Skip to main content

Yeasts

  • Chapter
  • First Online:
Fungi and Food Spoilage
  • 817 Accesses

Abstract

Yeasts are single celled fungi which reproduce vegetatively by budding, or less commonly, divide by fission. This property enables yeasts to increase rapidly in numbers in liquid environments, which favour the dispersal of unicellular microorganisms. Many yeasts grow readily under strictly anaerobic conditions, again favouring their growth in liquids. On the other hand, reproduction as single cells restricts spreading on, or penetration into, solid surfaces, where filamentous fungi have an advantage. Being eukaryotic organisms, yeasts reproduce more slowly than do most bacteria, and hence do not compete in environments which favour bacteria, i.e. at pH values near neutral or at very high temperatures. In common with filamentous fungi, many yeasts are tolerant of acid conditions. In broad terms, then, yeasts are more likely to be active in acidic, liquid environments than elsewhere. However, many yeasts also appear to be highly resistant to sunlight and desiccation and so occur widely in nature on the surfaces of leaves, fruits and vegetables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abranches, J. et al. 2000. The yeast community and mycocin producers of guava fruit in Rio de Janeiro, Brazil. Mycologia 92: 16–22.

    Article  Google Scholar 

  • Algazaq, J.N., Akrami, K., Martinez, F., McCutchan, A. and Bharti, A.R., 2017. Saccharomyces cerevisiae laryngitis and oral lesions in a patient with laryngeal carcinoma. Case reports in infectious diseases, 2017.

    Google Scholar 

  • Ancasi, E.G. et al. 2006. Moulds and yeasts in bottled water and soft drinks. Rev. Argentina Microbiol. 38: 93–96.

    CAS  Google Scholar 

  • Asehraou, A. et al. 2000. Characterization of yeast strains isolated from bloaters of fermented green table olives during storage. Grasas Aceites. 51: 225–229.

    CAS  Google Scholar 

  • Azeredo, L.A.I. de et al. 1998. Yeast communities associated with sugarcane in Campos, Rio de Janeiro, Brazil. Int. Microbiol. 1: 205–208.

    PubMed  Google Scholar 

  • Back, W. and Anthes, S. 1979. Taxonomische untersuchungen an Limonadenschädlichen Hefen. Brauwissenschaft 32: 145–154.

    Google Scholar 

  • Baleiras Couto, M.M. et al. 1996. Identification of spoilage yeasts in a food-production chain by microsatellite polymerase chain reaction fingerprinting. Food Microbiol. 13: 59–67.

    Article  CAS  Google Scholar 

  • Barnett, J.A. et al. 2000. Yeasts: Characteristics and Identification, 3rd edn. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Barreiro, J.A. et al. 1981. [Heat resistance of Candida tropicalis and Rhodotorula rubra in orange juice.] Arch. Latinoam. Nutr. 31: 463–470.

    Google Scholar 

  • Baruzzi, F. et al. 2006. Molecular and physiological characterization of natural microbial communities isolated from a traditional Southern Italian processed sausage. Meat Sci. 72: 261–269.

    Article  CAS  PubMed  Google Scholar 

  • Batra, L.R. and Millner, P.D. 1976. Asian fermented foods and beverages. Dev. Ind. Microbiol. 17: 117–128.

    Google Scholar 

  • Baumgart, J., Weber, B. and Hanekamp, B. 1983. Mikrobiologische Stabilitaet von Feinkosterzeugnissen. Fleischwirtschaft 63: 93–94.

    Google Scholar 

  • Beckh, G. et al. 2005. [A contribution to yeasts and their metabolism products as natural components of honey - Part 4: Isolated and identified yeast species]. Deutsche Lebensmittel-Rundschau 101: 338–344.

    Google Scholar 

  • Belda, I., Ruiz, J., Alonso, A., Marquina, D. and Santos, A., 2017. The biology of Pichia membranifaciens killer toxins. Toxins, 9: 112.

    Article  CAS  PubMed Central  Google Scholar 

  • Bem, Z. and Leistner, L. 1970. Die Wasseraktivitätstoleranz der bei Pökelfleischwaren vorkommenden Hefen. Fleischwirtschaft 50: 492–493.

    Google Scholar 

  • Bhardwaj, S. et al. 2007. PCR-based identification and strain typing of Pichia anomala using the ribosomal intergenic spacer region IGS1. J. Med. Microbiol. 56: 185–189.

    Article  CAS  PubMed  Google Scholar 

  • Björnberg, A. and Schnürer, J. 1993. Inhibition of the growth of grain-storage molds in vitro by the yeast Pichia anomala (Hansen) Kurtzman. Can. J. Microbiol. 39: 623–628.

    Article  Google Scholar 

  • Bockelmann, W. et al. 2005. Cultures for the ripening of smear cheeses. Int. Dairy J. 15: 719–732.

    Article  CAS  Google Scholar 

  • Boekhout, T. and Robert, V. (eds). 2003. Yeasts in Food. Cambridge, UK: Woodhead Publishing.

    Google Scholar 

  • Bolin, H.R. et al. 1972. Antimicrobial protection of moisturized Deglet Noir dates. Appl. Microbiol. 2: 799–802.

    Article  Google Scholar 

  • Bonestroo, M.H. et al. 1993. Inhibition of the growth of yeasts in fermented salads. Int. J. Food Microbiol. 17: 311–320.

    Article  CAS  PubMed  Google Scholar 

  • Bonjean, B. and Guillaume, L.D. 2003. Yeasts in bread and baking products. In Yeasts in Food, eds T. Boekhout and V. Robert. Cambridge, UK: Woodhead Publishing. pp. 289–307.

    Google Scholar 

  • Bours, J. and Mossel, D.A.A. 1973. A comparison of methods for the determination of lipolytic properties of yeasts mainly isolated from margarine, moulds, and bacteria. Arch. Lebensmittelhyg. 24: 197–203

    CAS  Google Scholar 

  • Breuer, U. and Harms, H. 2006. Debaryomyces hansenii – an extremophilic yeast with biotechnological potential. Yeast 23: 415–437.

    Google Scholar 

  • Buchta, V. et al. 1996. Zygosaccharomyces bailii a potential spoiler of mustard. Food Microbiol. 13: 133–135.

    Google Scholar 

  • Buhagiar, R.W.M. and Barnett, J.A. 1971. The yeasts of strawberries. J. Appl. Bacteriol. 34: 727–739.

    Article  CAS  PubMed  Google Scholar 

  • Caggia, C. et al. 2001. Identification of Pichia anomala isolated from yoghurt by RFLP of the ITS region. Int. J. Food Microbiol. 71: 71–73.

    Article  CAS  PubMed  Google Scholar 

  • Casas, E. et al. 1999. Sorbate detoxification by spoilage yeasts isolated from marzipan products. Food Technol. Biotechnol. 37: 87–91.

    CAS  Google Scholar 

  • Casas, E. et al. 2004. Pentadiene production from potassium sorbate by osmotolerant yeasts. Int. J. Food Microbiol. 94: 93–96.

    Article  CAS  PubMed  Google Scholar 

  • Casey, G.D. and Dobson, A.D.W. 2003. Molecular detection of Candida krusei contamination in fruit juice using the citrate synthase gene cs1 and a potential role for this gene in the adaptive response to acetic acid. J. Appl. Microbiol. 95: 13–22.

    Article  CAS  PubMed  Google Scholar 

  • Centraalbureau voor Schimmelcultures (2016) Fungal Collection database. https://wi.knaw.nl/page/Collection

  • Cerny, G. and Granzer, R. 1984. Schutzgasverpackung von Pommes frites. I. Grundlegende Untersuchungen zur mikrobiellen Stabilisierung vorfritierter Pommes frites durch CO2-Begasung. Verpack.-Rundsch. 35(8, Tech.-wiss. Beil.): 49–52.

    Google Scholar 

  • Chan, Z.L. and Tian, S.P. 2005. Interaction of antagonistic yeasts against postharvest pathogens of apple fruit and possible mode of action. Postharvest Biol. Technol. 36: 215–223.

    Article  CAS  Google Scholar 

  • Charnock, C. et al. 2005. Controlling the proliferation of Zygosaccharomyces bailii in ephedrine anti-phlegm cough mixture. J. Clin. Pharm. Therapeut. 30: 329–335.

    Article  CAS  Google Scholar 

  • Chrystopher, R.K. and Theivendirarajah, K. 1988. Palmyrah palm wine. 1: Microbial and biochemical changes. J. Natl. Sci. Counc. Sri Lanka 16: 131–141.

    Google Scholar 

  • Ciolfi, G. 1991. [Ecology of wine yeasts.] Vini Ital. 33: 41–46.

    Google Scholar 

  • Cocolin, L., Rantsiou, K., Iacumin, L., Zironi, R. and Comi, G., 2004. Molecular detection and identification of Brettanomyces/Dekkera bruxellensis and Brettanomyces/Dekkera anomalus in spoiled wines. Appl. Environ. Microbiol., 70: 1347–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins, M.A. and Buick, R.K. 1989. Effect of temperature on the spoilage of stored peas by Rhodotorula glutinis. Food Microbiol. 6: 135–141.

    Article  Google Scholar 

  • Comi, G. et al. 1982. [Changes in fruit yoghurt.] Latte 7: 543–546.

    Google Scholar 

  • Comi, G. et al. 1984. [Yeasts and fish deterioration.] Ristorazione Coll. 9: 65–73.

    Google Scholar 

  • Comi, G. et al. 1992. [Effects of physicochemical parameters on development of Zygosaccharomyces rouxii in ice cream mixes.] Ind. Aliment. (Pinerolo, Italy) 31: 439–446.

    Google Scholar 

  • Corry, J.E.L. 1976. The effect of sugars and polyols on the heat resistance and morphology of osmophilic yeasts. J. Appl. Bacteriol. 40: 269–276.

    Article  CAS  PubMed  Google Scholar 

  • Corte, L. et al. 2006. Diversity of salt responses among yeasts. Annals Microbiol. 56: 363–368.

    Article  CAS  Google Scholar 

  • Çorbacı, C. and Uçar, F.B., 2017. Production and optimization of killer toxin in Debaryomyces hansenii strains. Brazilian Arch. Biol. Technol. 60. https://doi.org/10.1590/1678-4324-2017160339

  • Coton, E. et al. 2006. Yeast ecology in French cider and black olive natural fermentations. Int. J. Food Microbiol. 108: 130–135.

    Article  CAS  PubMed  Google Scholar 

  • Couto, J.A. et al. 2005. Thermal inactivation of the wine spoilage yeasts Dekkera/Brettanomyces. Int. J. Food Microbiol. 104: 337–344.

    Article  CAS  PubMed  Google Scholar 

  • Cruess, W.V., 1912. The Effect of Sulphurous Acid on Fermentation Organisms. Industrial & Engineering Chemistry, 4: 581–585.

    Article  CAS  Google Scholar 

  • Dakin, J.C. and Day, P.M. 1958. Yeasts causing spoilage in acetic acid preserves. J. Appl. Bacteriol. 21: 94–96.

    Article  Google Scholar 

  • Dalton, H.K. et al. 1984. The yeasts of British fresh sausage and minced beef. Antonie van Leeuwenhoek 50: 227–248.

    Article  CAS  PubMed  Google Scholar 

  • De Hoog, G.S. et al. 2000. Atlas of Clinical Fungi, 2nd edn. Utrecht: Centraalbureau voor Schimmelcultures.

    Google Scholar 

  • Deák, T. and Beuchat, L.R. 1993. Yeasts associated with fruit juice concentrates. J. Food Prot. 56: 777–782.

    Article  PubMed  Google Scholar 

  • Deák, T. and Beuchat, L.R. 1996. Handbook of Food Spoilage Yeasts. Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Deiana, P. et al. 1984. Metabolization of lactic and acetic acids in Pecorino Romano cheese made with a combined starter of lactic acid bacteria and yeast. Lait 64: 380–394.

    Article  CAS  Google Scholar 

  • Delfini, C. et al. 1990. [Degree of contamination of rectified, concentrated musts (MCR) during the rectification, concentration and storage stages of production. Study of preventive and remedial steps. I.] Riv. Viti. Enol. 43: 55–71.

    Google Scholar 

  • Dillon, V.M. and Board, R.G. 1991. Yeasts associated with red meats. J. Appl. Bacteriol. 71: 93–108.

    Article  CAS  PubMed  Google Scholar 

  • Djokoto, D. et al. 2006. Rapid extraction of pawpaw juice with the application of locally produced pectic enzymes from Saccharomyces cerevisiae ATCC 51712. Food Biotechnol. 20: 31–41.

    Article  CAS  Google Scholar 

  • Douglass, A.P., Offei, B., Braun-Galleani, S., Coughlan, A.Y., Martos, A.A., Ortiz-Merino, R.A., Byrne, K.P. and Wolfe, K.H., 2018. Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: one species, four names. PLoS pathogens, 14(7), p.e1007138. https://doi.org/10.1371/journal.ppat.1007138

  • Droby, S. et al. 1989. Characterization of the biological control activity of Debaryomyces hansenii in the control of Penicillium digitatum on grapefruit. Can. J. Microbiol. 35: 794–800.

    Article  Google Scholar 

  • Druvefors, U.A. et al. 2005. Nutrient effects on biocontrol of Penicillium roqueforti by Pichia anomala J121 during airtight storage of wheat. Appl. Environ. Microbiol. 71: 1865–1869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte, F.L. et al. 2004. Isoenzyme patterns: a valuable molecular tool for the differentiation of Zygosaccharomyces species and detection of misidentified isolates. Syst. Appl. Microbiol. 27: 436–442.

    Article  CAS  PubMed  Google Scholar 

  • Duenas, M. et al. 1994. Microbial populations and malolactic fermentation of apple cider using traditional and modified methods. J. Food Sci. 59: 1060–1064, 1085.

    Article  CAS  Google Scholar 

  • Duran, M.C. et al. 1994. Lactobacillus plantarum survival in aerobic, directly brined olives. J. Food Sci. 59: 1197–1201.

    Google Scholar 

  • Ekundayo, C.A. 1987. Mycoflora and vitamin content of sun-dried food condiments in Nigeria. Plant Foods Hum. Nutr. 37: 247–252.

    Article  CAS  PubMed  Google Scholar 

  • Elez-Martinez, P. et al. 2004. Inactivation of Saccharomyces cerevisiae suspended in orange juice using high-intensity pulsed electric fields. J. Food Prot. 67: 2596–2602.

    Article  PubMed  Google Scholar 

  • El-Halouat, A. and Debevere, J.M. 1996. Influence of modified atmosphere and preservatives on the growth of Zygosaccharomyces rouxii isolated from dried fruits. Int. J. Food Microbiol. 33: 219–229.

    Article  CAS  PubMed  Google Scholar 

  • El-Halouat, A. and Debevere, J.M. 1997. Molds and yeasts isolated from hydrated prunes and raisins having different water activities. Sci. Aliments 17: 539–545.

    Google Scholar 

  • Engel, G. 1988. Hefen in Quark. Dtsch. Milchwirtsch. 39: 512–514.

    Google Scholar 

  • Engel, G. et al. 1994. [Heat tolerance of yeasts.] Hitzetoleranz von Hefen. Kiel. Milchwirtsch. Forschungsber. 46: 81–90.

    Google Scholar 

  • English, M.P. 1954. The physiology of Saccharomyces rouxii. J. Gen. Microbiol. 10: 328–336.

    Article  CAS  PubMed  Google Scholar 

  • Esteve-Zarzoso, B. et al. 2003. Molecular characterisation of the species of the genus Zygosaccharomyces. Syst. Appl. Microbiol. 26: 404–411.

    Article  CAS  PubMed  Google Scholar 

  • Etchells, J.L., Costilow, R.N. and Bell, T.A. 1952. Identification of yeasts from commercial cucumber fermentations in northern brining areas. Farlowia 4: 249–264.

    Google Scholar 

  • Etchells, J.L., Bell, T.A. and Jones, I.D. 1953. Morphology and pigmentation of certain yeasts from brines and the cucumber plant. Farlowia 4: 265–304.

    Google Scholar 

  • Ethiraj, S. and Suresh, E.R. 1988. Pichia membranaefaciens: a benzoate resistant yeast from spoiled mango pulp. J. Food Sci. Technol., India 25: 63–66.

    Google Scholar 

  • Fahrasmane, L. et al. 1988. Yeast flora of Haitian rum distilleries. MIRCEN J. Appl. Microbiol. Biotechnol. 4: 239–241.

    Article  Google Scholar 

  • Faid, M. et al. 1994. Microorganisms associated with postharvest green olives deteriorations in Morocco. Grasas Aceites 45: 313–317.

    Article  Google Scholar 

  • Fan, Q. and Tian, S.P. 2000. Postharvest biological control of Rhizopus rot of nectarine fruits by Pichia membranaefaciens. Plant Dis. 84: 1212–1216.

    Article  Google Scholar 

  • Ferreira, A.D. and Viljoen, B.C. 2003. Yeasts as adjunct starters in matured Cheddar cheese. Int. J. Food Microbiol. 86: 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Fleet, G.H. 1990. Yeasts in dairy products. J. Appl. Bacteriol. 68: 199–211.

    Article  CAS  PubMed  Google Scholar 

  • Fleet, G.H. 1992. Spoilage yeasts. Crit. Rev. Biotechnol. 12: 1–44.

    Article  CAS  PubMed  Google Scholar 

  • Fleet, G.H. 2003. Yeasts in fruit and fruit products. In Yeasts in Food, eds T. Boekhout and V. Robert. Cambridge, UK: Woodhead Publishing. pp. 267–287.

    Google Scholar 

  • Fleet, G.H. 2006. Saccharomyces and related genera. In Food Spoilage Microorganisms, ed. C. de W. Blackburn. Cambridge, UK: Woodhead Publishing. pp. 306–335.

    Google Scholar 

  • Fleet, G.H. and Mian, M.A. 1987. The occurrence and growth of yeasts in dairy products. Int. J. Food Microbiol. 4: 145–155.

    Article  Google Scholar 

  • Fleet, G.H. et al. 1984. Evolution of yeasts and lactic acid bacteria during fermentation and storage of Bordeaux wines. Appl. Environ. Microbiol. 48: 1034–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredlund, E. et al. 2002. Physiological characteristics of the biocontrol yeast Pichia anomala J121. FEMS Yeast Res. 2: 395–402.

    CAS  PubMed  Google Scholar 

  • Frengova, G. et al. 1994. Formation of carotenoids by Rhodotorula glutinis in whey ultrafiltrate. Biotechnol. Bioeng. 44: 888–894.

    Article  CAS  PubMed  Google Scholar 

  • Frölich-Wyder, M.-T. 2003. Yeasts in dairy products. In Yeasts in Food, eds T. Boekhout and V. Robert. Cambridge, UK: Woodhead Publishing. pp. 209–237.

    Google Scholar 

  • Galli, A., Franzetti, L. and Fortina, M.G. 1988. Isolation and identification of sour dour microflora. Microbiol., Aliments, Nutr. 6: 345–351.

    Google Scholar 

  • Galli, A. and Otto-Galli, G. 1973. [Microflora of the sour dough of Panettone cake.] Ann. Microbiol. Enzimol. 23: 39–49.

    Google Scholar 

  • Gao, C. and Fleet, G.H. 1988. The effects of temperature and pH on the ethanol tolerance of the wine yeasts, Saccharomyces cerevisiae, Candida stellata and Kloeckera apiculata. J. Appl. Bacteriol. 65: 405–409.

    Article  CAS  Google Scholar 

  • Gao, C. and Fleet, G.H. 1995. Degradation of malic and tartaric acids by high density cell suspensions of wine yeasts. Food Microbiol. 12: 65–71.

    Article  CAS  Google Scholar 

  • Gauthier, B. et al. 1977. [Study of the yeast flora during Ivory Coast traditional fermentation of cocoa beans.] Rev. Ferment. Ind. Aliment. 32: 160–163.

    Google Scholar 

  • Gibson, B. 1973. The effect of high sugar concentrations on the heat resistance of vegetative micro-organisms. J. Appl. Bacteriol. 36: 365–376.

    Article  CAS  PubMed  Google Scholar 

  • Giudici, P. 1990. [Inhibitory action of acetic acid on osmophilic yeasts isolated from traditional balsamic vinegar.] Ind. Bevande 19: 475–477, 480.

    Google Scholar 

  • Gobbetti, M. et al. 1994. Identification and clustering of lactic acid bacteria and yeasts from wheat sourdoughs of central Italy. Ital. J. Food Sci. 6: 85–94.

    CAS  Google Scholar 

  • Goh, E.L.C. et al. 2007. Baroprotective effect of increased solute concentrations on yeast and moulds during high pressure processing. Innov. Food Sci. Emerg. Technol. 8: 535–542.

    Article  CAS  Google Scholar 

  • Gola, S. et al. 1994. Microbial inactivation in apricot nectar and model systems by high-pressure treatment. Ind. Conserve 69: 194–198.

    Google Scholar 

  • Green, M.D. and Ibe, S.N. 1987. Yeasts as primary contaminants in yogurts produced commercially in Lagos, Nigeria. J. Food Prot. 50: 193–198, 205.

    Article  PubMed  Google Scholar 

  • Hammad, A.M. et al. 2006. Mycological and mycotoxical evaluation of turkey carcasses marketed at Sharkia Province. Vet. Med. J. Giza 54: 405–412.

    Google Scholar 

  • Hari, R.P.K. et al. 1992. A new strain of Rhodotorula rubra isolated from yogurt. J. Ind. Microbiol. 11: 43–51.

    Article  CAS  Google Scholar 

  • Haznedari, S. 1976. [Microorganisms in sour dough breadmaking. I. Yeasts.] Ann. Microbiol. Enzimol. 26: 83–88.

    Google Scholar 

  • Heard, G.M. and Fleet, G.H. 1986a. Occurrence and growth of yeast species during the fermentation of some Australian wines. Food Technol. Aust. 38: 22–25.

    Google Scholar 

  • Heard, G.M. and Fleet, G.H. 1986b. Evaluation of selective media for enumeration of yeasts during wine fermentation. J. Appl. Bacteriol. 60: 477–481.

    Article  Google Scholar 

  • Heard, G.M. and Fleet, G.H. 1988a. The effects of temperature and pH on the growth of yeast species during the fermentation of grape juice. J. Appl. Bacteriol. 65: 23–28.

    Article  Google Scholar 

  • Heard, G.M. and Fleet, G.H. 1988b. The effect of sulphur dioxide on yeast growth during natural and inoculated wine fermentation. Aust. N. Z. Wine Ind. J. 3: 57–60.

    Google Scholar 

  • Heresztyn, T. 1986. Metabolism of volatile phenolic compounds from hydroxycinnamic acids by Brettanomyces yeast. Arch. Microbiol. 146: 96–98.

    Article  CAS  Google Scholar 

  • Hernandez, A. et al. 2007. Identification and characterization of yeast isolated from the elaboration of seasoned green table olives. Food Microbiol. 24: 346–351.

    Article  CAS  PubMed  Google Scholar 

  • Hocking, A. D. et al. 2006. Inactivation of fruit spoilage yeasts and moulds using high pressure processing. In Advances in Food Mycology, eds A.D. Hocking, J.I. Pitt, R.A. Samson and U. Thrane. New York: Springer. pp. 239–246.

    Google Scholar 

  • Hood, M.A. 1983. Effects of harvesting waters and storage conditions on yeast populations in shellfish. J. Food Prot. 46: 105–108.

    Article  PubMed  Google Scholar 

  • Hounhouigan, D.J. et al. 1994. Microbiological changes in mawe during natural fermentation. World J. Microbiol. Biotechnol. 10: 410–413.

    Article  CAS  PubMed  Google Scholar 

  • Hunter, P.R. et al. 1994. Isolation of food spoilage yeasts from salads purchased from delicatessens. Br. Food J. 96: 23–25.

    Article  Google Scholar 

  • Hur, J.-K. et al. 1992. [Studies on the yeasts isolated from stirred yoghurts. II. Isolation and identification of yeasts from stirred yoghurts.] Han’guk Naknong Hakhocci (Korean J. Dairy Sci.) 14: 283–291.

    Google Scholar 

  • Hur, J.-K. et al. 1993. Physiological characteristics and heat resistance of yeasts isolated from stirred yogurts. Han’guk Naknong Hakhocci (Korean J. Dairy Sci.) 15: 56–65.

    Google Scholar 

  • Infantes, M. and Schmidt, J.L. 1992. [Characterization of the yeast flora of natural sourdoughs located in various French areas.] Sci. Aliments 12: 271–287.

    Google Scholar 

  • Iwasawa, S., Ueda, M., Miyata, N., Hirota, T. and Ahiko, K. 1982. Identification and fermentation character of kefir yeast. Agric. Biol. Chem. 46: 2631–2636.

    CAS  Google Scholar 

  • James, S.A. and Stratford, M. 2003. Spoilage yeasts with emphasis on the genus Zygosaccharomyces. In Yeasts in Food, eds T. Boekhout and V. Robert. Cambridge, UK: Woodhead Publishing. pp. 171–191.

    Google Scholar 

  • James, S.A. et al. 1994. Genetic interrelationship among species of the genus Zygosaccharomyces as revealed by small-subunit rRNA gene sequences. Yeast 10: 871–881.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, P. et al. 2000. The boundary for growth of Zygosaccharomyces bailii in acidified products described by models for time to growth and probability of growth. J. Food Prot. 63: 222–230.

    Article  CAS  PubMed  Google Scholar 

  • Jermini, M.F.G. and Schmidt-Lorenz, W. 1987a. Growth of osmotolerant yeasts at different water activity values. J. Food Prot. 50: 404–410.

    Article  Google Scholar 

  • Jermini, M.F.G. and Schmidt-Lorenz, W. 1987b. Cardinal temperatures for growth of osmotolerant yeasts in broths at different water activity values. J. Food Prot. 50: 473–478.

    Article  PubMed  Google Scholar 

  • Jermini, M.F.G. and Schmidt-Lorenz, W. 1987c. Heat resistance of vegetative cells and asci of two Zygosaccharomyces yeasts in broths at different water activity values. J. Food Prot. 50: 835–841.

    Article  PubMed  Google Scholar 

  • Jermini, M.F.G. and Schmidt-Lorenz, W. 1987d. Activity of Na-benzoate and ethyl-paraben against osmotolerant yeasts at different water activity values. J. Food Prot. 50: 920–927, 932.

    Article  CAS  PubMed  Google Scholar 

  • Jermini, M.F.G. et al. 1987. Detection, isolation and identification of osmotolerant yeasts from high-sugar products. J. Food Prot. 50: 468–472, 478.

    Article  PubMed  Google Scholar 

  • Jespersen, L. et al. 1994. Significance of yeasts and moulds occurring in maize dough fermentation for “kenkey” production. Int. J. Food Microbiol. 24: 239–248.

    Article  CAS  PubMed  Google Scholar 

  • Jespersen, L. et al. 2005. Occurrence and diversity of yeasts involved in the fermentation of West African cocoa beans. FEMS Yeast Res. 5: 441–453.

    Article  CAS  PubMed  Google Scholar 

  • Jijakli, M.H. and Lepoivre, P. 1998. Characterization of an exo-ß-1,3-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology. 88: 335–343.

    Article  CAS  PubMed  Google Scholar 

  • Juven, B.J. et al. 1978. Influence of orange juice composition on the thermal resistance of spoilage yeasts. J. Food Sci. 43: 1074–1076, 1080.

    Article  CAS  Google Scholar 

  • Kalathenos, P. et al. 1995. Resistance of some wine spoilage yeasts to combinations of ethanol and acids present in wine. J. Appl. Bacteriol. 78: 245–250.

    Article  CAS  Google Scholar 

  • Kaminarides, S.E. and Laskos, N.S. 1993. Yeasts in factory brine of Feta cheese. Aust. J. Dairy Technol. 47: 68–71.

    Google Scholar 

  • Kang, K.-H. et al. 1980. [Studies of the making of yeast cheese with Debaryomyces hansenii and Saccharomyces fragilis.] Han’guk Ch’uksan Hakhoechi (Korean J. Anim. Sci.) 22: 101–107.

    Google Scholar 

  • Kebede, A. et al. 2007. The effect of incubation temperature on the survival and growth of yeasts in Sethemi, South African naturally fermented milk. Food Technol. Biotechnol. 45: 21–26.

    CAS  Google Scholar 

  • King, A.D. et al. 1981. The mycoflora of some Australian foods. Food Technol. Aust. 33: 55–60.

    Google Scholar 

  • Kirimli, S. and Kunduhoglu, B.U.K.E.T., 2016. Inactivation of Zygosaccharomyces rouxii using power ultrasound at different temperatures, pH and water activity conditions. Ital. J. Food Sci. 28: 64–72.

    Google Scholar 

  • Kobatake, M. et al. 1992. Isolation of proteolytic psychrotrophic yeasts from fresh raw seafoods. Lett. Appl. Microbiol. 14: 37–42.

    Article  Google Scholar 

  • Kosse, D. et al. 1997. Identification of yoghurt-spoiling yeasts with 18S rRNA-targeted oligonucleotide probe. Syst. Appl. Microbiol. 20: 468–480.

    Article  Google Scholar 

  • Kotzekidou, P. 1997. Identification of yeasts from black olives in rapid system microtitre plates. Food Microbiol. 14: 609–616.

    Article  CAS  Google Scholar 

  • Kreger-van Rij, N.J.W., ed. 1984. The Yeasts: a Taxonomic Study, 3rd edn. Amsterdam: Elsevier.

    Google Scholar 

  • Kurtzman, C.P. 1984. Synonomy of the yeast genera Hansenula and Pichia demonstrated through comparisons of deoxyribonucleic acid relatedness. Antonie van Leeuwenhoek 50: 209–217.

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman, C.P. 2003. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res. 4: 233–245.

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman, C.P. and Fell, J.W. 1998. The Yeasts, A Taxonomic Study, 4th edn. Amsterdam: Elsevier.

    Google Scholar 

  • Kurtzman, C.P. and James, S.A. 2006. Zygosaccharomyces and related genera. In Food Spoilage Microorganisms, ed. C. de W. Blackburn. Cambridge, UK: Woodhead Publishing. pp. 289–305.

    Google Scholar 

  • Kurtzman, C.P. and Robnett, C.J. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73: 331–371.

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman, C.P. and Robnett, C.J. 2003. Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res. 3: 417–432.

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman, C.P., Robnett, C.J. and Basehoar-Powers, E. 2008. Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res. 8: 939–954

    Google Scholar 

  • Kurtzman, C.P., Fell, J.W. and Boekhout, T. (eds) 2011. The yeasts: a taxonomic study. Fifth edn, Elsevier, UK.

    Google Scholar 

  • Kwasiborski, A., Bajji, M., Renaut, J., Delaplace, P. and Jijakli, M.H., 2014. Identification of metabolic pathways expressed by Pichia anomala Kh6 in the presence of the pathogen Botrytis cinerea on apple: new possible targets for biocontrol improvement. PLOS one, 9(3), p.e91434.

    Google Scholar 

  • Lanciotti, R. et al. 1998. Hansenula anomala as spoilage agent of cream-filled cakes. Microbiol. Res. 153: 145–148.

    Google Scholar 

  • Laroche, C. et al. 2005. Water activity affects heat resistance of microorganisms in fine powders. Int. J. Food Microbiol. 97: 307–315.

    Article  CAS  PubMed  Google Scholar 

  • Las Heras-Vazquez, F.J. et al. 2003. Identification of yeast species from orange fruit and juice by RFLP and sequence analysis of the 5.8s rRNA gene and the two internal transcribed spacers. FEMS Yeast Res. 3: 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Latorre-Garcia, L. et al. 2007. Taxonomical classification of yeasts isolated from kefir based on the sequence of their ribosomal RNA genes. World J. Microbiol. Biotechnol. 23: 785–791.

    Article  CAS  Google Scholar 

  • Lee, T.-S. and Lee, S.-K. 1970. [Studies on yeasts for soy sauce brewing. I. Isolation, identification, and classification of yeasts in soy sauce koji.] Han’guk Nonghwa Hakhoechi (J. Korean Agric. Chem. Soc.) 13: 97–103.

    Google Scholar 

  • Legan, J.D. and Voysey, P.A. 1991. Yeast spoilage of bakery products and ingredients. J. Appl. Bacteriol. 70: 361–371.

    Article  CAS  PubMed  Google Scholar 

  • Lenovich, L.M. et al. 1988. Effect of solute type on sorbate resistance in Zygosaccharomyces rouxii. J. Food Sci. 53: 914–916.

    Article  Google Scholar 

  • Li, X., Tang, H., Yang, C., Meng, X. and Liu, B., 2019. Detoxification of mycotoxin patulin by the yeast Rhodotorula mucilaginosa. Food Control, 96: 47–52.

    Article  CAS  Google Scholar 

  • Lioliou, K. et al. 2001. Changes in the microflora of manouri, a traditional Greek whey cheese, during storage. Int. J. Dairy Technol. 54: 100–106.

    Article  Google Scholar 

  • Liu, C.-H. et al. 1996. The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiol. 13: 407–415. 1996

    Article  Google Scholar 

  • López-Malo, A. and Palou, E. 2000. Modeling the growth/no-growth interface of Zygosaccharomyces bailii in mango puree. J. Food Sci. 65: 516–520.

    Article  Google Scholar 

  • Loureiro, V and Malfeito-Ferreira, M. 2006. Dekkera/Brettamomyces spp. In Food Spoilage Microorganisms, C. de W. Blackburn, ed. Cambridge, UK: Woodhead Publishing. pp. 354–398.

    Google Scholar 

  • Mamede, M.E.O. and Pastore, G.M. 2006. Study of methods for the extraction of volatile compounds from fermented grape must. Food Chem. 96: 586–590.

    Article  CAS  Google Scholar 

  • Maravalhas, N. 1966. Mycological deterioration of cocoa beans during fermentation and storage in Bahia. Rev. Int. Choc. 21: 375–378.

    Google Scholar 

  • Marvig, C.L., Kristiansen, R.M. and Nielsen, D.S., 2015. Growth/no growth models for Zygosaccharomyces rouxii associated with acidic, sweet intermediate moisture food products. Int. J. Food Microbiol. 192: 51–57.

    Article  CAS  PubMed  Google Scholar 

  • Marquina, D. et al. 1992. Characterisation of the yeast populations in olive brines. Lett. Appl. Microbiol. 14: 279–283.

    Article  Google Scholar 

  • Martin, A.M. et al. 1993. Growth parameters for the yeast Rhodotorula rubra grown in peat extracts. J. Ferment. Bioeng. 76: 321–325.

    Article  CAS  Google Scholar 

  • Martorell, P. et al. 2005a. Molecular monitoring of spoilage yeasts during the production of candied fruit nougats to determine food contamination sources. Int. J. Food Microbiol. 101: 293–302.

    Article  CAS  PubMed  Google Scholar 

  • Martorell, P. et al. 2005b. Rapid identification and enumeration of Saccharomyces cerevisiae cells in wine by real-time PCR. Appl. Environ. Microbiol. 71: 6823–6830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martorell, P. et al. 2007. Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. Int. J. Food Microbiol. 114: 234–242.

    Article  CAS  PubMed  Google Scholar 

  • Masih, E.I. and Paul, B. 2002. Secretion of beta-1,3-glucanases by the yeast Pichia membranaefaciens and its possible role in the biocontrol of Botrytis cinerea causing grey mould disease of the grapevine. Curr. Microbiol. 44: 391–395.

    Article  CAS  PubMed  Google Scholar 

  • Masih, E.I. et al. 2000. Can the grey mould disease of the grape-vine be controlled by yeast? FEMS Microbiol. Lett. 189: 233–237.

    Article  CAS  PubMed  Google Scholar 

  • Masoud, W. and Jespersen, L. 2006. Pectin degrading enzymes in yeasts involved in fermentation of Coffea arabica in East Africa. Int. J. Food Microbiol. 110: 291–296.

    Article  CAS  PubMed  Google Scholar 

  • Masoud, W. and Kaltoft, C.H. 2006. The effects of yeasts involved in the fermentation of Coffea arabica in East Africa on growth and ochratoxin A (OTA) production by Aspergillus ochraceus. Int. J. Food Microbiol. 106: 229–234.

    Article  CAS  PubMed  Google Scholar 

  • Masoud, W. et al. 2004. Yeast involved in fermentation of Coffea arabica in East Africa determined by genotyping and by direct denaturating gradient gel electrophoresis. Yeast 21: 549–556.

    Article  CAS  PubMed  Google Scholar 

  • Mazigh, D. 1994. Microbiology of chocolate. The application of HACCP in the processing of cocoa. Int. Food Ingredients 1994: 34–39.

    Google Scholar 

  • Menke, M. et al. 2007. Microbiological quality control of wine - A survey of wines traded in Germany. Deutsche Lebensmittel-Rundschau 103: 197–202.

    CAS  Google Scholar 

  • Middelhoven, W.J. 1998. The yeast flora of maize silage. Food Technol. Biotechnol. 36: 7–11.

    Google Scholar 

  • Miller, M.W. and Mrak, E.M. 1953. Yeasts associated with dried-fruit beetles in figs. Appl. Microbiol. 1: 174–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrissey, W.F. et al. 2004. The role of indigenous yeasts in traditional Irish cider fermentations. J. Appl. Microbiol. 97: 647–655.

    Article  CAS  PubMed  Google Scholar 

  • Mourad, K. and Nour-Eddine, K. 2006. Microbiological study of fermented Algerian green olives: isolation and identification of lactic acid bacteria and yeasts along with the effects of brine solutions obtained at the end of olive fermentation on Lactobacillus plantarum growth. Grasas Aceites 57: 292–300.

    Article  CAS  Google Scholar 

  • Mrak, E.M. and Bonar, L. 1939. Film yeasts from pickle brines. Zentralbl. Bakteriol. Parasitenkd., Infektionskrankh. Hyg., Abt. II, 100: 289–294.

    Google Scholar 

  • Mrak, E.M. et al. 1956. Yeasts occurring in brines during the fermentation and storage of green olives. Food Technol., Champaign 10: 416–419.

    CAS  Google Scholar 

  • Mushtaq, M., Faiza-Ifitkhar and Sharfun-Nahar. 2007. Detection of yeast mycoflora from butter. Pak. J. Bot. 39: 887-896.

    Google Scholar 

  • Muys, G.T. et al. 1966. The determination and enumeration of the associative microflora of edible emulsions. Part I. Mayonnaise, salad dressings and tomato ketchup. Lab. Pract. 15: 648–652, 674.

    CAS  PubMed  Google Scholar 

  • Neves, L. et al. 1994. Resistance of food spoilage yeasts to sorbic acid. Lett. Appl. Microbiol. 19: 8–11.

    Article  CAS  Google Scholar 

  • Nielsen, D.S. et al. 2005. Yeast populations associated with Ghanaian cocoa fermentations analysed using denaturing gradient gel electrophoresis (DGGE). Yeast (Chichester) 22: 271–284.

    Article  CAS  Google Scholar 

  • Nielsen, D.S. et al. 2007. The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. Int. J. Food Microbiol. 114: 168–186.

    Article  CAS  PubMed  Google Scholar 

  • Nisiotou, A.A. et al. 2007. Yeast community structures and dynamics in healthy and Botrytis-affected grape must fermentations. Appl. Environ. Microbiol. 73: 6705–6713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nout, M.J.R. 2003. Traditional fermented products from Africa, Latin America and Asia. In Yeasts in Food, eds T. Boekhout and V. Robert. Cambridge, UK: Woodhead Publishing, pp. 451–473.

    Google Scholar 

  • O’Brien, M. et al. 2007. Quantification and identification of fungal propagules in well-managed baled grass silage and in normal on-farm produced bales. Animal Feed Sci. Technol. 132: 283–297.

    Article  Google Scholar 

  • O’Toole, D.K. 1997. The role of microorganisms in soy sauce production. Adv. Appl. Microbiol. 45: 87–152.

    Article  Google Scholar 

  • Obiri-Danso, K. 1994. Microbiological studies on corn dough fermentation. Cereal Chem. 71: 186–188.

    CAS  Google Scholar 

  • Okagbue, R.N. 1990. Identification of yeasts and aerobic spore forming bacteria from cassava flour. Food Microbiol. 7: 27–32.

    Article  Google Scholar 

  • Oliveira, M. et al. 2004. Biotechnology of olive fermentation of ‘Galega’ Portuguese variety. Grasas Aceites (Sevilla) 55: 219–226.

    CAS  Google Scholar 

  • Onishi, N. 1963. Osmophilic yeasts. Adv. Food Res. 12: 53–94.

    Article  CAS  PubMed  Google Scholar 

  • Oyewole, O.B. 2001. Characteristics and significance of yeasts’ involvement in cassava fermentation for ‘fufu’ production. Int. J. Food Microbiol. 65: 213–218.

    Article  CAS  PubMed  Google Scholar 

  • Oyeyiola, G.P. 1991. Fermentation of millet to produce kamu a Nigerian starch-cake food. World J. Microbiol. Biotechnol. 7: 196–201.

    Article  CAS  PubMed  Google Scholar 

  • Palma, M., Guerreiro, J.F. and Sá-Correia, I., 2018. Adaptive response and tolerance to acetic acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: a physiological genomics perspective. Frontiers Microbiol. 9: 274. https://doi.org/10.3389/fmicb.2018.00274

    Article  Google Scholar 

  • Palou, E. et al. 1997a. High hydrostatic pressure as a hurdle for Zygosaccharomyces bailii inactivation. J. Food Sci. 62: 855–857.

    Article  CAS  Google Scholar 

  • Palou, E. et al. 1997b. Effect of water activity on high hydrostatic pressure inhibition of Zygosaccharomyces bailii. Lett. Appl. Microbiol. 24: 417–420.

    Google Scholar 

  • Pandya, Y. et al. 1995. Concurrent effects of high hydrostatic pressure, acidity and heat on the destruction and injury of yeasts. J. Food Prot. 58: 301–304.

    Article  PubMed  Google Scholar 

  • Panon, G. et al. 1995. Pectinolytic enzyme production by yeasts in cider fermentation. Sci. Aliments 15: 31–42.

    CAS  Google Scholar 

  • Papa, F. et al. 1995. UV ray utilization for the control of moulding in salami. Ind. Aliment. (Pinerolo, Italy) 34: 17–19.

    Google Scholar 

  • Papouskova, K. and Sychrova, H. 2007. The co-action of osmotic and high temperature stresses results in a growth improvement of Debaryomyces hansenii cells. Int. J. Food Microbiol. 118: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Passoth, V. et al. 2006. Biotechnology, physiology and genetics of the yeast Pichia anomala. FEMS Yeast Res. 6: 3–13.

    Article  CAS  PubMed  Google Scholar 

  • Paula, C.R. et al. 2006. Nosocomial infection in newborns by Pichia anomala in a Brazilian intensive care unit. Med. Mycol. 44: 479–484.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, B.M. and McKee, R.A. 1992. Rapid identification of Saccharomyces cerevisiae, Zygosaccharomyces bailii and Zygosaccharomyces rouxii. Int. J. Food Microbiol. 16: 63–67.

    Article  CAS  PubMed  Google Scholar 

  • Pech, B. et al. 1984. [Rum fermentation: suitability of strains of Schizosaccharomyces pombe.] Sci. Aliments 4: 67–72.

    Google Scholar 

  • Pereira, G.V., Alvarez, J.P., Neto, D.P.D.C., Soccol, V.T., Tanobe, V.O., Rogez, H., Góes-Neto, A. and Soccol, C.R., 2017. Great intraspecies diversity of Pichia kudriavzevii in cocoa fermentation highlights the importance of yeast strain selection for flavor modulation of cocoa beans. Lwt, 84: 290–297.

    Article  CAS  Google Scholar 

  • Pérez-Torrado, R. and Querol, A., 2016. Opportunistic strains of Saccharomyces cerevisiae: A potential risk sold in food products. Frontiers Microbiol. 6: 1522. https://doi.org/10.3389/fmicb.2015.01522

    Article  Google Scholar 

  • Petters, H.I. et al. 1988. Quantitative and qualitative studies of the microflora of barley malt production. J. Appl. Bacteriol. 65: 279–297.

    Article  Google Scholar 

  • Pina, C. et al. 2004. Ethanol tolerance of five non-Saccharomyces wine yeasts in comparison with a strain of Saccharomyces cerevisiae – influence of different culture conditions. Food Microbiol. 21: 439–447.

    Article  CAS  Google Scholar 

  • Pitt, J.I. 1963. Microbiological aspects of prune preservation. M.Sc. Thesis. Kensington, N.S.W.: University of New South Wales.

    Google Scholar 

  • Pitt, J.I. 1974. Resistance of some food spoilage yeasts to preservatives. Food Technol. Aust. 26: 238–241.

    Google Scholar 

  • Pitt, J.I. 1975. Xerophilic fungi and the spoilage of foods of plant origin. In Water Relations of Foods, ed. R.B. Duckworth. London: Academic Press. pp. 273–307.

    Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 1985. New species of fungi from Indonesian dried fish. Mycotaxon 22: 197–208.

    Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 1997. Fungi and Food Spoilage. 2nd edn. Blackie Academic and Professional, London.

    Book  Google Scholar 

  • Pitt, J.I. and Richardson, K.C. 1973. Spoilage by preservative-resistant yeasts. CSIRO Food Res. Q. 33: 80–85.

    Google Scholar 

  • Poncini, L. and Wimmer, F.L. 1986. Characterization of the yeasts (Blastomycetes) in some Fijian honeys. Acta Aliment. Polonica 12: 143–151.

    Google Scholar 

  • Praphailong, W. and Fleet, G.H. 1997. The effect of pH, sodium chloride, sucrose, sorbate and benzoate on the growth of food spoilage yeasts. Food Microbiol. 14: 459–468.

    Article  CAS  Google Scholar 

  • Prista, C. et al. 2005. Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Res. 5: 693–701.

    Article  CAS  PubMed  Google Scholar 

  • Pulvirenti, A. et al. 2004. Occurrence and dominance of yeast species in sourdough. Lett. Appl. Microbiol. 38: 113–117.

    Article  CAS  PubMed  Google Scholar 

  • Put, H.M.C. and de Jong, J. 1982. The heat resistance of ascospores of four Saccharomyces spp. isolated from spoiled heat-processed soft drinks and fruit products. J. Appl. Bacteriol. 3: 235–243.

    Article  Google Scholar 

  • Put, H.M.C. et al. 1976. Heat resistance studies on yeast spp. causing spoilage in soft drinks. J. Appl. Bacteriol. 40: 135–152.

    Article  CAS  PubMed  Google Scholar 

  • Qin, G.Z. et al. 2006. Combination of antagonistic yeasts with two food additives for control of brown rot caused by Monilinia fructicola on sweet cherry fruit. J. Appl. Microbiol. 100: 508–515.

    Article  CAS  PubMed  Google Scholar 

  • Quintana, M.C.D., Garcia, P.G. and Fernández, A.G. 2003. Characteristics of the growth of table olive yeasts at low temperature. Grasas Aceites, 54: 264–271.

    Google Scholar 

  • Quintana, M.C.D. et al. 2005. Growth in brine, at low temperature and different organic acids, of yeasts from table olives. Grasas Aceites 56: 9–15.

    CAS  Google Scholar 

  • Quirós, M., Wrent, P., Valderrama, M.J., de SILÓNIZ, M.I. and Peinado, J.M., 2005. A β-Glucuronidase–Based Agar Medium for the Differential Detection of the Yeast Debaryomyces hansenii from Foods. Journal of food protection, 68(4), pp.808-814.

    Google Scholar 

  • Rankine, B.C. 1964. Hydrogen sulphide production by yeasts. J. Sci. Food Agric. 15: 872–877.

    Article  Google Scholar 

  • Rapp, P. and Backhaus, S. 1992. Formation of extracellular lipases by filamentous fungi, yeasts, and bacteria. Enzyme Microb. Technol. 14: 938–943.

    Article  CAS  Google Scholar 

  • Ramos, J., Melero, Y., Ramos-Moreno, L., Michán, C. and Cabezas, L., 2017. Debaryomyces hansenii strains from valle de los pedroches iberian dry meat products: Isolation, identification, characterization, and selection for starter cultures. J. Microbiol. Biotechnol. 27: 1576-1585.

    Article  CAS  PubMed  Google Scholar 

  • Raso, J. et al. 1998. Inactivation of Zygosaccharomyces bailii in fruit juices by heat, high hydrostatic pressure and pulsed electric fields. J. Food Sci. 63: 1042–1044.

    Article  CAS  Google Scholar 

  • Ravelomanana, R. et al. 1984. [Study of the yeast flora of the traditional cocoa fermentation in Madagascar.] Rev. Ferment. Ind. Aliment. 39: 103–106.

    Google Scholar 

  • Rawsthorne, H. and Phister, T.G. 2006. A real-time PCR assay for the enumeration and detection of Zygosaccharomyces bailii from wine and fruit juices. Int. J. Food Microbiol. 112: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Rawsthorne, H. and Phister, T.G., 2009. Detection of viable Zygosaccharomyces bailii in fruit juices using ethidium monoazide bromide and real-time PCR. Int. J. Food Microbiol, 131: 246–250.

    Article  CAS  PubMed  Google Scholar 

  • Recca, J. and Mrak, E.M. 1952. Yeasts occurring in citrus products. Food Technol., Champaign 6: 450–454.

    Google Scholar 

  • Renouf, V. et al. 2007. Inventory and monitoring of wine microbial consortia. Appl. Microbiol. Biotechnol. 75: 149–164.

    Article  CAS  PubMed  Google Scholar 

  • Restaino, L. et al. 1995. Efficacy of ozonated water against various food-related microorganisms. Appl. Environ. Microbiol. 61: 3471–3475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohm, H. et al. 1992. Diversity of yeasts in selected dairy products. J. Appl. Bacteriol. 72: 370–376.

    Article  Google Scholar 

  • Rojo, M.C., Cristiani, M., Szerman, N., Gonzalez, M.L., Lerena, M.C., Mercado, L.A. and Combina, M., 2019. Reduction of Zygosaccharomyces rouxii population in concentrated grape juices by thermal pasteurization and hydrostatic high pressure processing. Food Bioproc. Technol., 12: 781–788.

    Article  CAS  Google Scholar 

  • Romano, P. et al. 1993. Biometric study of acetoin production in Hanseniaspora guilliermondii and Kloeckera apiculata. Appl. Environ. Microbiol. 59: 1838–1841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roostita, R. and Fleet, G.H. 1996. The occurrence and growth of yeasts in Camembert and Blue-veined cheeses. Int. J. Food Microbiol. 28: 393–404.

    Article  CAS  PubMed  Google Scholar 

  • Rosa, C.A. et al. 1990. Yeasts from human milk collected in Rio de Janeiro, Brazil. Rev. Microbiol. 21: 361–363.

    Google Scholar 

  • Rosi, I. 1993. [Extracellular proteolytic activity in yeasts of enological interest.] Ann. Microbiol. Enzimol. 43: 77–84.

    Google Scholar 

  • Rosi, I. et al. 1994. Characterization of beta-glucosidase activity in yeasts of oenological origin. J. Appl. Bacteriol. 77: 519–527.

    Article  CAS  PubMed  Google Scholar 

  • Salovaara, H. and Savolainen, J. 1984. Yeast type isolated from Finnish sour rye dough starters. Acta Aliment. Pol. 10: 241–245.

    Google Scholar 

  • Samelis, J. and Sofos, J.N. 2003. Yeasts in meat and meat products. In Yeasts in Food, eds T. Boekhout and V. Robert. Cambridge, UK: Woodhead Publishing. pp. 239–265.

    Google Scholar 

  • Sand, F.E.M.J. and van Grinsven, A.M. 1976. Investigation of yeast strains isolated from Scandinavian soft drinks. Brauwissenschaft 29: 353–355.

    Google Scholar 

  • Sanni, A.I. and Loenner, C. 1993. Identification of yeasts isolated from Nigerian traditional alcoholic beverages. Food Microbiol. 12: 517–523.

    Article  Google Scholar 

  • Santos, A. and Marquina, D. 2004. Killer toxin of Pichia membranifaciens and its possible use as a biocontrol agent against grey mould disease of grapevine. Microbiology (Reading) 150: 2527–2534.

    Article  CAS  Google Scholar 

  • Santos, A. et al. 2004. Yeasts as biological agents to control Botrytis cinerea. Microbiol. Res. 159: 331–338.

    Article  CAS  PubMed  Google Scholar 

  • Saudi, A.M. and Mansour, N.K. 1990. Fungal contamination of ready-to-eat-meals in airline catering. Fleischwirtschaft 70: 563–564.

    Google Scholar 

  • Schifferdecker, A.J., Dashko, S., Ishchuk, O.P. and Piškur, J., 2014. The wine and beer yeast Dekkera bruxellensis. Yeast, 31: 323–332.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, A. et al. 2003. Zum Vorkommen osmophiler Hefen im Honig [The occurrence of osmophilic yeasts in honey]. Deutsche Lebensmittel-Rundschau 99: 310–319.

    Google Scholar 

  • Schwan, R.F. and Wheals, A.E. 2003. Mixed microbial fermentations of chocolate and coffee. In Yeasts in Food, eds T. Boekhout and V. Robert. Cambridge, UK: Woodhead Publishing, pp. 429–449.

    Google Scholar 

  • Shearer, A.E.H. et al. 2002. Heat resistance of juice spoilage microorganisms. J. Food Prot. 65: 1271–1275.

    Article  PubMed  Google Scholar 

  • Shuangquan et al. 2006. Microflora in traditional strater cultures for fermented milk, hurunge, from Inner Mongolia, China. Animal Science J. 77: 235–241.

    Article  Google Scholar 

  • Silva, C.F. et al. 2000. Microbial diversity during maturation and natural processing of coffee cherries of Coffea arabica in Brazil. Int. J. Food Microbiol. 60: 251–260.

    Article  Google Scholar 

  • Simoncini, N. et al. 2007. Dynamics and characterization of yeasts during ripening of typical Italian dry-cured ham. Food Microbiol. 24: 577–584.

    Article  CAS  PubMed  Google Scholar 

  • Singh, D. 2004. Effects of Debaryomyces hansenii and calcium salt on fruit rot (Rhizopus macrosporus) of peach. Annals Plant Prot. 12: 310–313.

    Google Scholar 

  • Solieri, L., Landi, S., De Vero, L. and Giudici, P., 2006. Molecular assessment of indigenous yeast population from traditional balsamic vinegar. J. Appl. Microbiol. 101: 63-71.

    Article  CAS  PubMed  Google Scholar 

  • Sørensen, B.B. and Jakobsen, M. 1997. The combined effects of temperature, pH and NaCl on growth of Debaryomyces hansenii analyzed by flow cytometry and predictive microbiology. Int. J. Food Microbiol. 34: 209–220.

    Article  PubMed  Google Scholar 

  • Sousa, M.J. et al. 1993. Must deacidification with an induced flocculant yeast strain of Schizosaccharomyces pombe. Appl. Microbiol. Biotech. 39: 189–193.

    Article  CAS  Google Scholar 

  • Sousa, M.J. et al. 1995. Effects of ethanol and acetic acid on the transport of malic acid and glucose in the yeast Schizosaccharomyces pombe: implications in wine deacidification. FEMS Microbiol. Lett. 126: 197–202.

    Article  CAS  PubMed  Google Scholar 

  • Sousa, M.J. et al. 1996. Transport of acetic acid in Zygosaccharomyces bailii: Effects of ethanol and their implications on the resistance of the yeast to acidic environments. Appl. Environ, Microbiol. 62: 3152–3157.

    Article  CAS  Google Scholar 

  • Spicher, G. 1986a. Die Sauerteiggärung. Chem. Mikrobiol. Technol. Lebensm. 10: 65–77.

    CAS  Google Scholar 

  • Spicher, G. 1986b. Neue Erkenntnisse über die Erreger der ‘Kreidekrankheit’ des Brotes und Möglichkeiten zur Wachstumsverhinderung. Brot Backwaren 34: 208–213.

    Google Scholar 

  • Spicher, G. and Mellenthin, B. 1983. Zur Frage der mikrobiologischen Qualität von Getreidevollkornerzeugnissen. III. Die bei Speisegetreide und Mehlen auftretenden Hefen. Dtsch. Lebensm.-Rundsch. 79: 35–38.

    Google Scholar 

  • Spicher, G. et al. 1979. Die Mikroflora des Sauerteiges. VII. Untersuchungen über die Art der in ‘Reinzuchtsauern’ auftretenden Hefen. Z. Lebensm.-Unters. Forsch. 169: 71–81.

    Google Scholar 

  • Splittstoesser, D.F. et al. 1986. Effect of food composition on the heat resistance of yeast ascospores. J. Food Sci. 51: 1265–1267.

    Article  Google Scholar 

  • Sponholz, W.R. et al. 1986. Die Bildung von Alditolen durch die Hefen des Weines. Chem. Mikrobiol. Technol. Lebensm. 10: 19–24.

    CAS  Google Scholar 

  • Steinbuch, E. 1965. Preparation of sauerkraut. Ann. Rept. Sprenger Institute, Wageningen, Netherlands. 1965: 56–57.

    Google Scholar 

  • Steinbuch, E. 1966. Manufacturing of sauerkraut. Ann. Rept. Sprenger Institute, Wageningen, Netherlands 1966: 47.

    Google Scholar 

  • Stratford, M. and James, S.A. 2003. Non-alcoholic beverages and yeasts. In Yeasts in Food, eds T. Boekhout and V. Robert. Cambridge, UK: Woodhead Publishing. pp. 309–345.

    Google Scholar 

  • Stratford, M. et al. 2007. Decarboxylation of sorbic acid by spoilage yeasts is associated with the PAD1 gene. Appl. Environ. Microbiol. 73: 6534–6542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stubbs, S. et al. 1994. Differentiation of the spoilage yeast Zygosaccharomyces bailii from other Zygosaccharomyces species using 18S rDNA as target for a non-radioactive ligase detection reaction. Lett. Appl. Microbiol. 19: 268–272.

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Lepe, J.A. 1991 [New Biotechnology of preparation of base wines for manufacture of naturally sparling wines] Ind. Bevande 20: 263–265, 269.

    Google Scholar 

  • Suárez-Quiroz, M. et al. 2005. The impact of roasting on the ochratoxin A content of coffee. Int. J. Food Sci. Technol. 40: 605–611.

    Article  CAS  Google Scholar 

  • Sugihara, T.F., Kline, L. and Miller, M.W. 1971. Microorganisms of the San Francisco sour dough bread process. I. Yeasts responsible for leavening action. Appl. Microbiol. 21: 456–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suihko, M.L. and Mäkinen, V., 1984. Tolerance of acetate, propionate and sorbate by Saccharomyces cerevisiae and Torulopsis holmii. Food Microbio. 1: 105–110.

    Article  Google Scholar 

  • Sujaya, I.N. et al. 2004. Identification and characterization of yeasts in brem, a traditional Balinese rice wine. World J. Microbiol. Biotechnol. 20: 143–150.

    Article  CAS  Google Scholar 

  • Suresh, E.R. et al. 1982. A note on the yeast flora associated with fermentation of mango. J. Appl. Bacteriol. 52: 1–4.

    Article  Google Scholar 

  • Suriyarachchi, V.R. and Fleet, G.H. 1981. Occurrence and growth of yeasts in yogurts. Appl. Environ. Microbiol. 42: 574–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzzi, G. et al. 2003. Yeasts associated with Manteca. FEMS Yeast Res. 3: 159–166.

    Article  CAS  PubMed  Google Scholar 

  • Tamang, J.P. and Sarkar, P.K., 1995. Microflora of murcha: an amylolytic fermentation starter. Microbios, 81(327): 115–122.

    CAS  PubMed  Google Scholar 

  • Teoh, A.L. et al. 2004. Yeast ecology of Kombucha fermentation. Int. J. Food Microbiol. 95: 119–126.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, D.S. and Davenport, R.R. 1985. Zygosaccharomyces bailii – a profile of characteristics and spoilage activities. Food Microbiol. 2: 157–169.

    Google Scholar 

  • Tilbury, R.H. 1980. Xerotolerant yeasts at high sugar concentrations. In Microbial Growth and Survival in Extreme Environments, eds G.W. Gould and J.E.L. Corry. Tech. Ser., Soc. Appl. Bacteriol. 15: 103–128.

    Google Scholar 

  • Török, T. and King, A.D. 1991. Thermal inactivation kinetics of food-borne yeasts. J. Food Sci. 56: 6–9, 59.

    Article  Google Scholar 

  • Török, T. et al. 1993. Use of electrophoretic karyotyping and DNA-DNA hybridization in yeast identification. Int. J. Food Microbiol. 19: 63–80.

    Article  PubMed  Google Scholar 

  • Tóth, R., Nosek, J., Mora-Montes, H.M., Gabaldon, T., Bliss, J.M., Nosanchuk, J.D., Turner, S.A., Butler, G., Vágvölgyi, C. and Gácser, A., 2019. Candida parapsilosis: from genes to the bedside. Clin. Microbiol. Rev. 32(2), pp.e00111-18.

    Google Scholar 

  • Trofa, D., Gácser, A. and Nosanchuk, J.D., 2008. Candida parapsilosis, an emerging fungal pathogen. Clin. Microbiol. Rev. 21: 606–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuon, F.F. and Costa, S.F., 2008. Rhodotorula infection. A systematic review of 128 cases from literature. Rev. Iberoam. Micol., 25: 135–140.

    Article  PubMed  Google Scholar 

  • Unterholzner, O. et al. 1988. Geschmacks- und Geruchsfehler bei Rotweinen verursacht durch Schizosaccharomyces pombe L. Mitt. Klosterneuburg, Rebe Wein, Obstbau Frücht. 38: 66–70.

    Google Scholar 

  • Van Eck, J.H. et al. 1993. The water relations of growth and polyhydroxy alcohol production by ascomycetous yeasts. J. Gen. Microbiol. 139: 1047–1054.

    Article  CAS  Google Scholar 

  • Vaughn, R.H. et al. 1943. Production of Spanish-type green olives. Bull. Calif. Agric. Exp. Stn. No. 678.

    Google Scholar 

  • Venkatasubbaiah, P. et al. 1985. Involvement of yeast flora in idli batter fermentation. J. Food Sci. Technol., India; 22: 88–90.

    CAS  Google Scholar 

  • Vieira-Dalode, G. et al. 2007. Lactic acid bacteria and yeasts associated with gowe production from sorghum in Benin. J. Appl. Microbiol. 103: 342–349.

    Article  CAS  PubMed  Google Scholar 

  • Viljoen, B.C. et al. 2003a. Seasonal diversity of yeasts associated with white-surface mould-ripened cheeses. Food Res. Int. 36: 275–283.

    Article  Google Scholar 

  • Viljoen, B.C. et al. 2003b. Temperature abuse initiating yeast growth in yoghurt. Food Res. Int. 36: 193–197.

    Article  Google Scholar 

  • Von Arx, J.A. 1977. Notes on Dipodascus, Endomyces and Geotrichum with the description of two new species. Antonie van Leeuwenhoek 43: 333–340.

    Article  CAS  PubMed  Google Scholar 

  • Von Schelhorn, M. 1950. Untersuchungen über den Verberb wasserarmer Lebensmittel durch osmophile Mikroorganismen. I. Verberb von Lebensmittel durch osmophile Hefen. Z. Lebensm.-Unters. Forsch. 91: 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Vu et al., 2016. DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud. Mycol. 85: 91–105 https://doi.org/10.1016/j.simyco.2016.11.007.

  • Wade, W.N. et al. 2003. Proteolytic yeasts isolated from raw, ripe tomatoes and metabolic association of Geotrichum candidum with Salmonella. Int. J. Food Microbiol. 86: 101–111.

    Article  CAS  PubMed  Google Scholar 

  • Walker, H.W. 1977. Spoilage of food by yeasts. Food Technol., Champaign 23(2): 57–61, 65.

    Google Scholar 

  • Wang, X.-W. et al. 2016. Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud. Mycol. 84: 145–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warth, A.D. 1977. Mechanism of resistance of Saccharomyces bailii to benzoic, sorbic and other weak acids used as food preservatives. J. Appl. Bacteriol. 43: 215–230.

    Article  CAS  Google Scholar 

  • Warth, A.D. 1985. Resistance of yeast species to benzoic and sorbic acids and to sulfur dioxide. J. Food Prot. 48: 564–569.

    Article  CAS  PubMed  Google Scholar 

  • Warth, A.D. 1986. Effects of nutrients and pH on the resistance of Zygosaccharomyces bailii to benzoic acid. Int. J. Food Microbiol. 3: 263–271.

    Article  CAS  Google Scholar 

  • Warth, A.D. 1988. Effect of benzoic acid on growth yield of yeasts differing in their resistance to preservatives. Appl. Environ. Microbiol. 54: 2091–2095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warth, A.D. 1989a. Transport of benzoic and propanoic acids by Zygosaccharomyces bailii. J. Gen. Microbiol. 135: 1383–1390.

    CAS  Google Scholar 

  • Warth, A.D. 1989b. Relationships among cell size, membrane permeability, and preservative resistance in yeast species. Appl. Environ. Microbiol. 55: 2995–2999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warth, A.D. 1989c. Relationships between the resistance of yeasts to acetic, propanoic and benzoic acids and to methyl paraben and pH. Int. J. Food Microbiol. 8: 343–349.

    Article  CAS  PubMed  Google Scholar 

  • Warth, A.D. 1991. Mechanism of action of benzoic acid on Zygosaccharomyces bailii: effects on glycolytic metabolite levels, energy production, and intracellular pH. Appl. Environ. Microbiol. 57: 3410–3414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirth, F. and Goldani, L.Z., 2012. Epidemiology of Rhodotorula: an emerging pathogen. Interdisciplinary perspectives on infectious diseases, 2012. doi:https://doi.org/10.1155/2012/465717

  • Westall, S. and Filtenborg, O. 1998. Spoilage yeasts of decorated soft cheese packed in modified atmosphere. Food Microbiol. 15: 243–249.

    Article  Google Scholar 

  • Wilson, C.L. and Chalutz, E. 1989. Postharvest biological control of Penicillium rots with antagonistic yeasts and bacteria. Scientia Horticulturae 40: 105–112.

    Article  Google Scholar 

  • Yamani, M.I. and Abu-Jaber, M.M. 1994. Yeast flora of labaneh produced by in-bag straining of cow milk set yogurt. J. Dairy Sci. 77: 3558–3564.

    Article  CAS  Google Scholar 

  • Yarrow, D. 1984. Genus 22. Saccharomyces Meyen ex Reess. In The Yeasts: a Taxonomic Study, 3rd edn, ed. N.J.W. Kreger-van Rij. Amsterdam: Elsevier. pp. 379–395.

    Google Scholar 

  • Zaake, S. 1979. Nachweis und Bedeutung geträkeschädlicher Hefen. Monatsschr. Brau. 32: 250–356.

    Google Scholar 

  • Zadra, C. et al. 2006. Biodegradation of the fungicide iprodione by Zygosaccharomyces rouxii strain DBVPG 6399. J. Agric. Food Chem. 54: 4734–4739.

    Article  CAS  PubMed  Google Scholar 

  • Zein, G.N. et al. 1983. Studies on Kareish cheese in the local markets of Monoufia. I. Yeast content. Egypt. J. Dairy Sci. 11: 317–319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pitt, J.I., Hocking, A.D. (2022). Yeasts. In: Fungi and Food Spoilage. Springer, Cham. https://doi.org/10.1007/978-3-030-85640-3_10

Download citation

Publish with us

Policies and ethics