar 

  • Williams AJ (1995) Wool growth. In: Cottle DJ (ed) Australian sheep and wool handbook. Inkata Press, Melbourne, pp 224–242

    Google Scholar 

  • Williams AR (2011) Immune-mediated pathology of nematode infection in sheep–is immunity beneficial to the animal? Parasitology 138:547–556

    Article  PubMed  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wu G (2018) Principles of animal nutrition. CRC Press, Boca Raton

    Google Scholar 

  • Wu G, Greene L (1992) Glutamine and glucose metabolism in bovine blood lymphocytes. Comp Biochem Physiol B 103:821–825

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Ott TL, Knabe DA, Bazer FW (1999) Amino acid composition of the fetal pig. J Nutr 129:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Fang YZ, Yang S (2002) Glutathione metabolism in animals: nutritional regulation and physiological significance. Trends Biochem Physiol 9:217–227

    CAS  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Knabe DA, Burghardt RC, Spencer TE, Li X, Wang J (2011) Important roles for L-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Dai Z, Li D, Wang J, Wu Z (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Hou Y, Hu S, Bazer FW, Meininger CJ, McNeal CJ, Wu G (2016) Catabolism and safety of supplemental l-arginine in animals. Amino Acids 48:1541–1552

    Article  CAS  PubMed  Google Scholar 

  • Yoshizawa F (2004) Regulation of protein synthesis by branched-chain amino acids in vivo. Biochem Biophys Res Commun 313:417–422

    Article  CAS  PubMed  Google Scholar 

  • Young VR, Borgonha S (2000) Nitrogen and amino acid requirements: the Massachusetts Institute of Technology amino acid requirement pattern. J Nutr 130:1841S–1849S

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Bruce LA, Calder AG, Milne E, Coop RL, Jackson F, Horgan GW, MacRae JC (2000) Subclinical infection with the nematode Trichostrongylus colubriformis increases gastrointestinal tract leucine metabolism and reduces availability of leucine for other tissues. J Anim Sci 78:380–390

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Sun L, Wang Z, Deng M, Nie H, Zhang G, Ma T, Wang F (2016) N-carbamylglutamate and L-arginine improved maternal and placental development in underfed ewes. Reproduction 151:623–635

    Article  PubMed  Google Scholar 

  • Zhou Y, Zhang P, Deng G, Liu X, Lu D (2012) Improvements of immune status, intestinal integrity and gain performance in the early-weaned calves parenterally supplemented with L-alanyl-L-glutamine dipeptide. Vet Immunol Immunopathol 145:134–142

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cao, Y., Yao, J., Sun, X., Liu, S., Martin, G.B. (2021). Amino Acids in the Nutrition and Production of Sheep and Goats. In: Wu, G. (eds) Amino Acids in Nutrition and Health. Advances in Experimental Medicine and Biology, vol 1285. Springer, Cham. https://doi.org/10.1007/978-3-030-54462-1_5

Download citation

Publish with us

Policies and ethics