Skip to main content

Enhanced Nutrient Accumulation in Non-leguminous Crop Plants by the Application of Endophytic Bacteria Bacillus Species

  • Chapter
  • First Online:
Bacilli in Agrobiotechnology

Abstract

Endophytic bacteria exert beneficial effects on various crop plants especially the non-legumes, and the effects are carried out in multidimensional mechanisms unlike the biological N2 fixation (BNF) process. They create a conducive environment in the apoplastic area of root tissues as well as in shoot for providing benefits to the host plant. Among the endophytic bacteria, recently, Bacillus spp. are gaining prominence as a biofertilizer and bioenhancer for crop production. A large number of species and strains of this genera have been isolated and identified from the diversified crop plants such as rice, wheat, maize, alfalfa, banana, black pepper, canola, cucumber, clover, oil palm, and apple. Inoculation of plants with these endophytic Bacilli resulted in various beneficial effects on the colonization including better nutrition, improvement of growth, yield, and quality of crop plants. A significant amount of atmospheric N2 is fixed and incorporated into a good number of non-legumes like rice, wheat, maize, banana, oil palm etc. that are confirmed by the 15N isotopic dilution technique. The Bacillus spp. are found in the apoplastic area, produce phytohormone especially auxin, and excrete their fixed N2 as ammonium to the host plant cells. Additionally, these endophytes are also able to enhance the accumulation of P, K, and Ca through the stimulation of cell membrane-ATP-ase activity. The Bacillus spp. are also capable to solubilize complex rock phosphate to a simpler form of phosphate, i.e. dihydrogen orthophosphate and monohydrogen orthophosphate, and help plant phosphorus nutrition. Besides, they produce siderophores, which are very much effective in iron uptake in diversified crop plants. Therefore, the endophytic Bacilli are considered as microbial agents for enhancing uptake and better utilisation of nutrients in different crop plants under normal and harsh environmental conditions. This chapter updates our understanding of nutrient accumulation in non-legumes crop plants by endophytic Bacillus spp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal I, Shinwari ZK, Sikandar S, Shahzad S (2019) Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res 221:36–49

    Article  CAS  PubMed  Google Scholar 

  • Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169(2014):483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amir HG, Shamsuddin ZH, Halimi MS, Ramlan MF, Marziah M (2001) Effects of Azospirillum inoculation on N2 fixation and growth of oil palm plantlets at nursery stage. J Oil Palm Res 13:42–49

    CAS  Google Scholar 

  • Andrade LF, De Souza GL, Nietsche S, Xavier AA, Costa MR, Cardoso AM, Pereira MC, Pereira DF (2013) Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. J Microbiol 52(1):27–34

    Article  Google Scholar 

  • Bahadir PS, Liaqat F, Eltem R (2018) Plant growth promoting properties of phosphate solubilizing Bacillus species isolated from the Aegean region of Turkey. Turk J Bot 42:1–14

    Article  Google Scholar 

  • Banerjee MR, Yesmin L (2009) Sulfur–oxidizing plant growth promoting rhizobacteria for enhanced canola performance. Google Patents

    Google Scholar 

  • Barriuso J, Solano BR (2008) Ecology, genetic diversity and screening strategies of plant growth promoting Rhizobacteria (PGPR). J Plant Nutr:1–17

    Google Scholar 

  • Bashan Y, Holguin G (1997) Azospireillum/plant relationship: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Google Scholar 

  • Bashan Y, Levanony H, Mitiku G (1989) Changes in proton efflux in intact wheat roots inoculated by A. brasilense Cd. Can J Microbiol 35:691–697

    Article  CAS  Google Scholar 

  • Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing Bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320

    Article  Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain:ultrastructure and cytochemistry of the host response. Planta 204(2):153–168

    Article  CAS  Google Scholar 

  • Bjelić D, Ignjatov M, Marinković J, Milošević D, Nikolić Z, Gvozdanović-Varga J, Karaman M (2018) Bacillus isolates as potential biocontrol agents of Fusarium clove rot of garlic. Zemdirbyste-Agriculture 105(4):369–376

    Google Scholar 

  • Boddey RM, Alves BJR, Urquiaga S (1996) Nitrogen cycling and sustainability of improved pastures in the Brazilian cerrados. In: Pereira RC, Nasser LCB (eds) Proceedings of VIII Symp. on cerrados: Biodiv. sustain. prod. food fibres in cerrados, Proc. 1st int. symp. trop. savannas, Brasilia, D. F., Brazil. 24–29 March 1996

    Google Scholar 

  • Brader G (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewin B, Woodley P, Drummond M (1999) The basis of ammonium release in nifL mutants of Azotobacter vinelandii. J Bacteriol 181:7356–7362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Çakmakçi R, Donmez F, Aydın A, Sahin F (2006) Growth promotion of plants by plant growth promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Article  Google Scholar 

  • Carvalho TLGE, Balsemão-Pires RM, Saraiva PCG, Ferreira ASH (2014) Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J Exp Bot 65(19):5631–5642

    Article  CAS  PubMed  Google Scholar 

  • Castorph H, Kleiner D (1984) Some properties of a Klebsiella pneumoniae ammonium transport negative mutant (Amt). Arch Microbiol 139:245–247

    Article  CAS  PubMed  Google Scholar 

  • Chauhan H, Bagyaraj DJ, Sharma A (2012) Plant growth-promoting bacterial endophytes from sugarcane and their potential in promoting growth of the host under field conditions. Exp Agric 49(1):43–52

    Article  Google Scholar 

  • Chen B (2011) A bacterial endophyte from banana:its isolation, identification, activity to Fusarium Wilt and PGPR effect to banana seedlings. Microbiol/Weishengwuxue Tongbao 38(2):199–205

    CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danso SKA (1985) Methods for estimating biological nitrogen fixation. In: Ssali H, Keya SO (eds) Biological nitrogen fixation in Africa. Nairobi MIRCENS, Nairobi, pp 213–244

    Google Scholar 

  • Danso SKA (1995) Assessment of biological nitrogen fixation. Fertilizer Res 42:33–41

    Article  CAS  Google Scholar 

  • Das S, De TK (2018) Microbial assay of N2 fixation rate, a simple alternate for acetylene reduction assay. Methods X 5:909–914

    Google Scholar 

  • Day DA, Poole PS, Tyerman SD, Rosendahl L (2001) Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules. Cell Mol Life Sci 58:61–71

    Article  CAS  PubMed  Google Scholar 

  • Etesami H, Emami S, Alikhani HA (2017) Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects, A review. J Soil Sci Plant Nutr 17(4)

    Google Scholar 

  • Forchetti G, Masciarell O, Alemano S, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76(5):1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Hafeez FY, Yasmin S, Ariani D, Zafar Y, Malik KA (2006) Plant growth promoting bacteria as biofertilizer. Agron Sustain Dev 26:143–150

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Holliday P (1989) A dictionary of plant pathology. Cambridge University Press, Cambridge

    Google Scholar 

  • Hossain GMA, Solaiman ARM, Karim AJMS, Rahman GKMM, Mia MAB (2020) Influence of Diazotrophic bacteria on growth and biomass production of sugarcane in vitro. Int J Curr Microbiol Appl Sci 9(3):3077–3088

    Article  CAS  Google Scholar 

  • Hungria M (2011) Inoculação com Azospirillum brasilense: inovação em rendimento a baixo custo. Embrapa Soja Documentos 325

    Google Scholar 

  • Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Bioll Fertil Soils 49(7):791–801

    Article  Google Scholar 

  • Indiragandhi, P., Anandham,R. Madhaiyan, M. & Sa, T.M. (2008). Characterization of plant growth-promoting traits ofbacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol, 56, 327–333

    Google Scholar 

  • Islam MT, Hossain MM (2013) Biological control of Peronosporomycete phytopathogens by antagonistic bacteria. In: Maheshwari DK (ed) Bacteria in agrobiology: plant disease management. Springer, Berlin, pp 167–218

    Chapter  Google Scholar 

  • Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth pro- moting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98

    Article  CAS  PubMed  Google Scholar 

  • Joo, G.J., Kang, S.M., Hamayun, M., Kim,S.K., Na,C.I., Shin, D.H. & Lee, I.J. (2009). Burkhoderia sp. KCTC 11096BPas a newly isolated gibberellins producing bacterium. J Microbiol, 47, 167–171

    Google Scholar 

  • Kang, S.M., Joo, G.J., Hamayun,M. Na,C.I.,Shin, D.H., Kim,Y.K., Hong,J.K. & Lee,I.J. (2009). Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett, 31, 277–281

    Google Scholar 

  • Kleiner D (1982) Amonium (methylamonium) transport by Klebsiella pneumonia. Biochim Biophys Acta 688:702–708

    Article  CAS  PubMed  Google Scholar 

  • Knoth JL (2014) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol 201(2):599–609

    Article  CAS  PubMed  Google Scholar 

  • Kraepiel A (2009) Multiple roles of siderophores in free–living nitrogen–fixing bacteria. Biometals 22(4):573–581

    Article  CAS  PubMed  Google Scholar 

  • Leite HA, Silva AB, Gomes FP, et al. (2013) Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systemically colonize seedlings and promote growth. Appl Microbiol Biotechnol, 97,2639–2651

    Google Scholar 

  • Long H, Schmidt D, Baldwin I (2008) Native bacterial endophytes promote host growth in a species–specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3(7):e2702

    Article  PubMed  PubMed Central  Google Scholar 

  • Mareque C, Taulé C, Beracochea M et al (2015) Isolation, characterization and plant growth promotion effects of putative bacterial endophytes associated with sweet sorghum (Sorghum bicolor (L) Moench). Ann Microbiol 65:1057–1067

    Article  CAS  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of high plants (2nd Edn), London aca-demic press, London, 889

    Google Scholar 

  • Matos ADM, Izabela CP, Nietsche S, Xavier AA, Gomes WS, Neto JDS, Pereira MCT (2017) Phosphate solubilization by endophytic bacteria isolated from banana trees. An Acad Bras Cienc 89(4):2945–2954

    Article  CAS  PubMed  Google Scholar 

  • McAuliffe C, Chamblee DS, Uribe-Arango H, Woodhouse WW (1958) Influence of inorganic nitrogen on nitrogen fixation by legumes ilS revealed by N-15. Agron J 50:334–347

    Article  CAS  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Meena RS (2014) Potassium solubilizing microorganisms for sustainable agriculture. Springer

    Google Scholar 

  • Mehta P, Walia A, Kakkar N, Shirkot CK (2014) Tricalcium phosphate solubilisation by new endophyte Bacillus methylotrophicus CKAM isolated from apple root endosphere and its plant growth-promoting activities. Acta Physiol Plant 36:2033–2045

    Article  CAS  Google Scholar 

  • Mia MAB (2015) Nutrition of crop. Plants. Nova Science Publisher, New York

    Google Scholar 

  • Mia MAB, Shamsuddin ZH (2010) Nitrogen fixation and transportation by rhizobacteria: A scenario of rice and bananas. Int J Bot 6(3):235–242

    Article  Google Scholar 

  • Mia MAB, Shamsuddin ZH (2013) Biofertilizer for banana production. Lambert Academic Publisher, Germany

    Google Scholar 

  • Mia MAB, Shamsuddin ZH, Marziah M (2007) Associative nitrogen fixation by Azospirillum and Bacillus spp. in bananas. Infomusa 16(1&2):11–15

    Google Scholar 

  • Mia MAB, Shamsuddin ZH, Wahab Z, Maziah M (2009) The effect of rhizobacterial inoculation on growth and nutrient accumulation of tissue-cultured banana plantlets under low N-fertilizer regime. Afr J Biotechnol 8(21):5855–5866

    Article  Google Scholar 

  • Mia MAB, Shamsuddin ZH, Zakaria W, Marziah M (2010a) Rhizobacteria as bioenhancer for growth and yield of banana (Musa spp. cv. “Berangan”). Sci Hortic 126(2):80–87

    Article  Google Scholar 

  • Mia MAB, Shamsuddin ZH, Marziah M (2010b) Rhizobacterial inoculation on growth and nitrogen incorporation in tissue-cultured Musa plantlets under nitrogen-free hydroponics condition. Austr J Crop Sci 4(2):85–90

    Google Scholar 

  • Mia MAB, Hossain MM, Shamsuddin ZH, Islam MT (2013) Plant-associated bacteria in nitrogen nutrition in crops, with special reference to rice and banana. In: Maheshwari DK (ed) Bacteria in agrobiology: crop productivity. Springer, Berlin/Heidelberg

    Google Scholar 

  • Mia MAB, Naher UA, Panhwar QA, Islam MT (2016) Growth promotion of non-legumes by the inoculation of bacillus species. In: Islam et al (eds) Bacillus and agrobiotechnology. Springer

    Google Scholar 

  • Miller SH (2010) Biochemical and genomic comparison of inorganic phosphate solubilization in pseudomonas species. Environ Microbiol Rep 2(3):403–411

    Article  CAS  PubMed  Google Scholar 

  • Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr 13(3):638–649

    Google Scholar 

  • Nisa H (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products:A review. Microb Pathog 82:50–59

    Article  CAS  PubMed  Google Scholar 

  • Panhwar QA, Radziah O, Sariah M, MohdRazi I (2009) Solubilization of phosphate forms by phosphate solubilizing bacteria isolated from aerobic rice. Int J Agric Biol 11:667–673

    CAS  Google Scholar 

  • Péret B, BertDe R, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci, 14 (7):399–408

    Google Scholar 

  • Prakash J, Arora NK (2019) Phosphate-solubilizing Bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L. 3 Biotech 9:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Radhakrishnan R, Hashem A, AbdAllah EFA (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol, 8:667

    Google Scholar 

  • Rajkumar M (2010) Potential of siderophore–producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro VP, Marriel IE, Evódio I, de Sousa SM, Lana Gomes U, Mattos BB, de Oliveira CA, Gomes EA (2018) Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Braz J Microbiol 49:SuI

    Article  Google Scholar 

  • Roger PA, Ladha JK (1992) Biological N2 fixation in wetland rice fields: estimation and contribution to nitrogen balance. Plant Soil 141:41–55

    Article  CAS  Google Scholar 

  • Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor nitrogenase. Annu Rev Microbiol 62:93–111

    Article  CAS  PubMed  Google Scholar 

  • Saad MS, Shabuddin ASA, Yunus AG, Shamsuddin ZH (1999) Effects of Azospirillum inoculation on sweet potato grown on sandy tin-tailing soil. Commun Soil Sci Plant Anal 30(11&12):1583–1592

    Article  CAS  Google Scholar 

  • Saeid A, Prochownik E, Dobrowolska-Iwanek J (2018) Phosphorus solubilization by Bacillus species. Molecules 23(11):2897

    Article  PubMed Central  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Kumar B, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2002) Siegfried Draeger, et al. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106(9):996–1004

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes, Soil biology, 9. Springer, Berlin/Heidelberg

    Chapter  Google Scholar 

  • Seefedt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722

    Article  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2(587):1–14

    Google Scholar 

  • Shen FT, Yen JH, Liao CS, Chen WC, Chao YT (2019) Screening of rice endophytic biofertilizers with fungicide tolerance and plant growth-promoting characteristics. Sustainability 11:1133

    Article  CAS  Google Scholar 

  • Shi Y, Lou K, Li C (2010) Growth and photosynthetic efficiency promotion of sugar beet (Beta vulgaris L.) by endophytic bacteria. Photosynth Res 105:5–13

    Article  CAS  PubMed  Google Scholar 

  • Shrestha RK, Ladha JK (1996) Genotypic variation in promotion of rice dinitrogen fixation as determined by nitrogen-15 dilution. Soil Sci Soc Am J 60:1815–1821

    Article  CAS  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67(2):257–268

    Article  CAS  PubMed  Google Scholar 

  • Suzane AS, Adelica AX, Márcia RC, Acleide MSC (2013) Endophytic bacterial diversity in banana ‘Prata Anã’ (Musa spp.) roots. Genet Mol Biol 36(2):252–264

    Article  Google Scholar 

  • Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, Adamoski D, Kava-Cordeiro V, Glienke C, Galli-Terasawa LV (2014) Identification and characterization of endophytic bacteria from corn (Zea mays L) roots with biotechnological potential in agriculture. AMB Express 4:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 4(14):605–611

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wahyudi AT, Astuti RP, Widyawati A, Meryandini A, Nawangsih AA (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting Rhizobacteria. J Microbiol Antimicrob 3:34–40

    Google Scholar 

  • Wahyudi AT, Astuti RP, Widyawati A, Meryandini A, Nawangsih AA (2020) Characterization of bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting Rhizobacteria. J Microbiol Antimicrob 3(2):34–40

    Google Scholar 

  • Waidmann S, Sarkel E, Kleine-Vehn J (2020) Same same, but different: growth responses of primary and lateral roots. J Exp Bot 23 71(8):2397–2411

    Article  CAS  Google Scholar 

  • Wang Y, Li H, Zhao W, He X, Chen J, Geng X, Xiao M (2010) Induction of toluene degradation and growth promotion in corn and wheat by horizontal gene transfer within endophytic bacteria. Soil Biol Biochem 42(7):1051–1057

    Article  CAS  Google Scholar 

  • Wang Z, Yu ZX, Solanki MK, Yang L-T, Xing Y-X, Dong D-F, Li Y-R (2020) Diversity of sugarcane root-associated endophytic Bacillus and their activities in enhancing plant growth. J Appl Microbiol 128, 3:814–827

    Article  Google Scholar 

  • Xia Y, De Bolt S, Dreyer J, Scott D, Williams MA (2015) Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front Plant Sci 6:490

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie G, Su B, Cui Z (1998) Isolation and identification of N2-fixing strains of bacillus in rice rhizosphere of the Yangtze River valley. Wei Sheng Wu XueBao (Article in Chinese) 38(6):480–483

    CAS  Google Scholar 

  • Zhao L, Xu Y, Lai XH, Shan C, Deng Z, Ji Y (2015) Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Braz J Microbiol 46(4):977–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Baset Mia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, G.M.A., Ghazali, A.H., Islam, T., Mia, M.A.B. (2022). Enhanced Nutrient Accumulation in Non-leguminous Crop Plants by the Application of Endophytic Bacteria Bacillus Species. In: Islam, M.T., Rahman, M., Pandey, P. (eds) Bacilli in Agrobiotechnology. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-85465-2_16

Download citation

Publish with us

Policies and ethics